Ignjatović, Nenad

Link to this page

Authority KeyName Variants
orcid::0000-0002-5749-094X
  • Ignjatović, Nenad (7)

Author's Bibliography

Temperature Sensing Properties of Biocompatible Yb/Er-Doped GdF3 and YF3 Mesocrystals

Dinić, Ivana; Vuković, Marina; Rabanal, Maria Eugenia; Milošević, Milica; Bukumira, Marta; Tomić, Nina; Tomić, Miloš; Mančić, Lidija; Ignjatović, Nenad

(MDPI, 2024)

TY  - JOUR
AU  - Dinić, Ivana
AU  - Vuković, Marina
AU  - Rabanal, Maria Eugenia
AU  - Milošević, Milica
AU  - Bukumira, Marta
AU  - Tomić, Nina
AU  - Tomić, Miloš
AU  - Mančić, Lidija
AU  - Ignjatović, Nenad
PY  - 2024
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/6477
AB  - Y0.8−xGdxF3:Yb/Er mesocrystals with a biocompatible surface and diverse morphological characteristics were successfully synthesized using chitosan-assisted solvothermal processing. Their structural properties, studied using X-ray powder diffraction, Fourier transform infrared spectroscopy, scanning and transmission electron microscopy and energy dispersive X-ray analysis, were further correlated with the up-conversion emission (λexc = 976 nm) recorded in function of temperature. Based on the change in the visible green emissions originating from the thermally coupled 2H11/2 and 4S3/2 levels of Er3+, the corresponding LIR was acquired in the physiologically relevant range of temperatures (25–50 °C). The detected absolute sensitivity of about 0.0042 °C−1, along with the low cytotoxicity toward both normal human lung fibroblasts (MRC-5) and cancerous lung epithelial (A549) cells, indicate a potential for use in temperature sensing in biomedicine. Additionally, their enhanced internalization in cells, without suppression of cell viability, enabled in vitro labeling of cancer and healthy cells upon 976 nm laser irradiation.
PB  - MDPI
T2  - Journal of Functional Biomaterials
T1  - Temperature Sensing Properties of Biocompatible Yb/Er-Doped GdF3 and YF3 Mesocrystals
VL  - 15
IS  - 1
SP  - 6
DO  - 10.3390/jfb15010006
ER  - 
@article{
author = "Dinić, Ivana and Vuković, Marina and Rabanal, Maria Eugenia and Milošević, Milica and Bukumira, Marta and Tomić, Nina and Tomić, Miloš and Mančić, Lidija and Ignjatović, Nenad",
year = "2024",
abstract = "Y0.8−xGdxF3:Yb/Er mesocrystals with a biocompatible surface and diverse morphological characteristics were successfully synthesized using chitosan-assisted solvothermal processing. Their structural properties, studied using X-ray powder diffraction, Fourier transform infrared spectroscopy, scanning and transmission electron microscopy and energy dispersive X-ray analysis, were further correlated with the up-conversion emission (λexc = 976 nm) recorded in function of temperature. Based on the change in the visible green emissions originating from the thermally coupled 2H11/2 and 4S3/2 levels of Er3+, the corresponding LIR was acquired in the physiologically relevant range of temperatures (25–50 °C). The detected absolute sensitivity of about 0.0042 °C−1, along with the low cytotoxicity toward both normal human lung fibroblasts (MRC-5) and cancerous lung epithelial (A549) cells, indicate a potential for use in temperature sensing in biomedicine. Additionally, their enhanced internalization in cells, without suppression of cell viability, enabled in vitro labeling of cancer and healthy cells upon 976 nm laser irradiation.",
publisher = "MDPI",
journal = "Journal of Functional Biomaterials",
title = "Temperature Sensing Properties of Biocompatible Yb/Er-Doped GdF3 and YF3 Mesocrystals",
volume = "15",
number = "1",
pages = "6",
doi = "10.3390/jfb15010006"
}
Dinić, I., Vuković, M., Rabanal, M. E., Milošević, M., Bukumira, M., Tomić, N., Tomić, M., Mančić, L.,& Ignjatović, N.. (2024). Temperature Sensing Properties of Biocompatible Yb/Er-Doped GdF3 and YF3 Mesocrystals. in Journal of Functional Biomaterials
MDPI., 15(1), 6.
https://doi.org/10.3390/jfb15010006
Dinić I, Vuković M, Rabanal ME, Milošević M, Bukumira M, Tomić N, Tomić M, Mančić L, Ignjatović N. Temperature Sensing Properties of Biocompatible Yb/Er-Doped GdF3 and YF3 Mesocrystals. in Journal of Functional Biomaterials. 2024;15(1):6.
doi:10.3390/jfb15010006 .
Dinić, Ivana, Vuković, Marina, Rabanal, Maria Eugenia, Milošević, Milica, Bukumira, Marta, Tomić, Nina, Tomić, Miloš, Mančić, Lidija, Ignjatović, Nenad, "Temperature Sensing Properties of Biocompatible Yb/Er-Doped GdF3 and YF3 Mesocrystals" in Journal of Functional Biomaterials, 15, no. 1 (2024):6,
https://doi.org/10.3390/jfb15010006 . .

Synthesis and Biological Properties of Alanine-Grafted Hydroxyapatite Nanoparticles

Dorm, Bruna Carolina; Rosas Costa Iemma, Mônica; Domingos Neto, Benedito; Lopes Francisco, Rauany Cristina; Dinić, Ivana; Ignjatović, Nenad; Marković, Smilja; Vuković, Marina; Škapin, Srečo; Trovatti, Eliane; Mančić, Lidija

(MDPI, 2023)

TY  - JOUR
AU  - Dorm, Bruna Carolina
AU  - Rosas Costa Iemma, Mônica
AU  - Domingos Neto, Benedito
AU  - Lopes Francisco, Rauany Cristina
AU  - Dinić, Ivana
AU  - Ignjatović, Nenad
AU  - Marković, Smilja
AU  - Vuković, Marina
AU  - Škapin, Srečo
AU  - Trovatti, Eliane
AU  - Mančić, Lidija
PY  - 2023
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5814
AB  - Hydroxyapatite attracts great attention as hard tissues implant material for bones and teeth. Its application in reconstructive medicine depends on its biocompatibility, which is in a function of composition and surface properties. The insertion of a protein element in the composition of implants can improve the cell adhesion and the osseointegration. Having this in mind, the proposal of this work was to develop L-alanine-grafted hydroxyapatite nanoparticles and to study their biocompatibility. Two L-alanine sources and three grafting methods were used for hydroxyapatite surface functionalization. The efficiency of grafting was determined based on X-ray powder diffraction, Fourier-transform infrared spectroscopy, thermal analyses, and field-emission scanning electron microscopy. The results indicated the formation of hydroxyapatite with 8–25 wt% of organic content, depending on the grafting method. Protein adsorption, cell adhesion, and viability studies were carried out to evaluate biological properties of grafted materials. The viability of MG-63 human osteoblastic cells following 24 h incubation with the alanine-grafted hydroxyapatite samples is well preserved, being in all cases above the viability of cells incubated with hydroxyapatite. The alanine-grafted hydroxyapatite prepared in situ and by simple mixture showed higher protein adsorption and cell adhesion, respectively, indicating their potential toward use in regenerative medicine.
PB  - MDPI
T2  - Life
T1  - Synthesis and Biological Properties of Alanine-Grafted Hydroxyapatite Nanoparticles
VL  - 13
IS  - 1
SP  - 116
DO  - 10.3390/life13010116
ER  - 
@article{
author = "Dorm, Bruna Carolina and Rosas Costa Iemma, Mônica and Domingos Neto, Benedito and Lopes Francisco, Rauany Cristina and Dinić, Ivana and Ignjatović, Nenad and Marković, Smilja and Vuković, Marina and Škapin, Srečo and Trovatti, Eliane and Mančić, Lidija",
year = "2023",
abstract = "Hydroxyapatite attracts great attention as hard tissues implant material for bones and teeth. Its application in reconstructive medicine depends on its biocompatibility, which is in a function of composition and surface properties. The insertion of a protein element in the composition of implants can improve the cell adhesion and the osseointegration. Having this in mind, the proposal of this work was to develop L-alanine-grafted hydroxyapatite nanoparticles and to study their biocompatibility. Two L-alanine sources and three grafting methods were used for hydroxyapatite surface functionalization. The efficiency of grafting was determined based on X-ray powder diffraction, Fourier-transform infrared spectroscopy, thermal analyses, and field-emission scanning electron microscopy. The results indicated the formation of hydroxyapatite with 8–25 wt% of organic content, depending on the grafting method. Protein adsorption, cell adhesion, and viability studies were carried out to evaluate biological properties of grafted materials. The viability of MG-63 human osteoblastic cells following 24 h incubation with the alanine-grafted hydroxyapatite samples is well preserved, being in all cases above the viability of cells incubated with hydroxyapatite. The alanine-grafted hydroxyapatite prepared in situ and by simple mixture showed higher protein adsorption and cell adhesion, respectively, indicating their potential toward use in regenerative medicine.",
publisher = "MDPI",
journal = "Life",
title = "Synthesis and Biological Properties of Alanine-Grafted Hydroxyapatite Nanoparticles",
volume = "13",
number = "1",
pages = "116",
doi = "10.3390/life13010116"
}
Dorm, B. C., Rosas Costa Iemma, M., Domingos Neto, B., Lopes Francisco, R. C., Dinić, I., Ignjatović, N., Marković, S., Vuković, M., Škapin, S., Trovatti, E.,& Mančić, L.. (2023). Synthesis and Biological Properties of Alanine-Grafted Hydroxyapatite Nanoparticles. in Life
MDPI., 13(1), 116.
https://doi.org/10.3390/life13010116
Dorm BC, Rosas Costa Iemma M, Domingos Neto B, Lopes Francisco RC, Dinić I, Ignjatović N, Marković S, Vuković M, Škapin S, Trovatti E, Mančić L. Synthesis and Biological Properties of Alanine-Grafted Hydroxyapatite Nanoparticles. in Life. 2023;13(1):116.
doi:10.3390/life13010116 .
Dorm, Bruna Carolina, Rosas Costa Iemma, Mônica, Domingos Neto, Benedito, Lopes Francisco, Rauany Cristina, Dinić, Ivana, Ignjatović, Nenad, Marković, Smilja, Vuković, Marina, Škapin, Srečo, Trovatti, Eliane, Mančić, Lidija, "Synthesis and Biological Properties of Alanine-Grafted Hydroxyapatite Nanoparticles" in Life, 13, no. 1 (2023):116,
https://doi.org/10.3390/life13010116 . .
3
2
1

Hydroxyapatite grafting with alanine amino acid - efficiency of different methods

Vuković, Marina; Dorm, Bruna Carolina; Trovatti, Eliane; Ignjatović, Nenad; Marković, Smilja; Škapin, Srečo; Dinić, Ivana; Mančić, Lidija

(Belgrade : Serbian Ceramic Society, 2022)

TY  - CONF
AU  - Vuković, Marina
AU  - Dorm, Bruna Carolina
AU  - Trovatti, Eliane
AU  - Ignjatović, Nenad
AU  - Marković, Smilja
AU  - Škapin, Srečo
AU  - Dinić, Ivana
AU  - Mančić, Lidija
PY  - 2022
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5744
AB  - Hydroxyapatite (HAp) attracts great attention due to application in reconstructive medicine for hard tissues, mostly bones and teeth, where it is declared to be highly biocompatible material. Its grafting with amino acids further increases biocompatibility and has crucial importance for acceptance of body implants. In this work different methods of grafting were investigated: simple mixing, thermal treatment induction and in situ synthesis/grafting reactions. Two amino acid precursors were separately tested in grafting procedures: pure alanine and alanine methyl ester hydrochloride. The efficiency of grafting was determined based on X-ray powder diffraction (XRPD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and thermal analyses (DSC, TG/DTA) of obtained powders, while complementary UV-VIS spectroscopy of supernatants was additionally performed for quantitative determination of non-grafted nitrogen using ninhydrin standardized procedure.
PB  - Belgrade : Serbian Ceramic Society
C3  - Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application X New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 26-27. September 2022.
T1  - Hydroxyapatite grafting with alanine amino acid - efficiency of different methods
SP  - 58
EP  - 59
UR  - https://hdl.handle.net/21.15107/rcub_dais_13630
ER  - 
@conference{
author = "Vuković, Marina and Dorm, Bruna Carolina and Trovatti, Eliane and Ignjatović, Nenad and Marković, Smilja and Škapin, Srečo and Dinić, Ivana and Mančić, Lidija",
year = "2022",
abstract = "Hydroxyapatite (HAp) attracts great attention due to application in reconstructive medicine for hard tissues, mostly bones and teeth, where it is declared to be highly biocompatible material. Its grafting with amino acids further increases biocompatibility and has crucial importance for acceptance of body implants. In this work different methods of grafting were investigated: simple mixing, thermal treatment induction and in situ synthesis/grafting reactions. Two amino acid precursors were separately tested in grafting procedures: pure alanine and alanine methyl ester hydrochloride. The efficiency of grafting was determined based on X-ray powder diffraction (XRPD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and thermal analyses (DSC, TG/DTA) of obtained powders, while complementary UV-VIS spectroscopy of supernatants was additionally performed for quantitative determination of non-grafted nitrogen using ninhydrin standardized procedure.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application X New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 26-27. September 2022.",
title = "Hydroxyapatite grafting with alanine amino acid - efficiency of different methods",
pages = "58-59",
url = "https://hdl.handle.net/21.15107/rcub_dais_13630"
}
Vuković, M., Dorm, B. C., Trovatti, E., Ignjatović, N., Marković, S., Škapin, S., Dinić, I.,& Mančić, L.. (2022). Hydroxyapatite grafting with alanine amino acid - efficiency of different methods. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application X New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 26-27. September 2022.
Belgrade : Serbian Ceramic Society., 58-59.
https://hdl.handle.net/21.15107/rcub_dais_13630
Vuković M, Dorm BC, Trovatti E, Ignjatović N, Marković S, Škapin S, Dinić I, Mančić L. Hydroxyapatite grafting with alanine amino acid - efficiency of different methods. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application X New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 26-27. September 2022.. 2022;:58-59.
https://hdl.handle.net/21.15107/rcub_dais_13630 .
Vuković, Marina, Dorm, Bruna Carolina, Trovatti, Eliane, Ignjatović, Nenad, Marković, Smilja, Škapin, Srečo, Dinić, Ivana, Mančić, Lidija, "Hydroxyapatite grafting with alanine amino acid - efficiency of different methods" in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application X New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 26-27. September 2022. (2022):58-59,
https://hdl.handle.net/21.15107/rcub_dais_13630 .

Rare-earth (Gd3+,Yb3+/Tm3+, Eu3+) co-doped hydroxyapatite as magnetic, up-conversion and down-conversion materials for multimodal imaging

Ignjatović, Nenad; Mančić, Lidija; Vuković, Marina; Stojanović, Zoran; Nikolić, Marko G.; Škapin, Srečo; Jovanović, Sonja; Veselinović, Ljiljana M.; Uskoković, Vuk; Lazić, Snežana; Marković, Smilja; Lazarević, Miloš M.; Uskoković, Dragan P.

(Springer Nature, 2019)

TY  - JOUR
AU  - Ignjatović, Nenad
AU  - Mančić, Lidija
AU  - Vuković, Marina
AU  - Stojanović, Zoran
AU  - Nikolić, Marko G.
AU  - Škapin, Srečo
AU  - Jovanović, Sonja
AU  - Veselinović, Ljiljana M.
AU  - Uskoković, Vuk
AU  - Lazić, Snežana
AU  - Marković, Smilja
AU  - Lazarević, Miloš M.
AU  - Uskoković, Dragan P.
PY  - 2019
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3702
AB  - Taking advantage of the flexibility of the apatite structure, nano- and micro-particles of hydroxyapatite (HAp) were doped with different combinations of rare earth ions (RE3+ = Gd, Eu, Yb, Tm) to achieve a synergy among their magnetic and optical properties and to enable their application in preventive medicine, particularly diagnostics based on multimodal imaging. All powders were synthesized through hydrothermal processing at T ≤ 200 °C. An X-ray powder diffraction analysis showed that all powders crystallized in P63/m space group of the hexagonal crystal structure. The refined unit-cell parameters reflected a decrease in the unit cell volume as a result of the partial substitution of Ca2+ with smaller RE3+ ions at both cation positions. The FTIR analysis additionally suggested that a synergy may exist solely in the triply doped system, where the lattice symmetry and vibration modes become more coherent than in the singly or doubly doped systems. HAp:RE3+ optical characterization revealed a change in the energy band gap and the appearance of a weak blue luminescence (λex = 370 nm) due to an increased concentration of defects. The "up"- and the "down"-conversion spectra of HAp:Gd/Yb/Tm and HAp:Gd/Eu powders showed characteristic transitions of Tm3+ and Eu3+, respectively. Furthermore, in contrast to diamagnetic HAp, all HAp:RE3+ powders exhibited paramagnetic behavior. Cell viability tests of HAp:Gd/Yb/Tm and HAp:Gd/Eu powders in human dental pulp stem cell cultures indicated their good biocompatibility.
PB  - Springer Nature
T2  - Scientific reports
T1  - Rare-earth (Gd3+,Yb3+/Tm3+, Eu3+) co-doped hydroxyapatite as magnetic, up-conversion and down-conversion materials for multimodal imaging
VL  - 9
IS  - 1
SP  - 16305
DO  - 10.1038/s41598-019-52885-0
ER  - 
@article{
author = "Ignjatović, Nenad and Mančić, Lidija and Vuković, Marina and Stojanović, Zoran and Nikolić, Marko G. and Škapin, Srečo and Jovanović, Sonja and Veselinović, Ljiljana M. and Uskoković, Vuk and Lazić, Snežana and Marković, Smilja and Lazarević, Miloš M. and Uskoković, Dragan P.",
year = "2019",
abstract = "Taking advantage of the flexibility of the apatite structure, nano- and micro-particles of hydroxyapatite (HAp) were doped with different combinations of rare earth ions (RE3+ = Gd, Eu, Yb, Tm) to achieve a synergy among their magnetic and optical properties and to enable their application in preventive medicine, particularly diagnostics based on multimodal imaging. All powders were synthesized through hydrothermal processing at T ≤ 200 °C. An X-ray powder diffraction analysis showed that all powders crystallized in P63/m space group of the hexagonal crystal structure. The refined unit-cell parameters reflected a decrease in the unit cell volume as a result of the partial substitution of Ca2+ with smaller RE3+ ions at both cation positions. The FTIR analysis additionally suggested that a synergy may exist solely in the triply doped system, where the lattice symmetry and vibration modes become more coherent than in the singly or doubly doped systems. HAp:RE3+ optical characterization revealed a change in the energy band gap and the appearance of a weak blue luminescence (λex = 370 nm) due to an increased concentration of defects. The "up"- and the "down"-conversion spectra of HAp:Gd/Yb/Tm and HAp:Gd/Eu powders showed characteristic transitions of Tm3+ and Eu3+, respectively. Furthermore, in contrast to diamagnetic HAp, all HAp:RE3+ powders exhibited paramagnetic behavior. Cell viability tests of HAp:Gd/Yb/Tm and HAp:Gd/Eu powders in human dental pulp stem cell cultures indicated their good biocompatibility.",
publisher = "Springer Nature",
journal = "Scientific reports",
title = "Rare-earth (Gd3+,Yb3+/Tm3+, Eu3+) co-doped hydroxyapatite as magnetic, up-conversion and down-conversion materials for multimodal imaging",
volume = "9",
number = "1",
pages = "16305",
doi = "10.1038/s41598-019-52885-0"
}
Ignjatović, N., Mančić, L., Vuković, M., Stojanović, Z., Nikolić, M. G., Škapin, S., Jovanović, S., Veselinović, L. M., Uskoković, V., Lazić, S., Marković, S., Lazarević, M. M.,& Uskoković, D. P.. (2019). Rare-earth (Gd3+,Yb3+/Tm3+, Eu3+) co-doped hydroxyapatite as magnetic, up-conversion and down-conversion materials for multimodal imaging. in Scientific reports
Springer Nature., 9(1), 16305.
https://doi.org/10.1038/s41598-019-52885-0
Ignjatović N, Mančić L, Vuković M, Stojanović Z, Nikolić MG, Škapin S, Jovanović S, Veselinović LM, Uskoković V, Lazić S, Marković S, Lazarević MM, Uskoković DP. Rare-earth (Gd3+,Yb3+/Tm3+, Eu3+) co-doped hydroxyapatite as magnetic, up-conversion and down-conversion materials for multimodal imaging. in Scientific reports. 2019;9(1):16305.
doi:10.1038/s41598-019-52885-0 .
Ignjatović, Nenad, Mančić, Lidija, Vuković, Marina, Stojanović, Zoran, Nikolić, Marko G., Škapin, Srečo, Jovanović, Sonja, Veselinović, Ljiljana M., Uskoković, Vuk, Lazić, Snežana, Marković, Smilja, Lazarević, Miloš M., Uskoković, Dragan P., "Rare-earth (Gd3+,Yb3+/Tm3+, Eu3+) co-doped hydroxyapatite as magnetic, up-conversion and down-conversion materials for multimodal imaging" in Scientific reports, 9, no. 1 (2019):16305,
https://doi.org/10.1038/s41598-019-52885-0 . .
1
79
26
70
66

Hydroxyapatite nano particles doped with Gd3+, Yb3+/Tm3+ and Eu3+ as lumino-magnetic multimodal contrast agents

Ignjatović, Nenad; Mančić, Lidija; Vuković, Marina; Stojanović, Zoran S.; Nikolić, Marko G.; Škapin, Srečo; Jovanović, Sonja; Veselinović, Ljiljana M.; Lazić, Snežana; Marković, Smilja; Uskoković, Dragan

(Belgrade : Materials Research Society of Serbia, 2019)

TY  - CONF
AU  - Ignjatović, Nenad
AU  - Mančić, Lidija
AU  - Vuković, Marina
AU  - Stojanović, Zoran S.
AU  - Nikolić, Marko G.
AU  - Škapin, Srečo
AU  - Jovanović, Sonja
AU  - Veselinović, Ljiljana M.
AU  - Lazić, Snežana
AU  - Marković, Smilja
AU  - Uskoković, Dragan
PY  - 2019
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5228
AB  - Hydroxyapatite (HAp) has been widely used as bone reconstruction materials due to their similarity to bone tissue. The improvement of HAp properties was achieved by doping its crystal lattice with different ions. Lanthanides, i.e. Rare Earth Elements (RE) are also suitable for doping HAp. The aim of the presented research was to investigate the possibility of creating lumino-magnetic particles of HAp doped with gadolinium (Gd3+) ions and co-doped with ytterbium/thulium (Yb3+/Tm3+) or europium (Eu3+) ions for potential use in multimodal imaging (MI). Pure HAp (Ca5(PO4)3(OH)), magnetic HAp:Gd (Ca4.85Gd0.15(PO4)3(OH)), and lumino-magnetic HAp:Gd/Yb/Tm (Ca4.85Gd0.03Yb0.1Tm0.02(PO4)3(OH)) and HAp:Gd/Eu (Ca4.94Gd0.02Eu0.04(PO4)3(OH)) particles were synthesized using emulsification process and hydrothermal processing. All synthesized particles had an elongated shape and exhibited a paramagnetic behavior. Reduction of the unit cell volume as a result of replacement of Ca2+ ions by ions with a smaller ionic radius (Gd3+, Yb3+, Tm3+, Eu3+) confirmed by using XRD and Rietveld refined plots. The energy band gap values of the synthesized samples range from 4.93 to 3.18 eV and decrease in the following order: HAp:Gd >HAp>HAp:Gd/Eu>HAp:Gd/Yb/Tm. The results of photoluminescence emission spectra of HAp:Gd/Yb/Tm and HAp:Gd/Eu particles showed characteristic transitions of Tm3+ and Eu3+, respectively.
PB  - Belgrade : Materials Research Society of Serbia
C3  - Programme and The Book of abstracts / Twenty-first Annual Conference YUCOMAT 2019 & Eleventh World Round Table Conference on Sintering WRTCS 2019, Herceg Novi, Montenegro, September 2-6, 2019
T1  - Hydroxyapatite nano particles doped with Gd3+, Yb3+/Tm3+ and Eu3+ as lumino-magnetic multimodal contrast agents
SP  - 76
EP  - 76
UR  - https://hdl.handle.net/21.15107/rcub_cherry_5228
ER  - 
@conference{
author = "Ignjatović, Nenad and Mančić, Lidija and Vuković, Marina and Stojanović, Zoran S. and Nikolić, Marko G. and Škapin, Srečo and Jovanović, Sonja and Veselinović, Ljiljana M. and Lazić, Snežana and Marković, Smilja and Uskoković, Dragan",
year = "2019",
abstract = "Hydroxyapatite (HAp) has been widely used as bone reconstruction materials due to their similarity to bone tissue. The improvement of HAp properties was achieved by doping its crystal lattice with different ions. Lanthanides, i.e. Rare Earth Elements (RE) are also suitable for doping HAp. The aim of the presented research was to investigate the possibility of creating lumino-magnetic particles of HAp doped with gadolinium (Gd3+) ions and co-doped with ytterbium/thulium (Yb3+/Tm3+) or europium (Eu3+) ions for potential use in multimodal imaging (MI). Pure HAp (Ca5(PO4)3(OH)), magnetic HAp:Gd (Ca4.85Gd0.15(PO4)3(OH)), and lumino-magnetic HAp:Gd/Yb/Tm (Ca4.85Gd0.03Yb0.1Tm0.02(PO4)3(OH)) and HAp:Gd/Eu (Ca4.94Gd0.02Eu0.04(PO4)3(OH)) particles were synthesized using emulsification process and hydrothermal processing. All synthesized particles had an elongated shape and exhibited a paramagnetic behavior. Reduction of the unit cell volume as a result of replacement of Ca2+ ions by ions with a smaller ionic radius (Gd3+, Yb3+, Tm3+, Eu3+) confirmed by using XRD and Rietveld refined plots. The energy band gap values of the synthesized samples range from 4.93 to 3.18 eV and decrease in the following order: HAp:Gd >HAp>HAp:Gd/Eu>HAp:Gd/Yb/Tm. The results of photoluminescence emission spectra of HAp:Gd/Yb/Tm and HAp:Gd/Eu particles showed characteristic transitions of Tm3+ and Eu3+, respectively.",
publisher = "Belgrade : Materials Research Society of Serbia",
journal = "Programme and The Book of abstracts / Twenty-first Annual Conference YUCOMAT 2019 & Eleventh World Round Table Conference on Sintering WRTCS 2019, Herceg Novi, Montenegro, September 2-6, 2019",
title = "Hydroxyapatite nano particles doped with Gd3+, Yb3+/Tm3+ and Eu3+ as lumino-magnetic multimodal contrast agents",
pages = "76-76",
url = "https://hdl.handle.net/21.15107/rcub_cherry_5228"
}
Ignjatović, N., Mančić, L., Vuković, M., Stojanović, Z. S., Nikolić, M. G., Škapin, S., Jovanović, S., Veselinović, L. M., Lazić, S., Marković, S.,& Uskoković, D.. (2019). Hydroxyapatite nano particles doped with Gd3+, Yb3+/Tm3+ and Eu3+ as lumino-magnetic multimodal contrast agents. in Programme and The Book of abstracts / Twenty-first Annual Conference YUCOMAT 2019 & Eleventh World Round Table Conference on Sintering WRTCS 2019, Herceg Novi, Montenegro, September 2-6, 2019
Belgrade : Materials Research Society of Serbia., 76-76.
https://hdl.handle.net/21.15107/rcub_cherry_5228
Ignjatović N, Mančić L, Vuković M, Stojanović ZS, Nikolić MG, Škapin S, Jovanović S, Veselinović LM, Lazić S, Marković S, Uskoković D. Hydroxyapatite nano particles doped with Gd3+, Yb3+/Tm3+ and Eu3+ as lumino-magnetic multimodal contrast agents. in Programme and The Book of abstracts / Twenty-first Annual Conference YUCOMAT 2019 & Eleventh World Round Table Conference on Sintering WRTCS 2019, Herceg Novi, Montenegro, September 2-6, 2019. 2019;:76-76.
https://hdl.handle.net/21.15107/rcub_cherry_5228 .
Ignjatović, Nenad, Mančić, Lidija, Vuković, Marina, Stojanović, Zoran S., Nikolić, Marko G., Škapin, Srečo, Jovanović, Sonja, Veselinović, Ljiljana M., Lazić, Snežana, Marković, Smilja, Uskoković, Dragan, "Hydroxyapatite nano particles doped with Gd3+, Yb3+/Tm3+ and Eu3+ as lumino-magnetic multimodal contrast agents" in Programme and The Book of abstracts / Twenty-first Annual Conference YUCOMAT 2019 & Eleventh World Round Table Conference on Sintering WRTCS 2019, Herceg Novi, Montenegro, September 2-6, 2019 (2019):76-76,
https://hdl.handle.net/21.15107/rcub_cherry_5228 .

Lanthanide doped hydroxyapatite for multimodal imaging

Dinić, Ivana; Vuković, Marina; Ignjatović, Nenad; Stojanović, Zoran; Škapin, Srečo; Veselinović, Ljiljana M.; Mančić, Lidija

(Belgrade : Serbian Ceramic Society, 2018)

TY  - CONF
AU  - Dinić, Ivana
AU  - Vuković, Marina
AU  - Ignjatović, Nenad
AU  - Stojanović, Zoran
AU  - Škapin, Srečo
AU  - Veselinović, Ljiljana M.
AU  - Mančić, Lidija
PY  - 2018
UR  - http://dais.sanu.ac.rs/123456789/4118
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/2776
AB  - Lantanide dual-doped hydroxyapatite (HaP:Ln) is currently the subject of numerous studies in reconstructive medicine. Designed in form of hybrid nanoparticles which have magnetic and luminescent properties HaP:Ln (where Ln=Gd/Eu or Gd/Yb/Tm) is capable to enhance signal detection. Beside it, due biodegradable properties it is suitable for use in bone tissue engineering and target drug delivery. For such a promising approach, doping of a HAp matrix is performed with Gd/Eu and Gd/Yb/Tm during hydrothermal synthesis using EDTA as chelating agent. Morphological and structural characteristics of the particles were obtained using X-ray powder diffraction (XRPD), scanning and transmission electron microscopy (SEM/TEM), energy dispersive X-ray spectroscopy (EDX), Fourier Transform Infrared (FTIR) and photoluminescence (PL). The results show that needle-like nano- or micro- particles were obtained in all systems. Their phase composition and uniform distribution of dopants were confirmed by the structural refinement of the XRPD data and luminescence response from Eu and Tb (λex = 370, 394 and 977 nm).
PB  - Belgrade : Serbian Ceramic Society
C3  - Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018
T1  - Lanthanide doped hydroxyapatite for multimodal imaging
SP  - 71
EP  - 71
UR  - https://hdl.handle.net/21.15107/rcub_cherry_2776
ER  - 
@conference{
author = "Dinić, Ivana and Vuković, Marina and Ignjatović, Nenad and Stojanović, Zoran and Škapin, Srečo and Veselinović, Ljiljana M. and Mančić, Lidija",
year = "2018",
abstract = "Lantanide dual-doped hydroxyapatite (HaP:Ln) is currently the subject of numerous studies in reconstructive medicine. Designed in form of hybrid nanoparticles which have magnetic and luminescent properties HaP:Ln (where Ln=Gd/Eu or Gd/Yb/Tm) is capable to enhance signal detection. Beside it, due biodegradable properties it is suitable for use in bone tissue engineering and target drug delivery. For such a promising approach, doping of a HAp matrix is performed with Gd/Eu and Gd/Yb/Tm during hydrothermal synthesis using EDTA as chelating agent. Morphological and structural characteristics of the particles were obtained using X-ray powder diffraction (XRPD), scanning and transmission electron microscopy (SEM/TEM), energy dispersive X-ray spectroscopy (EDX), Fourier Transform Infrared (FTIR) and photoluminescence (PL). The results show that needle-like nano- or micro- particles were obtained in all systems. Their phase composition and uniform distribution of dopants were confirmed by the structural refinement of the XRPD data and luminescence response from Eu and Tb (λex = 370, 394 and 977 nm).",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018",
title = "Lanthanide doped hydroxyapatite for multimodal imaging",
pages = "71-71",
url = "https://hdl.handle.net/21.15107/rcub_cherry_2776"
}
Dinić, I., Vuković, M., Ignjatović, N., Stojanović, Z., Škapin, S., Veselinović, L. M.,& Mančić, L.. (2018). Lanthanide doped hydroxyapatite for multimodal imaging. in Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018
Belgrade : Serbian Ceramic Society., 71-71.
https://hdl.handle.net/21.15107/rcub_cherry_2776
Dinić I, Vuković M, Ignjatović N, Stojanović Z, Škapin S, Veselinović LM, Mančić L. Lanthanide doped hydroxyapatite for multimodal imaging. in Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018. 2018;:71-71.
https://hdl.handle.net/21.15107/rcub_cherry_2776 .
Dinić, Ivana, Vuković, Marina, Ignjatović, Nenad, Stojanović, Zoran, Škapin, Srečo, Veselinović, Ljiljana M., Mančić, Lidija, "Lanthanide doped hydroxyapatite for multimodal imaging" in Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018 (2018):71-71,
https://hdl.handle.net/21.15107/rcub_cherry_2776 .

PDLLA Microparticles Containing BSA: Effect of Formulation Variables on Size Distribution

Jovanović, Ivana; Petković, Marijana; Vujčić, Zoran; Jordović, Branka; Ignjatović, Nenad; Uskoković, Dragan P.

(2007)

TY  - CONF
AU  - Jovanović, Ivana
AU  - Petković, Marijana
AU  - Vujčić, Zoran
AU  - Jordović, Branka
AU  - Ignjatović, Nenad
AU  - Uskoković, Dragan P.
PY  - 2007
UR  - http://dais.sanu.ac.rs/123456789/319
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/2781
AB  - Poster presented at the 9th Conference of the Yugoslav Materials Research Society - YUCOMAT 2007, Herceg Novi, Crna Gora, September 10-14, 2007.
T1  - PDLLA Microparticles Containing BSA: Effect of Formulation Variables on Size Distribution
UR  - https://hdl.handle.net/21.15107/rcub_cherry_2781
ER  - 
@conference{
author = "Jovanović, Ivana and Petković, Marijana and Vujčić, Zoran and Jordović, Branka and Ignjatović, Nenad and Uskoković, Dragan P.",
year = "2007",
abstract = "Poster presented at the 9th Conference of the Yugoslav Materials Research Society - YUCOMAT 2007, Herceg Novi, Crna Gora, September 10-14, 2007.",
title = "PDLLA Microparticles Containing BSA: Effect of Formulation Variables on Size Distribution",
url = "https://hdl.handle.net/21.15107/rcub_cherry_2781"
}
Jovanović, I., Petković, M., Vujčić, Z., Jordović, B., Ignjatović, N.,& Uskoković, D. P.. (2007). PDLLA Microparticles Containing BSA: Effect of Formulation Variables on Size Distribution. .
https://hdl.handle.net/21.15107/rcub_cherry_2781
Jovanović I, Petković M, Vujčić Z, Jordović B, Ignjatović N, Uskoković DP. PDLLA Microparticles Containing BSA: Effect of Formulation Variables on Size Distribution. 2007;.
https://hdl.handle.net/21.15107/rcub_cherry_2781 .
Jovanović, Ivana, Petković, Marijana, Vujčić, Zoran, Jordović, Branka, Ignjatović, Nenad, Uskoković, Dragan P., "PDLLA Microparticles Containing BSA: Effect of Formulation Variables on Size Distribution" (2007),
https://hdl.handle.net/21.15107/rcub_cherry_2781 .