Stanković, Dalibor

Link to this page

Authority KeyName Variants
orcid::0000-0001-7465-1373
  • Stanković, Dalibor (228)
Projects
Application of advanced oxidation processes and nanostructured oxide materials for the removal of pollutants from the environment, development and optimisation of instrumental techniques for efficiency monitoring Strengthening of the MagBioVin Research and Innovation Team for Development of Novel Approaches for Tumour Therapy based on Nanostructured Materials
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200168 (University of Belgrade, Faculty of Chemistry) Rational design and synthesis of biologically active and coordination compounds and functional materials, relevant for (bio)nanotechnology
Grant Agency of the Slovak Republic [1/0489/16] Multiscale structuring of polymer nanocomposites and functional materials based on different precursors
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200026 (University of Belgrade, Institute of Chemistry, Technology and Metallurgy - IChTM) Structure-properties relationships of natural and synthetic molecules and their metal complexes
Study of structure-function relationships in the plant cell wall and modifications of the wall structure by enzyme engineering Austrian Agency for International Cooperation in Education and Research (OeAD-GmbH)
JoinEU-SEE-Penta Erasmus Mundus scholarship ADA
Education of Modern Analytical and Bioanalytical Methods Eureka project E! 13303 MED-BIO-TEST
Grant Agency of the Slovak Republic [1/0051/13] Molecular mechanisms of redox signalling in homeostasis: adaptation and pathology
Simultaneous Bioremediation and Soilification of Degraded Areas to Preserve Natural Resources of Biologically Active Substances, and Development and Production of Biomaterials and Dietetic Products Centre for International Cooperation Mobility (ICM)
EUREKA project E! 13303 MED-BIOTEST Reinforcement of the Faculty of Chemistry, University of Belgrade, towards becoming a Center of Excellence in the region of WB for Molecular Biotechnology and Food research
Design, synthesis and investigations of fullerene based nanomolecular machines Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200017 (University of Belgrade, Institute of Nuclear Sciences 'Vinča', Belgrade-Vinča)
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200051 (Institute of General and Physical Chemistry, Belgrade) Asea UniNet
Bilateral program Action: Austria-Slovakia CEEPUS [CIII-CZ-0212-11-1718]
[CIII-CZ-0212-11-1718] Eureka project E!13303 MED-BIO-TEST
EUREKA project E! 13303 MED-BIO-TEST Grant scheme for Support of Young Researchers and Excellent Teams of Young Researchers

Author's Bibliography

The environmentally friendly approaches based on the heterojunction interface of the LaFeO3/Fe2O3@g-C3N4 composite for the disposable and laboratory sensing of triclosan

Kovačević, Aleksandra; Knežević, Sara; Ostojić, Jelena; Ognjanović, Miloš; Savić, Slađana D.; Manojlović, Dragan D.; Stanković, Vesna; Stanković, Dalibor

(Elsevier, 2023)

TY  - JOUR
AU  - Kovačević, Aleksandra
AU  - Knežević, Sara
AU  - Ostojić, Jelena
AU  - Ognjanović, Miloš
AU  - Savić, Slađana D.
AU  - Manojlović, Dragan D.
AU  - Stanković, Vesna
AU  - Stanković, Dalibor
PY  - 2023
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5775
AB  - Triclosan (TCS) is a polychlorinated phenoxy phenol (PCPPs) used as a disinfectant and a broad-spectrum antibacterial and antifungal agent in personal hygiene products. TCS easily forms diphenyl ethers and dioxins, which are persistent organic pollutants.This work used a double approach for the TSC sensing: a) screen-printed (SPE) electrochemical platform for on-site application, modified with lanthanum iron oxide and graphitic carbon nitride composite (LaFeO3/Fe2O3@g-C3N4/SPE); and b) carbon paste electrode (CPE), modified with the same material and used in laboratory conditions. Linear range from 0.1 μM to 10 μM, the limit of detection (LOD) of 29 nM and the limit of quantification (LOQ) of 91 nM were obtained for CP electrode in BRBS pH 8. SPE showed the best analytical parameters in BRBS at pH 3, with a linear range from 0.3 μM to 7 μM, LOD of 0.09 μM and LOQ of 0.28 μM. Furthermore, the influence of potential interferents was investigated and proven to be negligible. Determination of TSC was performed to estimate the environmental impact of this compound as well as the practical usefulness of the proposed sensor in the real sample analysis, confirmed with a HPLC analysis.
PB  - Elsevier
T2  - Science of The Total Environment
T1  - The environmentally friendly approaches based on the heterojunction interface of the LaFeO3/Fe2O3@g-C3N4 composite for the disposable and laboratory sensing of triclosan
IS  - 857
SP  - 159250
DO  - 10.1016/j.scitotenv.2022.159250
ER  - 
@article{
author = "Kovačević, Aleksandra and Knežević, Sara and Ostojić, Jelena and Ognjanović, Miloš and Savić, Slađana D. and Manojlović, Dragan D. and Stanković, Vesna and Stanković, Dalibor",
year = "2023",
abstract = "Triclosan (TCS) is a polychlorinated phenoxy phenol (PCPPs) used as a disinfectant and a broad-spectrum antibacterial and antifungal agent in personal hygiene products. TCS easily forms diphenyl ethers and dioxins, which are persistent organic pollutants.This work used a double approach for the TSC sensing: a) screen-printed (SPE) electrochemical platform for on-site application, modified with lanthanum iron oxide and graphitic carbon nitride composite (LaFeO3/Fe2O3@g-C3N4/SPE); and b) carbon paste electrode (CPE), modified with the same material and used in laboratory conditions. Linear range from 0.1 μM to 10 μM, the limit of detection (LOD) of 29 nM and the limit of quantification (LOQ) of 91 nM were obtained for CP electrode in BRBS pH 8. SPE showed the best analytical parameters in BRBS at pH 3, with a linear range from 0.3 μM to 7 μM, LOD of 0.09 μM and LOQ of 0.28 μM. Furthermore, the influence of potential interferents was investigated and proven to be negligible. Determination of TSC was performed to estimate the environmental impact of this compound as well as the practical usefulness of the proposed sensor in the real sample analysis, confirmed with a HPLC analysis.",
publisher = "Elsevier",
journal = "Science of The Total Environment",
title = "The environmentally friendly approaches based on the heterojunction interface of the LaFeO3/Fe2O3@g-C3N4 composite for the disposable and laboratory sensing of triclosan",
number = "857",
pages = "159250",
doi = "10.1016/j.scitotenv.2022.159250"
}
Kovačević, A., Knežević, S., Ostojić, J., Ognjanović, M., Savić, S. D., Manojlović, D. D., Stanković, V.,& Stanković, D.. (2023). The environmentally friendly approaches based on the heterojunction interface of the LaFeO3/Fe2O3@g-C3N4 composite for the disposable and laboratory sensing of triclosan. in Science of The Total Environment
Elsevier.(857), 159250.
https://doi.org/10.1016/j.scitotenv.2022.159250
Kovačević A, Knežević S, Ostojić J, Ognjanović M, Savić SD, Manojlović DD, Stanković V, Stanković D. The environmentally friendly approaches based on the heterojunction interface of the LaFeO3/Fe2O3@g-C3N4 composite for the disposable and laboratory sensing of triclosan. in Science of The Total Environment. 2023;(857):159250.
doi:10.1016/j.scitotenv.2022.159250 .
Kovačević, Aleksandra, Knežević, Sara, Ostojić, Jelena, Ognjanović, Miloš, Savić, Slađana D., Manojlović, Dragan D., Stanković, Vesna, Stanković, Dalibor, "The environmentally friendly approaches based on the heterojunction interface of the LaFeO3/Fe2O3@g-C3N4 composite for the disposable and laboratory sensing of triclosan" in Science of The Total Environment, no. 857 (2023):159250,
https://doi.org/10.1016/j.scitotenv.2022.159250 . .
1
1

The environmentally friendly approaches based on the heterojunction interface of the LaFeO3/Fe2O3@g-C3N4 composite for the disposable and laboratory sensing of triclosan

Kovačević, Aleksandra; Knežević, Sara; Ostojić, Jelena; Ognjanović, Miloš; Savić, Slađana D.; Manojlović, Dragan D.; Stanković, Vesna; Stanković, Dalibor

(Elsevier, 2023)

TY  - JOUR
AU  - Kovačević, Aleksandra
AU  - Knežević, Sara
AU  - Ostojić, Jelena
AU  - Ognjanović, Miloš
AU  - Savić, Slađana D.
AU  - Manojlović, Dragan D.
AU  - Stanković, Vesna
AU  - Stanković, Dalibor
PY  - 2023
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5694
AB  - Triclosan (TCS) is a polychlorinated phenoxy phenol (PCPPs) used as a disinfectant and a broad-spectrum antibacterial and antifungal agent in personal hygiene products. TCS easily forms diphenyl ethers and dioxins, which are persistent organic pollutants.

This work used a double approach for the TSC sensing: a) screen-printed (SPE) electrochemical platform for on-site application, modified with lanthanum iron oxide and graphitic carbon nitride composite (LaFeO3/Fe2O3@g-C3N4/SPE); and b) carbon paste electrode (CPE), modified with the same material and used in laboratory conditions. Linear range from 0.1 μM to 10 μM, the limit of detection (LOD) of 29 nM and the limit of quantification (LOQ) of 91 nM were obtained for CP electrode in BRBS pH 8. SPE showed the best analytical parameters in BRBS at pH 3, with a linear range from 0.3 μM to 7 μM, LOD of 0.09 μM and LOQ of 0.28 μM. Furthermore, the influence of potential interferents was investigated and proven to be negligible. Determination of TSC was performed to estimate the environmental impact of this compound as well as the practical usefulness of the proposed sensor in the real sample analysis, confirmed with a HPLC analysis.
PB  - Elsevier
T2  - Science of The Total Environment
T1  - The environmentally friendly approaches based on the heterojunction interface of the LaFeO3/Fe2O3@g-C3N4 composite for the disposable and laboratory sensing of triclosan
IS  - 857
SP  - 159250
DO  - 10.1016/j.scitotenv.2022.159250
ER  - 
@article{
author = "Kovačević, Aleksandra and Knežević, Sara and Ostojić, Jelena and Ognjanović, Miloš and Savić, Slađana D. and Manojlović, Dragan D. and Stanković, Vesna and Stanković, Dalibor",
year = "2023",
abstract = "Triclosan (TCS) is a polychlorinated phenoxy phenol (PCPPs) used as a disinfectant and a broad-spectrum antibacterial and antifungal agent in personal hygiene products. TCS easily forms diphenyl ethers and dioxins, which are persistent organic pollutants.

This work used a double approach for the TSC sensing: a) screen-printed (SPE) electrochemical platform for on-site application, modified with lanthanum iron oxide and graphitic carbon nitride composite (LaFeO3/Fe2O3@g-C3N4/SPE); and b) carbon paste electrode (CPE), modified with the same material and used in laboratory conditions. Linear range from 0.1 μM to 10 μM, the limit of detection (LOD) of 29 nM and the limit of quantification (LOQ) of 91 nM were obtained for CP electrode in BRBS pH 8. SPE showed the best analytical parameters in BRBS at pH 3, with a linear range from 0.3 μM to 7 μM, LOD of 0.09 μM and LOQ of 0.28 μM. Furthermore, the influence of potential interferents was investigated and proven to be negligible. Determination of TSC was performed to estimate the environmental impact of this compound as well as the practical usefulness of the proposed sensor in the real sample analysis, confirmed with a HPLC analysis.",
publisher = "Elsevier",
journal = "Science of The Total Environment",
title = "The environmentally friendly approaches based on the heterojunction interface of the LaFeO3/Fe2O3@g-C3N4 composite for the disposable and laboratory sensing of triclosan",
number = "857",
pages = "159250",
doi = "10.1016/j.scitotenv.2022.159250"
}
Kovačević, A., Knežević, S., Ostojić, J., Ognjanović, M., Savić, S. D., Manojlović, D. D., Stanković, V.,& Stanković, D.. (2023). The environmentally friendly approaches based on the heterojunction interface of the LaFeO3/Fe2O3@g-C3N4 composite for the disposable and laboratory sensing of triclosan. in Science of The Total Environment
Elsevier.(857), 159250.
https://doi.org/10.1016/j.scitotenv.2022.159250
Kovačević A, Knežević S, Ostojić J, Ognjanović M, Savić SD, Manojlović DD, Stanković V, Stanković D. The environmentally friendly approaches based on the heterojunction interface of the LaFeO3/Fe2O3@g-C3N4 composite for the disposable and laboratory sensing of triclosan. in Science of The Total Environment. 2023;(857):159250.
doi:10.1016/j.scitotenv.2022.159250 .
Kovačević, Aleksandra, Knežević, Sara, Ostojić, Jelena, Ognjanović, Miloš, Savić, Slađana D., Manojlović, Dragan D., Stanković, Vesna, Stanković, Dalibor, "The environmentally friendly approaches based on the heterojunction interface of the LaFeO3/Fe2O3@g-C3N4 composite for the disposable and laboratory sensing of triclosan" in Science of The Total Environment, no. 857 (2023):159250,
https://doi.org/10.1016/j.scitotenv.2022.159250 . .
1
1

Microspherical Titanium-Phosphorus Double Oxide: Hierarchical Structure Development for Sensing Applications

Korina, Elena; Abramyan, Anton; Bol’shakov, Oleg; Avdin, Vyacheslav V.; Savić, Slađana D.; Manojlović, Dragan D.; Stanković, Vesna; Stanković, Dalibor

(MDPI, 2023)

TY  - JOUR
AU  - Korina, Elena
AU  - Abramyan, Anton
AU  - Bol’shakov, Oleg
AU  - Avdin, Vyacheslav V.
AU  - Savić, Slađana D.
AU  - Manojlović, Dragan D.
AU  - Stanković, Vesna
AU  - Stanković, Dalibor
PY  - 2023
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5770
AB  - Stable, water-soluble titanium complexed with mandelic acid was used as a precursor for titanium phosphorus double oxide obtained in hydrothermal conditions in the presence of phosphoric acid. Surprisingly, hydrolysis of organic complexes provided a microstructured sphere with narrow size distribution, low aggregation and a small fraction of morphological irregularities. Obtained microspheres had a complex structure comprised of flakes, whose size could be manipulated with temperature conditions. Samples were found to be electrochemically active against sulcotrione, a well-recognized herbicide. Electrochemical sensors based on the synthesized microspheres were successfully adapted for natural water reservoir analysis and exhibited low levels of detection of 0.61 µM, limit of quantification of 1.86 µM, wide dynamic linear range from 2 to 200 µM, good selectivity, excellent reproducibility and in-time stability.
PB  - MDPI
T2  - Sensors
T1  - Microspherical Titanium-Phosphorus Double Oxide: Hierarchical Structure Development for Sensing Applications
VL  - 23
IS  - 2
SP  - 933
DO  - 10.3390/s23020933
ER  - 
@article{
author = "Korina, Elena and Abramyan, Anton and Bol’shakov, Oleg and Avdin, Vyacheslav V. and Savić, Slađana D. and Manojlović, Dragan D. and Stanković, Vesna and Stanković, Dalibor",
year = "2023",
abstract = "Stable, water-soluble titanium complexed with mandelic acid was used as a precursor for titanium phosphorus double oxide obtained in hydrothermal conditions in the presence of phosphoric acid. Surprisingly, hydrolysis of organic complexes provided a microstructured sphere with narrow size distribution, low aggregation and a small fraction of morphological irregularities. Obtained microspheres had a complex structure comprised of flakes, whose size could be manipulated with temperature conditions. Samples were found to be electrochemically active against sulcotrione, a well-recognized herbicide. Electrochemical sensors based on the synthesized microspheres were successfully adapted for natural water reservoir analysis and exhibited low levels of detection of 0.61 µM, limit of quantification of 1.86 µM, wide dynamic linear range from 2 to 200 µM, good selectivity, excellent reproducibility and in-time stability.",
publisher = "MDPI",
journal = "Sensors",
title = "Microspherical Titanium-Phosphorus Double Oxide: Hierarchical Structure Development for Sensing Applications",
volume = "23",
number = "2",
pages = "933",
doi = "10.3390/s23020933"
}
Korina, E., Abramyan, A., Bol’shakov, O., Avdin, V. V., Savić, S. D., Manojlović, D. D., Stanković, V.,& Stanković, D.. (2023). Microspherical Titanium-Phosphorus Double Oxide: Hierarchical Structure Development for Sensing Applications. in Sensors
MDPI., 23(2), 933.
https://doi.org/10.3390/s23020933
Korina E, Abramyan A, Bol’shakov O, Avdin VV, Savić SD, Manojlović DD, Stanković V, Stanković D. Microspherical Titanium-Phosphorus Double Oxide: Hierarchical Structure Development for Sensing Applications. in Sensors. 2023;23(2):933.
doi:10.3390/s23020933 .
Korina, Elena, Abramyan, Anton, Bol’shakov, Oleg, Avdin, Vyacheslav V., Savić, Slađana D., Manojlović, Dragan D., Stanković, Vesna, Stanković, Dalibor, "Microspherical Titanium-Phosphorus Double Oxide: Hierarchical Structure Development for Sensing Applications" in Sensors, 23, no. 2 (2023):933,
https://doi.org/10.3390/s23020933 . .

Degradation of bisphenol A on SnO2-MWCNT electrode using electrochemical oxidation

Simić, Marija; Savić, Branislava; Ognjanović, Miloš; Stanković, Dalibor; Relić, Dubravka; Aćimović, Danka; Brdarić, Tanja

(Elsevier, 2023)

TY  - JOUR
AU  - Simić, Marija
AU  - Savić, Branislava
AU  - Ognjanović, Miloš
AU  - Stanković, Dalibor
AU  - Relić, Dubravka
AU  - Aćimović, Danka
AU  - Brdarić, Tanja
PY  - 2023
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5693
AB  - Bisphenol A (BPA) is an organic pollutant that is widely spread in waterbody with effluents as a result of its extensive use in the plastics industry. It posses to the class of compounds that are endocrine disruptors and has a great negative impact on living organisms. Therefore, the progress in development of green technology for BPA removal from the aquatic media is crucial for environmental protection. This paper presents BPA removal by electrochemical oxidation on SnO2-MWCNT (tin dioxide-multi walled carbon nanotube) nanocomposite anode. The nanocomposite was structural and morphological characterized by X-ray powder diffraction and transmission electron microscopy. Electrochemical properties of the SnO2-MWCNT anode were investigated using cyclic voltammetry, linear sweep voltammetry and electrical impedance spectroscopy. The electrochemical behavior of anodes toward BPA in sodium sulfate solutions has shown that BPA is oxidized by indirectly mechanism via hydroxyl radicals (verified by quenching tests). Electrolysis of BPA has been done in galvanostatic regime at current densities 2.5, 5.0, 10.0, 15.0 and 20.0 mA cm−2 in 0.1 M sodium sulfate supported electrolyte pH 4.0. Complete degradation of BPA was accomplished after 5 h of electrolysis at a current density of 20 mA cm−2. The proposed electrochemical technology using a low-cost SnO2-MWCNT electrode is promising for wastewater BPA removal.
PB  - Elsevier
T2  - Journal of Water Process Engineering
T1  - Degradation of bisphenol A on SnO2-MWCNT electrode using electrochemical oxidation
VL  - 51
SP  - 103416
DO  - 10.1016/j.jwpe.2022.103416
ER  - 
@article{
author = "Simić, Marija and Savić, Branislava and Ognjanović, Miloš and Stanković, Dalibor and Relić, Dubravka and Aćimović, Danka and Brdarić, Tanja",
year = "2023",
abstract = "Bisphenol A (BPA) is an organic pollutant that is widely spread in waterbody with effluents as a result of its extensive use in the plastics industry. It posses to the class of compounds that are endocrine disruptors and has a great negative impact on living organisms. Therefore, the progress in development of green technology for BPA removal from the aquatic media is crucial for environmental protection. This paper presents BPA removal by electrochemical oxidation on SnO2-MWCNT (tin dioxide-multi walled carbon nanotube) nanocomposite anode. The nanocomposite was structural and morphological characterized by X-ray powder diffraction and transmission electron microscopy. Electrochemical properties of the SnO2-MWCNT anode were investigated using cyclic voltammetry, linear sweep voltammetry and electrical impedance spectroscopy. The electrochemical behavior of anodes toward BPA in sodium sulfate solutions has shown that BPA is oxidized by indirectly mechanism via hydroxyl radicals (verified by quenching tests). Electrolysis of BPA has been done in galvanostatic regime at current densities 2.5, 5.0, 10.0, 15.0 and 20.0 mA cm−2 in 0.1 M sodium sulfate supported electrolyte pH 4.0. Complete degradation of BPA was accomplished after 5 h of electrolysis at a current density of 20 mA cm−2. The proposed electrochemical technology using a low-cost SnO2-MWCNT electrode is promising for wastewater BPA removal.",
publisher = "Elsevier",
journal = "Journal of Water Process Engineering",
title = "Degradation of bisphenol A on SnO2-MWCNT electrode using electrochemical oxidation",
volume = "51",
pages = "103416",
doi = "10.1016/j.jwpe.2022.103416"
}
Simić, M., Savić, B., Ognjanović, M., Stanković, D., Relić, D., Aćimović, D.,& Brdarić, T.. (2023). Degradation of bisphenol A on SnO2-MWCNT electrode using electrochemical oxidation. in Journal of Water Process Engineering
Elsevier., 51, 103416.
https://doi.org/10.1016/j.jwpe.2022.103416
Simić M, Savić B, Ognjanović M, Stanković D, Relić D, Aćimović D, Brdarić T. Degradation of bisphenol A on SnO2-MWCNT electrode using electrochemical oxidation. in Journal of Water Process Engineering. 2023;51:103416.
doi:10.1016/j.jwpe.2022.103416 .
Simić, Marija, Savić, Branislava, Ognjanović, Miloš, Stanković, Dalibor, Relić, Dubravka, Aćimović, Danka, Brdarić, Tanja, "Degradation of bisphenol A on SnO2-MWCNT electrode using electrochemical oxidation" in Journal of Water Process Engineering, 51 (2023):103416,
https://doi.org/10.1016/j.jwpe.2022.103416 . .
1

Voltammetric immunoassay based on MWCNTs@Nd(OH)3-BSA-antibody platform for sensitive BSA detection

Đurđić, Slađana Z.; Ognjanović, Miloš; Krstić Ristivojević, Maja; Antić, Bratislav; Ćirković-Veličković, Tanja; Mutić, Jelena; Kónya, Zoltán; Stanković, Dalibor

(Springer, 2022)

TY  - JOUR
AU  - Đurđić, Slađana Z.
AU  - Ognjanović, Miloš
AU  - Krstić Ristivojević, Maja
AU  - Antić, Bratislav
AU  - Ćirković-Veličković, Tanja
AU  - Mutić, Jelena
AU  - Kónya, Zoltán
AU  - Stanković, Dalibor
PY  - 2022
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5670
AB  - An electrochemical approach is presented based on multiwall carbon nanotubes (MWCNTs) and neodymium(III) hydroxide (Nd(OH)3) nanoflakes for detection of bovine serum albumin (BSA). The materials were characterized morphologically (XRPD, SEM, and HR-TEM) and electrochemically (DPV, EIS). The MWCNTs@Nd(OH)3 composite was used as support for bovine serum albumin polyclonal antibody (anti-BSA). After the antibody immobilization on the electrochemical platform and antigen/antibody binding time (optimum 60 min), the proposed approach shows a linear voltammetric response toward BSA concentration in the range 0.066 to 6.010 ng mL−1 at maximum peak potential of 0.13 V (vs. Ag/AgCl). Limit of detection (LOD) and limit of quantification (LOQ) were 18 pg mL−1 and 61 pg mL−1, respectively. The precision of the method calculated as relative standard deviation (RSD) of five independent measurements was better 3%. The selectivity of the optimized method regarding structurally similar proteins (human serum albumin and human hemoglobin), ions (Na+, K+, Ca2+, and NO2−), or compounds (glucose, ascorbic acid, dopamine, uric acid, paracetamol, and glycine) was found to be satisfactory, with the current changes of less than 5% in the presence of up to 1 × 105 times higher concentrations (depending on the compound) of the listed potential interfering compounds. Practical applicability of immunosensor for BSA determination in cow whey sample, with recovery values in the range 97 to 103%, shows that the developed method has high potential for precise and accurate detection of BSA, as well as exceptional miniaturization possibilities for on-site and equipment-free sensing.
PB  - Springer
T2  - Microchimica Acta
T1  - Voltammetric immunoassay based on MWCNTs@Nd(OH)3-BSA-antibody platform for sensitive BSA detection
VL  - 189
IS  - 11
SP  - 422
DO  - 10.1007/s00604-022-05514-z
ER  - 
@article{
author = "Đurđić, Slađana Z. and Ognjanović, Miloš and Krstić Ristivojević, Maja and Antić, Bratislav and Ćirković-Veličković, Tanja and Mutić, Jelena and Kónya, Zoltán and Stanković, Dalibor",
year = "2022",
abstract = "An electrochemical approach is presented based on multiwall carbon nanotubes (MWCNTs) and neodymium(III) hydroxide (Nd(OH)3) nanoflakes for detection of bovine serum albumin (BSA). The materials were characterized morphologically (XRPD, SEM, and HR-TEM) and electrochemically (DPV, EIS). The MWCNTs@Nd(OH)3 composite was used as support for bovine serum albumin polyclonal antibody (anti-BSA). After the antibody immobilization on the electrochemical platform and antigen/antibody binding time (optimum 60 min), the proposed approach shows a linear voltammetric response toward BSA concentration in the range 0.066 to 6.010 ng mL−1 at maximum peak potential of 0.13 V (vs. Ag/AgCl). Limit of detection (LOD) and limit of quantification (LOQ) were 18 pg mL−1 and 61 pg mL−1, respectively. The precision of the method calculated as relative standard deviation (RSD) of five independent measurements was better 3%. The selectivity of the optimized method regarding structurally similar proteins (human serum albumin and human hemoglobin), ions (Na+, K+, Ca2+, and NO2−), or compounds (glucose, ascorbic acid, dopamine, uric acid, paracetamol, and glycine) was found to be satisfactory, with the current changes of less than 5% in the presence of up to 1 × 105 times higher concentrations (depending on the compound) of the listed potential interfering compounds. Practical applicability of immunosensor for BSA determination in cow whey sample, with recovery values in the range 97 to 103%, shows that the developed method has high potential for precise and accurate detection of BSA, as well as exceptional miniaturization possibilities for on-site and equipment-free sensing.",
publisher = "Springer",
journal = "Microchimica Acta",
title = "Voltammetric immunoassay based on MWCNTs@Nd(OH)3-BSA-antibody platform for sensitive BSA detection",
volume = "189",
number = "11",
pages = "422",
doi = "10.1007/s00604-022-05514-z"
}
Đurđić, S. Z., Ognjanović, M., Krstić Ristivojević, M., Antić, B., Ćirković-Veličković, T., Mutić, J., Kónya, Z.,& Stanković, D.. (2022). Voltammetric immunoassay based on MWCNTs@Nd(OH)3-BSA-antibody platform for sensitive BSA detection. in Microchimica Acta
Springer., 189(11), 422.
https://doi.org/10.1007/s00604-022-05514-z
Đurđić SZ, Ognjanović M, Krstić Ristivojević M, Antić B, Ćirković-Veličković T, Mutić J, Kónya Z, Stanković D. Voltammetric immunoassay based on MWCNTs@Nd(OH)3-BSA-antibody platform for sensitive BSA detection. in Microchimica Acta. 2022;189(11):422.
doi:10.1007/s00604-022-05514-z .
Đurđić, Slađana Z., Ognjanović, Miloš, Krstić Ristivojević, Maja, Antić, Bratislav, Ćirković-Veličković, Tanja, Mutić, Jelena, Kónya, Zoltán, Stanković, Dalibor, "Voltammetric immunoassay based on MWCNTs@Nd(OH)3-BSA-antibody platform for sensitive BSA detection" in Microchimica Acta, 189, no. 11 (2022):422,
https://doi.org/10.1007/s00604-022-05514-z . .
1

Supplementary material for: Đurđić, S., Ognjanović, M., Krstić Ristivojević, M., Antić, B., Ćirković Veličković, T., Mutić, J., Kónya, Z.,& Stanković, D.. (2022). Voltammetric immunoassay based on MWCNTs@Nd(OH)3-BSA-antibody platform for sensitive BSA detection. in Microchimica Acta Springer., 189(11), 422. https://doi.org/10.1007/s00604-022-05514-z

Ognjanović, Miloš; Krstić Ristivojević, Maja; Antić, Bratislav; Ćirković-Veličković, Tanja; Mutić, Jelena; Kónya, Zoltán; Stanković, Dalibor

(Springer, 2022)

TY  - DATA
AU  - Ognjanović, Miloš
AU  - Krstić Ristivojević, Maja
AU  - Antić, Bratislav
AU  - Ćirković-Veličković, Tanja
AU  - Mutić, Jelena
AU  - Kónya, Zoltán
AU  - Stanković, Dalibor
PY  - 2022
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5672
AB  - An electrochemical approach is presented based on multiwall carbon nanotubes (MWCNTs) and neodymium(III) hydroxide (Nd(OH)3) nanoflakes for detection of bovine serum albumin (BSA). The materials were characterized morphologically (XRPD, SEM, and HR-TEM) and electrochemically (DPV, EIS). The MWCNTs@Nd(OH)3 composite was used as support for bovine serum albumin polyclonal antibody (anti-BSA). After the antibody immobilization on the electrochemical platform and antigen/antibody binding time (optimum 60 min), the proposed approach shows a linear voltammetric response toward BSA concentration in the range 0.066 to 6.010 ng mL−1 at maximum peak potential of 0.13 V (vs. Ag/AgCl). Limit of detection (LOD) and limit of quantification (LOQ) were 18 pg mL−1 and 61 pg mL−1, respectively. The precision of the method calculated as relative standard deviation (RSD) of five independent measurements was better 3%. The selectivity of the optimized method regarding structurally similar proteins (human serum albumin and human hemoglobin), ions (Na+, K+, Ca2+, and NO2−), or compounds (glucose, ascorbic acid, dopamine, uric acid, paracetamol, and glycine) was found to be satisfactory, with the current changes of less than 5% in the presence of up to 1 × 105 times higher concentrations (depending on the compound) of the listed potential interfering compounds. Practical applicability of immunosensor for BSA determination in cow whey sample, with recovery values in the range 97 to 103%, shows that the developed method has high potential for precise and accurate detection of BSA, as well as exceptional miniaturization possibilities for on-site and equipment-free sensing.
PB  - Springer
T2  - Microchimica Acta
T1  - Supplementary material for: Đurđić, S., Ognjanović, M., Krstić Ristivojević, M., Antić, B., Ćirković Veličković, T., Mutić, J., Kónya, Z.,& Stanković, D.. (2022). Voltammetric immunoassay based on MWCNTs@Nd(OH)3-BSA-antibody platform for sensitive BSA detection. in Microchimica Acta Springer., 189(11), 422. https://doi.org/10.1007/s00604-022-05514-z
VL  - 189
IS  - 11
SP  - 422
UR  - https://hdl.handle.net/21.15107/rcub_cherry_5672
ER  - 
@misc{
author = "Ognjanović, Miloš and Krstić Ristivojević, Maja and Antić, Bratislav and Ćirković-Veličković, Tanja and Mutić, Jelena and Kónya, Zoltán and Stanković, Dalibor",
year = "2022",
abstract = "An electrochemical approach is presented based on multiwall carbon nanotubes (MWCNTs) and neodymium(III) hydroxide (Nd(OH)3) nanoflakes for detection of bovine serum albumin (BSA). The materials were characterized morphologically (XRPD, SEM, and HR-TEM) and electrochemically (DPV, EIS). The MWCNTs@Nd(OH)3 composite was used as support for bovine serum albumin polyclonal antibody (anti-BSA). After the antibody immobilization on the electrochemical platform and antigen/antibody binding time (optimum 60 min), the proposed approach shows a linear voltammetric response toward BSA concentration in the range 0.066 to 6.010 ng mL−1 at maximum peak potential of 0.13 V (vs. Ag/AgCl). Limit of detection (LOD) and limit of quantification (LOQ) were 18 pg mL−1 and 61 pg mL−1, respectively. The precision of the method calculated as relative standard deviation (RSD) of five independent measurements was better 3%. The selectivity of the optimized method regarding structurally similar proteins (human serum albumin and human hemoglobin), ions (Na+, K+, Ca2+, and NO2−), or compounds (glucose, ascorbic acid, dopamine, uric acid, paracetamol, and glycine) was found to be satisfactory, with the current changes of less than 5% in the presence of up to 1 × 105 times higher concentrations (depending on the compound) of the listed potential interfering compounds. Practical applicability of immunosensor for BSA determination in cow whey sample, with recovery values in the range 97 to 103%, shows that the developed method has high potential for precise and accurate detection of BSA, as well as exceptional miniaturization possibilities for on-site and equipment-free sensing.",
publisher = "Springer",
journal = "Microchimica Acta",
title = "Supplementary material for: Đurđić, S., Ognjanović, M., Krstić Ristivojević, M., Antić, B., Ćirković Veličković, T., Mutić, J., Kónya, Z.,& Stanković, D.. (2022). Voltammetric immunoassay based on MWCNTs@Nd(OH)3-BSA-antibody platform for sensitive BSA detection. in Microchimica Acta Springer., 189(11), 422. https://doi.org/10.1007/s00604-022-05514-z",
volume = "189",
number = "11",
pages = "422",
url = "https://hdl.handle.net/21.15107/rcub_cherry_5672"
}
Ognjanović, M., Krstić Ristivojević, M., Antić, B., Ćirković-Veličković, T., Mutić, J., Kónya, Z.,& Stanković, D.. (2022). Supplementary material for: Đurđić, S., Ognjanović, M., Krstić Ristivojević, M., Antić, B., Ćirković Veličković, T., Mutić, J., Kónya, Z.,& Stanković, D.. (2022). Voltammetric immunoassay based on MWCNTs@Nd(OH)3-BSA-antibody platform for sensitive BSA detection. in Microchimica Acta Springer., 189(11), 422. https://doi.org/10.1007/s00604-022-05514-z. in Microchimica Acta
Springer., 189(11), 422.
https://hdl.handle.net/21.15107/rcub_cherry_5672
Ognjanović M, Krstić Ristivojević M, Antić B, Ćirković-Veličković T, Mutić J, Kónya Z, Stanković D. Supplementary material for: Đurđić, S., Ognjanović, M., Krstić Ristivojević, M., Antić, B., Ćirković Veličković, T., Mutić, J., Kónya, Z.,& Stanković, D.. (2022). Voltammetric immunoassay based on MWCNTs@Nd(OH)3-BSA-antibody platform for sensitive BSA detection. in Microchimica Acta Springer., 189(11), 422. https://doi.org/10.1007/s00604-022-05514-z. in Microchimica Acta. 2022;189(11):422.
https://hdl.handle.net/21.15107/rcub_cherry_5672 .
Ognjanović, Miloš, Krstić Ristivojević, Maja, Antić, Bratislav, Ćirković-Veličković, Tanja, Mutić, Jelena, Kónya, Zoltán, Stanković, Dalibor, "Supplementary material for: Đurđić, S., Ognjanović, M., Krstić Ristivojević, M., Antić, B., Ćirković Veličković, T., Mutić, J., Kónya, Z.,& Stanković, D.. (2022). Voltammetric immunoassay based on MWCNTs@Nd(OH)3-BSA-antibody platform for sensitive BSA detection. in Microchimica Acta Springer., 189(11), 422. https://doi.org/10.1007/s00604-022-05514-z" in Microchimica Acta, 189, no. 11 (2022):422,
https://hdl.handle.net/21.15107/rcub_cherry_5672 .

Chapter 20 - Graphitic carbon nitride: Triggering the solar light–assisted decomposition of hazardous substances

Savić, Slađana D.; Roglić, Goran; Dojčinović, Biljana; Manojlović, Dragan D.; Stanković, Dalibor

(Elsevier, 2022)

TY  - CHAP
AU  - Savić, Slađana D.
AU  - Roglić, Goran
AU  - Dojčinović, Biljana
AU  - Manojlović, Dragan D.
AU  - Stanković, Dalibor
PY  - 2022
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5768
AB  - Environmental pollution requires a facile, sustainable, and adjustable approach for the processing. Most of the standard treatment procedures include high temperature and pressure, accompanied by expensive catalysts. Visible light improves decomposing systems of various contaminants from the hydrosphere and atmosphere. Graphitic carbon nitride (g-C3N4) dragged research interest in the degradation of diverse environmental contaminants, due to its photoactivity under the visible electromagnetic spectrum, production of oxidative species, and a range of relatively simple ways of synthesis. Nowadays, catalytic properties of g-C3N4 are enhanced by expanding surface area, widening of the bandgap, and by the development of doped or copolymer materials. Mechanisms of catalysis using different nanocomposites are given in detail, followed by the extent of degradation of dangerous chemicals. Considering all valuable evolutions of g-C3N4 as an important ingredient in the degeneration of diverse pollutants, here we provide a systematic overview of the nanostructured g-C3N4 used in solving environmental problems.
PB  - Elsevier
T2  - Advanced Materials for Sustainable Environmental Remediation: Terrestrial and Aquatic Environments
T1  - Chapter 20 - Graphitic carbon nitride: Triggering the solar light–assisted decomposition of hazardous substances
SP  - 533
EP  - 549
DO  - 10.1016/B978-0-323-90485-8.00007-2
ER  - 
@inbook{
author = "Savić, Slađana D. and Roglić, Goran and Dojčinović, Biljana and Manojlović, Dragan D. and Stanković, Dalibor",
year = "2022",
abstract = "Environmental pollution requires a facile, sustainable, and adjustable approach for the processing. Most of the standard treatment procedures include high temperature and pressure, accompanied by expensive catalysts. Visible light improves decomposing systems of various contaminants from the hydrosphere and atmosphere. Graphitic carbon nitride (g-C3N4) dragged research interest in the degradation of diverse environmental contaminants, due to its photoactivity under the visible electromagnetic spectrum, production of oxidative species, and a range of relatively simple ways of synthesis. Nowadays, catalytic properties of g-C3N4 are enhanced by expanding surface area, widening of the bandgap, and by the development of doped or copolymer materials. Mechanisms of catalysis using different nanocomposites are given in detail, followed by the extent of degradation of dangerous chemicals. Considering all valuable evolutions of g-C3N4 as an important ingredient in the degeneration of diverse pollutants, here we provide a systematic overview of the nanostructured g-C3N4 used in solving environmental problems.",
publisher = "Elsevier",
journal = "Advanced Materials for Sustainable Environmental Remediation: Terrestrial and Aquatic Environments",
booktitle = "Chapter 20 - Graphitic carbon nitride: Triggering the solar light–assisted decomposition of hazardous substances",
pages = "533-549",
doi = "10.1016/B978-0-323-90485-8.00007-2"
}
Savić, S. D., Roglić, G., Dojčinović, B., Manojlović, D. D.,& Stanković, D.. (2022). Chapter 20 - Graphitic carbon nitride: Triggering the solar light–assisted decomposition of hazardous substances. in Advanced Materials for Sustainable Environmental Remediation: Terrestrial and Aquatic Environments
Elsevier., 533-549.
https://doi.org/10.1016/B978-0-323-90485-8.00007-2
Savić SD, Roglić G, Dojčinović B, Manojlović DD, Stanković D. Chapter 20 - Graphitic carbon nitride: Triggering the solar light–assisted decomposition of hazardous substances. in Advanced Materials for Sustainable Environmental Remediation: Terrestrial and Aquatic Environments. 2022;:533-549.
doi:10.1016/B978-0-323-90485-8.00007-2 .
Savić, Slađana D., Roglić, Goran, Dojčinović, Biljana, Manojlović, Dragan D., Stanković, Dalibor, "Chapter 20 - Graphitic carbon nitride: Triggering the solar light–assisted decomposition of hazardous substances" in Advanced Materials for Sustainable Environmental Remediation: Terrestrial and Aquatic Environments (2022):533-549,
https://doi.org/10.1016/B978-0-323-90485-8.00007-2 . .

In-house-prepared carbon-based Fe-doped catalysts for electro-Fenton degradation of azo dyes

Savić, Slađana D.; Roglić, Goran; Avdin, Vyacheslav V.; Zherebtsov, Dmitry A.; Stanković, Dalibor; Manojlović, Dragan D.

(Serbian Chemical Society, 2022)

TY  - JOUR
AU  - Savić, Slađana D.
AU  - Roglić, Goran
AU  - Avdin, Vyacheslav V.
AU  - Zherebtsov, Dmitry A.
AU  - Stanković, Dalibor
AU  - Manojlović, Dragan D.
PY  - 2022
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/4990
AB  - Compounds used in the fashion industry effect the water bodies in the vicinity of textile factories, resulting in the visible coloration of surface water. Fe-doped graphite-based in house prepared electrodes were used in the Fenton--like degradation of Reactive Blue 52 (RB52). The electrodes consisting of high-density graphite in three granulation sizes and three levels of Fe content were characterized using scanning electron microscopy (SEM). The amount of Fe in the electrodes and H2O2 concentration in syn­thetic textile wastewater were optimized. Additionally, the size of graphite grains was varied to inves­tigate whether it effects the degradation rate. Under only 10 min of electro-Fen­ton degradation, a system with 10 mmol dm-3 of H2O2 and an electrode made of 7 % of Fe and 70 µm of granulation size of graphite, degraded over 75 % of RB52, and over 99 % after 40 min of treatment. The obtained results indicate that the proposed approach could be beneficial in the field of novel materials for environmental applic­ation and that in house prepared carbon could be an excellent replacement for commercially available supports.
AB  - Једињења која се користе у модној индустрији утичу на водна тела у околини текс-
тилних фабрика, што резултира видљивим обојењем површинских вода. Домаће елек-
троде на бази графита допиране гвожђем биле су укључене у деградацију Reactive Blue
52 (RB52) механизма попут Фентонове реакције. Електроде су се састојале од графита
велике густине у три величине гранулације и три количине Fе и окарактерисане су
помоћу скенирајуће електронске микроскопије (SEM). Оптимизоване су количина Fe у
електродама и концентрација H2O2 у синтетичкој текстилној отпадној води. Додатно,
величина графитних зрна је варирана како би се испитало да ли утиче на брзину раз-
градње. За само 10 min електро-Фентонове деградације систем са 10 mmol dm-3 H2O2 и
електродом од 7 % Fе и 70 μm величине гранулације графита разградило се преко 75 %
RB52 и преко 99 % након 40 min третмана. Добијени резултати указују на то да пред-
ложени приступ може бити користан у области нових материјала за примену у животној
средини и да домаће припремљени угљеник може бити одлична замена за комерцијално
доступне носаче.
PB  - Serbian Chemical Society
T2  - Journal of the Serbian Chemical Society
T1  - In-house-prepared carbon-based Fe-doped catalysts for electro-Fenton degradation of azo dyes
VL  - 87
IS  - 1
SP  - 57
EP  - 67
DO  - 10.2298/JSC210901103S
ER  - 
@article{
author = "Savić, Slađana D. and Roglić, Goran and Avdin, Vyacheslav V. and Zherebtsov, Dmitry A. and Stanković, Dalibor and Manojlović, Dragan D.",
year = "2022",
abstract = "Compounds used in the fashion industry effect the water bodies in the vicinity of textile factories, resulting in the visible coloration of surface water. Fe-doped graphite-based in house prepared electrodes were used in the Fenton--like degradation of Reactive Blue 52 (RB52). The electrodes consisting of high-density graphite in three granulation sizes and three levels of Fe content were characterized using scanning electron microscopy (SEM). The amount of Fe in the electrodes and H2O2 concentration in syn­thetic textile wastewater were optimized. Additionally, the size of graphite grains was varied to inves­tigate whether it effects the degradation rate. Under only 10 min of electro-Fen­ton degradation, a system with 10 mmol dm-3 of H2O2 and an electrode made of 7 % of Fe and 70 µm of granulation size of graphite, degraded over 75 % of RB52, and over 99 % after 40 min of treatment. The obtained results indicate that the proposed approach could be beneficial in the field of novel materials for environmental applic­ation and that in house prepared carbon could be an excellent replacement for commercially available supports., Једињења која се користе у модној индустрији утичу на водна тела у околини текс-
тилних фабрика, што резултира видљивим обојењем површинских вода. Домаће елек-
троде на бази графита допиране гвожђем биле су укључене у деградацију Reactive Blue
52 (RB52) механизма попут Фентонове реакције. Електроде су се састојале од графита
велике густине у три величине гранулације и три количине Fе и окарактерисане су
помоћу скенирајуће електронске микроскопије (SEM). Оптимизоване су количина Fe у
електродама и концентрација H2O2 у синтетичкој текстилној отпадној води. Додатно,
величина графитних зрна је варирана како би се испитало да ли утиче на брзину раз-
градње. За само 10 min електро-Фентонове деградације систем са 10 mmol dm-3 H2O2 и
електродом од 7 % Fе и 70 μm величине гранулације графита разградило се преко 75 %
RB52 и преко 99 % након 40 min третмана. Добијени резултати указују на то да пред-
ложени приступ може бити користан у области нових материјала за примену у животној
средини и да домаће припремљени угљеник може бити одлична замена за комерцијално
доступне носаче.",
publisher = "Serbian Chemical Society",
journal = "Journal of the Serbian Chemical Society",
title = "In-house-prepared carbon-based Fe-doped catalysts for electro-Fenton degradation of azo dyes",
volume = "87",
number = "1",
pages = "57-67",
doi = "10.2298/JSC210901103S"
}
Savić, S. D., Roglić, G., Avdin, V. V., Zherebtsov, D. A., Stanković, D.,& Manojlović, D. D.. (2022). In-house-prepared carbon-based Fe-doped catalysts for electro-Fenton degradation of azo dyes. in Journal of the Serbian Chemical Society
Serbian Chemical Society., 87(1), 57-67.
https://doi.org/10.2298/JSC210901103S
Savić SD, Roglić G, Avdin VV, Zherebtsov DA, Stanković D, Manojlović DD. In-house-prepared carbon-based Fe-doped catalysts for electro-Fenton degradation of azo dyes. in Journal of the Serbian Chemical Society. 2022;87(1):57-67.
doi:10.2298/JSC210901103S .
Savić, Slađana D., Roglić, Goran, Avdin, Vyacheslav V., Zherebtsov, Dmitry A., Stanković, Dalibor, Manojlović, Dragan D., "In-house-prepared carbon-based Fe-doped catalysts for electro-Fenton degradation of azo dyes" in Journal of the Serbian Chemical Society, 87, no. 1 (2022):57-67,
https://doi.org/10.2298/JSC210901103S . .

Supplementary data for the article: Savić, S. D.; Roglić, G. M.; Avdin, V. V.; Zherebtsov, D. A.; Stanković, D. M.; Manojlović, D. D. In-House-Prepared Carbon-Based Fe-Doped Catalysts for Electro-Fenton Degradation of Azo Dyes. Journal of the Serbian Chemical Society 2022, 87 (1), 57–67. https://doi.org/10.2298/JSC210901103S.

Savić, Slađana D.; Roglić, Goran; Avdin, Vyacheslav V.; Zherebtsov, Dmitry A.; Stanković, Dalibor; Manojlović, Dragan D.

(Serbian Chemical Society, 2022)

TY  - DATA
AU  - Savić, Slađana D.
AU  - Roglić, Goran
AU  - Avdin, Vyacheslav V.
AU  - Zherebtsov, Dmitry A.
AU  - Stanković, Dalibor
AU  - Manojlović, Dragan D.
PY  - 2022
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/4991
PB  - Serbian Chemical Society
T2  - Journal of the Serbian Chemical Society
T1  - Supplementary data for the article: Savić, S. D.; Roglić, G. M.; Avdin, V. V.; Zherebtsov, D. A.; Stanković, D. M.; Manojlović, D. D. In-House-Prepared Carbon-Based Fe-Doped Catalysts for Electro-Fenton Degradation of Azo Dyes. Journal of the Serbian Chemical Society 2022, 87 (1), 57–67. https://doi.org/10.2298/JSC210901103S.
UR  - https://hdl.handle.net/21.15107/rcub_cherry_4991
ER  - 
@misc{
author = "Savić, Slađana D. and Roglić, Goran and Avdin, Vyacheslav V. and Zherebtsov, Dmitry A. and Stanković, Dalibor and Manojlović, Dragan D.",
year = "2022",
publisher = "Serbian Chemical Society",
journal = "Journal of the Serbian Chemical Society",
title = "Supplementary data for the article: Savić, S. D.; Roglić, G. M.; Avdin, V. V.; Zherebtsov, D. A.; Stanković, D. M.; Manojlović, D. D. In-House-Prepared Carbon-Based Fe-Doped Catalysts for Electro-Fenton Degradation of Azo Dyes. Journal of the Serbian Chemical Society 2022, 87 (1), 57–67. https://doi.org/10.2298/JSC210901103S.",
url = "https://hdl.handle.net/21.15107/rcub_cherry_4991"
}
Savić, S. D., Roglić, G., Avdin, V. V., Zherebtsov, D. A., Stanković, D.,& Manojlović, D. D.. (2022). Supplementary data for the article: Savić, S. D.; Roglić, G. M.; Avdin, V. V.; Zherebtsov, D. A.; Stanković, D. M.; Manojlović, D. D. In-House-Prepared Carbon-Based Fe-Doped Catalysts for Electro-Fenton Degradation of Azo Dyes. Journal of the Serbian Chemical Society 2022, 87 (1), 57–67. https://doi.org/10.2298/JSC210901103S.. in Journal of the Serbian Chemical Society
Serbian Chemical Society..
https://hdl.handle.net/21.15107/rcub_cherry_4991
Savić SD, Roglić G, Avdin VV, Zherebtsov DA, Stanković D, Manojlović DD. Supplementary data for the article: Savić, S. D.; Roglić, G. M.; Avdin, V. V.; Zherebtsov, D. A.; Stanković, D. M.; Manojlović, D. D. In-House-Prepared Carbon-Based Fe-Doped Catalysts for Electro-Fenton Degradation of Azo Dyes. Journal of the Serbian Chemical Society 2022, 87 (1), 57–67. https://doi.org/10.2298/JSC210901103S.. in Journal of the Serbian Chemical Society. 2022;.
https://hdl.handle.net/21.15107/rcub_cherry_4991 .
Savić, Slađana D., Roglić, Goran, Avdin, Vyacheslav V., Zherebtsov, Dmitry A., Stanković, Dalibor, Manojlović, Dragan D., "Supplementary data for the article: Savić, S. D.; Roglić, G. M.; Avdin, V. V.; Zherebtsov, D. A.; Stanković, D. M.; Manojlović, D. D. In-House-Prepared Carbon-Based Fe-Doped Catalysts for Electro-Fenton Degradation of Azo Dyes. Journal of the Serbian Chemical Society 2022, 87 (1), 57–67. https://doi.org/10.2298/JSC210901103S." in Journal of the Serbian Chemical Society (2022),
https://hdl.handle.net/21.15107/rcub_cherry_4991 .

S-Adenosyl-L-Homocysteine Hydrolase Immobilized on Citric Acid-capped Gallium Oxyhydroxide on SWCNTs Modified Electrode for AdoHcy Impedimetric Sensing

Knežević, Sara; Ognjanović, Miloš; Gavrović-Jankulović, Marija; Đurašinović, Tatjana; Antić, Bratislav; Vranješ-Đurić, Sanja; Stanković, Dalibor

(Wiley, 2022)

TY  - JOUR
AU  - Knežević, Sara
AU  - Ognjanović, Miloš
AU  - Gavrović-Jankulović, Marija
AU  - Đurašinović, Tatjana
AU  - Antić, Bratislav
AU  - Vranješ-Đurić, Sanja
AU  - Stanković, Dalibor
PY  - 2022
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4720
AB  - S-Adenosyl-L-Homocysteine (AdoHcy) is a crucial pathological factor in homocysteine-associated disorders. We developed an impedimetric approach for single drop S-Adenosyl-L-Homocysteine detection, based on S-Adenosyl-L-Homocysteine hydrolase (SAH), produced in the prokaryotic expression system (E. coli) by recombinant DNA technology, immobilized on citrate acid-coated gallium oxyhydroxide dispersed over single-walled carbon nanotubes (CA/GaO(OH)@SWCNT). The proposed biosensor offers detection of AdoHcy, with a limit of detection (LOD) of 0.17 μM. with operating linear range from 1 to 44 μM. The remarkable stability of gallium oxyhydroxide crystal was further improved by citric acid coating and its optical, electrical and physical anisotropy was skipped using SWCNTs.
PB  - Wiley
T2  - Electroanalysis
T1  - S-Adenosyl-L-Homocysteine Hydrolase Immobilized on Citric Acid-capped Gallium Oxyhydroxide on SWCNTs Modified Electrode for AdoHcy Impedimetric Sensing
VL  - 34
IS  - 1
SP  - 15
EP  - 24
DO  - 10.1002/elan.202100362
ER  - 
@article{
author = "Knežević, Sara and Ognjanović, Miloš and Gavrović-Jankulović, Marija and Đurašinović, Tatjana and Antić, Bratislav and Vranješ-Đurić, Sanja and Stanković, Dalibor",
year = "2022",
abstract = "S-Adenosyl-L-Homocysteine (AdoHcy) is a crucial pathological factor in homocysteine-associated disorders. We developed an impedimetric approach for single drop S-Adenosyl-L-Homocysteine detection, based on S-Adenosyl-L-Homocysteine hydrolase (SAH), produced in the prokaryotic expression system (E. coli) by recombinant DNA technology, immobilized on citrate acid-coated gallium oxyhydroxide dispersed over single-walled carbon nanotubes (CA/GaO(OH)@SWCNT). The proposed biosensor offers detection of AdoHcy, with a limit of detection (LOD) of 0.17 μM. with operating linear range from 1 to 44 μM. The remarkable stability of gallium oxyhydroxide crystal was further improved by citric acid coating and its optical, electrical and physical anisotropy was skipped using SWCNTs.",
publisher = "Wiley",
journal = "Electroanalysis",
title = "S-Adenosyl-L-Homocysteine Hydrolase Immobilized on Citric Acid-capped Gallium Oxyhydroxide on SWCNTs Modified Electrode for AdoHcy Impedimetric Sensing",
volume = "34",
number = "1",
pages = "15-24",
doi = "10.1002/elan.202100362"
}
Knežević, S., Ognjanović, M., Gavrović-Jankulović, M., Đurašinović, T., Antić, B., Vranješ-Đurić, S.,& Stanković, D.. (2022). S-Adenosyl-L-Homocysteine Hydrolase Immobilized on Citric Acid-capped Gallium Oxyhydroxide on SWCNTs Modified Electrode for AdoHcy Impedimetric Sensing. in Electroanalysis
Wiley., 34(1), 15-24.
https://doi.org/10.1002/elan.202100362
Knežević S, Ognjanović M, Gavrović-Jankulović M, Đurašinović T, Antić B, Vranješ-Đurić S, Stanković D. S-Adenosyl-L-Homocysteine Hydrolase Immobilized on Citric Acid-capped Gallium Oxyhydroxide on SWCNTs Modified Electrode for AdoHcy Impedimetric Sensing. in Electroanalysis. 2022;34(1):15-24.
doi:10.1002/elan.202100362 .
Knežević, Sara, Ognjanović, Miloš, Gavrović-Jankulović, Marija, Đurašinović, Tatjana, Antić, Bratislav, Vranješ-Đurić, Sanja, Stanković, Dalibor, "S-Adenosyl-L-Homocysteine Hydrolase Immobilized on Citric Acid-capped Gallium Oxyhydroxide on SWCNTs Modified Electrode for AdoHcy Impedimetric Sensing" in Electroanalysis, 34, no. 1 (2022):15-24,
https://doi.org/10.1002/elan.202100362 . .
1

Sensing Platform Based on Carbon Paste Electrode Modified with Bismuth Oxide Nanoparticles and SWCNT for Submicromolar Quantification of Honokiol

Knežević, Sara; Ognjanović, Miloš; Dojčinović, Biljana P.; Antić, Bratislav; Vraneš-Đurić, Sanja; Manojlović, Dragan D.; Stanković, Dalibor

(2022)

TY  - JOUR
AU  - Knežević, Sara
AU  - Ognjanović, Miloš
AU  - Dojčinović, Biljana P.
AU  - Antić, Bratislav
AU  - Vraneš-Đurić, Sanja
AU  - Manojlović, Dragan D.
AU  - Stanković, Dalibor
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10055
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/4834
AB  - Honokiol is neolignan present in the magnolia bark. It displays versatile pharmacological properties—neuroprotective and anxiolytic effect, anti-cancer activity and antimicrobial effect being the most important. This paper aims to develop a voltammetric non-enzymatic biosensor for honokiol detection, quantification and monitoring in drugs and cosmetic products. The materials used in this study were synthesized and characterized by HR-XRPD, SEM, ATR-FTIR and electrochemical methods. Bi2O3, being a p-type semiconductor, was used as an electrode material. Both its semiconductivity and electrocatalytic properties result from lattice structure defects, which differ on the surface and in the bulk of the bismuth oxide crystal, and therefore are crystal size dependent. The influence of the particle size of Bi2O3 on its electrocatalytic properties was studied, and it was confirmed that Bi2O3 nanoparticles have better overall conductive/resistive and catalytic characteristics than microribbons and that the optimal electrode modification for sensing application was obtained by Bi2O3@SWCNT composite material preparation. Here, we established a sensitive electrochemical sensing platform for honokiol detection based on CP electrode modified with bismuth oxide nanoparticles and SWCNT with the 0.17 μM limit of detection, and linear operating range from 0.1 to 50 μM. The effect of potential interferents on honokiol detection was explored. Obtained results in the interference tests and the real sample analysis suggest that the developed approach is selective, accurate and reproducible. Due to the low detection limit and a wide working range, the proposed sensing platform opens great opportunities for further construction of sensors for honokiol detection and monitoring in the pharmaceutical industry and medicinal chemistry.
T2  - Food Analytical Methods
T1  - Sensing Platform Based on Carbon Paste Electrode Modified with Bismuth Oxide Nanoparticles and SWCNT for Submicromolar Quantification of Honokiol
VL  - 15
IS  - 4
SP  - 856
EP  - 867
DO  - 10.1007/s12161-021-02174-2
ER  - 
@article{
author = "Knežević, Sara and Ognjanović, Miloš and Dojčinović, Biljana P. and Antić, Bratislav and Vraneš-Đurić, Sanja and Manojlović, Dragan D. and Stanković, Dalibor",
year = "2022",
abstract = "Honokiol is neolignan present in the magnolia bark. It displays versatile pharmacological properties—neuroprotective and anxiolytic effect, anti-cancer activity and antimicrobial effect being the most important. This paper aims to develop a voltammetric non-enzymatic biosensor for honokiol detection, quantification and monitoring in drugs and cosmetic products. The materials used in this study were synthesized and characterized by HR-XRPD, SEM, ATR-FTIR and electrochemical methods. Bi2O3, being a p-type semiconductor, was used as an electrode material. Both its semiconductivity and electrocatalytic properties result from lattice structure defects, which differ on the surface and in the bulk of the bismuth oxide crystal, and therefore are crystal size dependent. The influence of the particle size of Bi2O3 on its electrocatalytic properties was studied, and it was confirmed that Bi2O3 nanoparticles have better overall conductive/resistive and catalytic characteristics than microribbons and that the optimal electrode modification for sensing application was obtained by Bi2O3@SWCNT composite material preparation. Here, we established a sensitive electrochemical sensing platform for honokiol detection based on CP electrode modified with bismuth oxide nanoparticles and SWCNT with the 0.17 μM limit of detection, and linear operating range from 0.1 to 50 μM. The effect of potential interferents on honokiol detection was explored. Obtained results in the interference tests and the real sample analysis suggest that the developed approach is selective, accurate and reproducible. Due to the low detection limit and a wide working range, the proposed sensing platform opens great opportunities for further construction of sensors for honokiol detection and monitoring in the pharmaceutical industry and medicinal chemistry.",
journal = "Food Analytical Methods",
title = "Sensing Platform Based on Carbon Paste Electrode Modified with Bismuth Oxide Nanoparticles and SWCNT for Submicromolar Quantification of Honokiol",
volume = "15",
number = "4",
pages = "856-867",
doi = "10.1007/s12161-021-02174-2"
}
Knežević, S., Ognjanović, M., Dojčinović, B. P., Antić, B., Vraneš-Đurić, S., Manojlović, D. D.,& Stanković, D.. (2022). Sensing Platform Based on Carbon Paste Electrode Modified with Bismuth Oxide Nanoparticles and SWCNT for Submicromolar Quantification of Honokiol. in Food Analytical Methods, 15(4), 856-867.
https://doi.org/10.1007/s12161-021-02174-2
Knežević S, Ognjanović M, Dojčinović BP, Antić B, Vraneš-Đurić S, Manojlović DD, Stanković D. Sensing Platform Based on Carbon Paste Electrode Modified with Bismuth Oxide Nanoparticles and SWCNT for Submicromolar Quantification of Honokiol. in Food Analytical Methods. 2022;15(4):856-867.
doi:10.1007/s12161-021-02174-2 .
Knežević, Sara, Ognjanović, Miloš, Dojčinović, Biljana P., Antić, Bratislav, Vraneš-Đurić, Sanja, Manojlović, Dragan D., Stanković, Dalibor, "Sensing Platform Based on Carbon Paste Electrode Modified with Bismuth Oxide Nanoparticles and SWCNT for Submicromolar Quantification of Honokiol" in Food Analytical Methods, 15, no. 4 (2022):856-867,
https://doi.org/10.1007/s12161-021-02174-2 . .
1
2

Co(III), Ni(II), and Cu(II) complexes with tetradentate Schiff base ligand: Synthesis, Characterization, Electrochemical Behavior, Binding assessment and In vitro cytotoxicity activity

Mirković, Marija D.; Radović, Magdalena; Stanković, Dalibor; Vranješ-Đurić, Sanja; Janković, Drina; Petrović, Djordje; Mihajlović-Lalić, Ljiljana E.; Prijović, Željko; Milanović, Zorana

(Taylor & Francis Ltd, 2022)

TY  - JOUR
AU  - Mirković, Marija D.
AU  - Radović, Magdalena
AU  - Stanković, Dalibor
AU  - Vranješ-Đurić, Sanja
AU  - Janković, Drina
AU  - Petrović, Djordje
AU  - Mihajlović-Lalić, Ljiljana E.
AU  - Prijović, Željko
AU  - Milanović, Zorana
PY  - 2022
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5135
AB  - Two new Schiff base cobalt(III) ([Co(LH)Cl2], 1) and nickel(II) ([Ni(LH)ClO4], 2) complexes with a diimine-dioxime ligand, (4,9-diaza-3,10-diethyl-3,9-dodecadiene-2,11-dione bis oxime (LH2)), were synthesized and characterized. The compounds were obtained in MeOH from corresponding metal salts and LH2 in molar ratio 1:1 and further characterized by mass spectrometry, IR spectroscopy, electrochemistry, and elemental analysis. Previously reported copper(II) analog, ([Cu2(LH)2]·(ClO4)2, 3) was joined to 1 and 2, and the three metal analogs, 1-3, were further investigated in terms of their electrochemical behavior. The binding studies of the complexes with deoxyribonucleic acid (DNA) and human serum albumin (HSA) were carried out using both spectrophotometric and electrochemical methods. All three complexes exhibit binding affinity towards the DNA chain through intercalative interaction. The binding reaction with HSA showed for 1 and 3 complexes decrease in the peak current obtained in the case of complexes before the addition of HSA, while resulted compound obtained from Ni complex – HSA possesses the same electroactivity as starting complex. Furthermore, the cytotoxicity of LH2 as well as its metal complexes, and cisplatin were evaluated on CT-26 mouse colon carcinoma and human LS174T cancer cell lines employing MTT assay. The copper(II) complex exhibited very promising anticancer activity compared with cisplatin.
PB  - Taylor & Francis Ltd
T2  - Journal of Coordination Chemistry
T1  - Co(III), Ni(II), and Cu(II) complexes with tetradentate Schiff base ligand: Synthesis, Characterization, Electrochemical Behavior, Binding assessment and In vitro cytotoxicity activity
VL  - 75
IS  - 1-2
DO  - 10.1080/00958972.2022.2032683
ER  - 
@article{
author = "Mirković, Marija D. and Radović, Magdalena and Stanković, Dalibor and Vranješ-Đurić, Sanja and Janković, Drina and Petrović, Djordje and Mihajlović-Lalić, Ljiljana E. and Prijović, Željko and Milanović, Zorana",
year = "2022",
abstract = "Two new Schiff base cobalt(III) ([Co(LH)Cl2], 1) and nickel(II) ([Ni(LH)ClO4], 2) complexes with a diimine-dioxime ligand, (4,9-diaza-3,10-diethyl-3,9-dodecadiene-2,11-dione bis oxime (LH2)), were synthesized and characterized. The compounds were obtained in MeOH from corresponding metal salts and LH2 in molar ratio 1:1 and further characterized by mass spectrometry, IR spectroscopy, electrochemistry, and elemental analysis. Previously reported copper(II) analog, ([Cu2(LH)2]·(ClO4)2, 3) was joined to 1 and 2, and the three metal analogs, 1-3, were further investigated in terms of their electrochemical behavior. The binding studies of the complexes with deoxyribonucleic acid (DNA) and human serum albumin (HSA) were carried out using both spectrophotometric and electrochemical methods. All three complexes exhibit binding affinity towards the DNA chain through intercalative interaction. The binding reaction with HSA showed for 1 and 3 complexes decrease in the peak current obtained in the case of complexes before the addition of HSA, while resulted compound obtained from Ni complex – HSA possesses the same electroactivity as starting complex. Furthermore, the cytotoxicity of LH2 as well as its metal complexes, and cisplatin were evaluated on CT-26 mouse colon carcinoma and human LS174T cancer cell lines employing MTT assay. The copper(II) complex exhibited very promising anticancer activity compared with cisplatin.",
publisher = "Taylor & Francis Ltd",
journal = "Journal of Coordination Chemistry",
title = "Co(III), Ni(II), and Cu(II) complexes with tetradentate Schiff base ligand: Synthesis, Characterization, Electrochemical Behavior, Binding assessment and In vitro cytotoxicity activity",
volume = "75",
number = "1-2",
doi = "10.1080/00958972.2022.2032683"
}
Mirković, M. D., Radović, M., Stanković, D., Vranješ-Đurić, S., Janković, D., Petrović, D., Mihajlović-Lalić, L. E., Prijović, Ž.,& Milanović, Z.. (2022). Co(III), Ni(II), and Cu(II) complexes with tetradentate Schiff base ligand: Synthesis, Characterization, Electrochemical Behavior, Binding assessment and In vitro cytotoxicity activity. in Journal of Coordination Chemistry
Taylor & Francis Ltd., 75(1-2).
https://doi.org/10.1080/00958972.2022.2032683
Mirković MD, Radović M, Stanković D, Vranješ-Đurić S, Janković D, Petrović D, Mihajlović-Lalić LE, Prijović Ž, Milanović Z. Co(III), Ni(II), and Cu(II) complexes with tetradentate Schiff base ligand: Synthesis, Characterization, Electrochemical Behavior, Binding assessment and In vitro cytotoxicity activity. in Journal of Coordination Chemistry. 2022;75(1-2).
doi:10.1080/00958972.2022.2032683 .
Mirković, Marija D., Radović, Magdalena, Stanković, Dalibor, Vranješ-Đurić, Sanja, Janković, Drina, Petrović, Djordje, Mihajlović-Lalić, Ljiljana E., Prijović, Željko, Milanović, Zorana, "Co(III), Ni(II), and Cu(II) complexes with tetradentate Schiff base ligand: Synthesis, Characterization, Electrochemical Behavior, Binding assessment and In vitro cytotoxicity activity" in Journal of Coordination Chemistry, 75, no. 1-2 (2022),
https://doi.org/10.1080/00958972.2022.2032683 . .
1
1

Construction of Sensor for Submicromolar Detection of Riboflavin by Surface Modification of SPCE with Thermal Degradation Products of Nickel Acetate Tetrahydrate

Ognjanović, Miloš; Stanković, Dalibor; Jaćimović, Željko K.; Kosović-Perutović, Milica; Mariano, José F.M.L.; Krehula, Sjepko; Musić, Svetozar; Antić, Bratislav

(Wiley, 2022)

TY  - JOUR
AU  - Ognjanović, Miloš
AU  - Stanković, Dalibor
AU  - Jaćimović, Željko K.
AU  - Kosović-Perutović, Milica
AU  - Mariano, José F.M.L.
AU  - Krehula, Sjepko
AU  - Musić, Svetozar
AU  - Antić, Bratislav
PY  - 2022
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5151
AB  - Nickel acetate tetrahydrate (NAT) sample series were used to modify screen-printed carbon electrodes (SPCE). The samples were hybrid Ni/NiO nanocomposites, where the NiO phase increased with an applied treatment temperature. Results of electrochemical measurements pointed that the Ni/NiO550/SPCE-modified electrode had the best analytical performance toward the detection of riboflavin (RF). The Ni/NiO550/SPCE-based sensor showed linear response with RF in the concentration range of 0.5–75 μM and 0.15 μM LOD in BRBS. Sensor offered fast response time, good repeatability, and selectivity with an RSD of 1.4 %. Our results show that the Ni:NiO nanocomposite ratio strongly influenced the electroanalytical performance of SPCE.
PB  - Wiley
T2  - Electroanalysis
T1  - Construction of Sensor for Submicromolar Detection of Riboflavin by Surface Modification of SPCE with Thermal Degradation Products of Nickel Acetate Tetrahydrate
VL  - 34
IS  - 9
SP  - 1431
EP  - 1440
DO  - 10.1002/elan.202100602
ER  - 
@article{
author = "Ognjanović, Miloš and Stanković, Dalibor and Jaćimović, Željko K. and Kosović-Perutović, Milica and Mariano, José F.M.L. and Krehula, Sjepko and Musić, Svetozar and Antić, Bratislav",
year = "2022",
abstract = "Nickel acetate tetrahydrate (NAT) sample series were used to modify screen-printed carbon electrodes (SPCE). The samples were hybrid Ni/NiO nanocomposites, where the NiO phase increased with an applied treatment temperature. Results of electrochemical measurements pointed that the Ni/NiO550/SPCE-modified electrode had the best analytical performance toward the detection of riboflavin (RF). The Ni/NiO550/SPCE-based sensor showed linear response with RF in the concentration range of 0.5–75 μM and 0.15 μM LOD in BRBS. Sensor offered fast response time, good repeatability, and selectivity with an RSD of 1.4 %. Our results show that the Ni:NiO nanocomposite ratio strongly influenced the electroanalytical performance of SPCE.",
publisher = "Wiley",
journal = "Electroanalysis",
title = "Construction of Sensor for Submicromolar Detection of Riboflavin by Surface Modification of SPCE with Thermal Degradation Products of Nickel Acetate Tetrahydrate",
volume = "34",
number = "9",
pages = "1431-1440",
doi = "10.1002/elan.202100602"
}
Ognjanović, M., Stanković, D., Jaćimović, Ž. K., Kosović-Perutović, M., Mariano, J. F.M.L., Krehula, S., Musić, S.,& Antić, B.. (2022). Construction of Sensor for Submicromolar Detection of Riboflavin by Surface Modification of SPCE with Thermal Degradation Products of Nickel Acetate Tetrahydrate. in Electroanalysis
Wiley., 34(9), 1431-1440.
https://doi.org/10.1002/elan.202100602
Ognjanović M, Stanković D, Jaćimović ŽK, Kosović-Perutović M, Mariano JF, Krehula S, Musić S, Antić B. Construction of Sensor for Submicromolar Detection of Riboflavin by Surface Modification of SPCE with Thermal Degradation Products of Nickel Acetate Tetrahydrate. in Electroanalysis. 2022;34(9):1431-1440.
doi:10.1002/elan.202100602 .
Ognjanović, Miloš, Stanković, Dalibor, Jaćimović, Željko K., Kosović-Perutović, Milica, Mariano, José F.M.L., Krehula, Sjepko, Musić, Svetozar, Antić, Bratislav, "Construction of Sensor for Submicromolar Detection of Riboflavin by Surface Modification of SPCE with Thermal Degradation Products of Nickel Acetate Tetrahydrate" in Electroanalysis, 34, no. 9 (2022):1431-1440,
https://doi.org/10.1002/elan.202100602 . .
3
2

The impact of ferric iron and pH on photo-degradation of tetracycline in water

Korać Jačić, Jelena; Milenković, Milica R.; Bajuk-Bogdanović, Danica; Stanković, Dalibor; Dimitrijević, Milena; Spasojević, Ivan

(Elsevier, 2022)

TY  - JOUR
AU  - Korać Jačić, Jelena
AU  - Milenković, Milica R.
AU  - Bajuk-Bogdanović, Danica
AU  - Stanković, Dalibor
AU  - Dimitrijević, Milena
AU  - Spasojević, Ivan
PY  - 2022
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5511
AB  - There is a significant interest in understanding coordination and photo-chemistry of tetracycline antibiotics, primarily in relation to the development of advanced oxidation processes for degradation of these pollutants in water processing. Herein we analyzed the pH-dependence of interactions of tetracycline with ferric iron and photosensitivity of tetracycline to UV-A and UV-B, using a set of methods – UV–vis, Raman and electron paramagnetic resonance spectroscopy, MS spectrometry, HPLC, and cyclic voltammetry. Tetracycline and Fe3+ mainly bind through amide and OH groups in tricarbonylamide moiety to form a stable complex with 1:1 stoichiometry at pH ≤ 5. The interaction is reversible and tetracycline is released from the complex with pH increase. Tetracycline in the complex is stabilized and less susceptible than free tetracycline to oxidation by hydroxyl radical that is produced by UV-induced photolysis of Fe3+–OH- complexes. Redox properties of tetracycline were altered with increasing pH and it showed increased susceptibility to UV-induced degradation. In close, the system composed of tetracycline and ferric iron shows coordination and photo-redox chemistry that is dependent of pH in relation to the solubility of Fe3+ species and protonation of tetracycline. The development and optimization of advanced oxidation processes should take into account that iron may bind and stabilize pollutants and that the redox landscape of water changes drastically with pH.
PB  - Elsevier
T2  - Journal of Photochemistry & Photobiology, A: Chemistry
T1  - The impact of ferric iron and pH on photo-degradation of tetracycline in water
VL  - 433
SP  - 114155
DO  - 10.1016/j.jphotochem.2022.114155
ER  - 
@article{
author = "Korać Jačić, Jelena and Milenković, Milica R. and Bajuk-Bogdanović, Danica and Stanković, Dalibor and Dimitrijević, Milena and Spasojević, Ivan",
year = "2022",
abstract = "There is a significant interest in understanding coordination and photo-chemistry of tetracycline antibiotics, primarily in relation to the development of advanced oxidation processes for degradation of these pollutants in water processing. Herein we analyzed the pH-dependence of interactions of tetracycline with ferric iron and photosensitivity of tetracycline to UV-A and UV-B, using a set of methods – UV–vis, Raman and electron paramagnetic resonance spectroscopy, MS spectrometry, HPLC, and cyclic voltammetry. Tetracycline and Fe3+ mainly bind through amide and OH groups in tricarbonylamide moiety to form a stable complex with 1:1 stoichiometry at pH ≤ 5. The interaction is reversible and tetracycline is released from the complex with pH increase. Tetracycline in the complex is stabilized and less susceptible than free tetracycline to oxidation by hydroxyl radical that is produced by UV-induced photolysis of Fe3+–OH- complexes. Redox properties of tetracycline were altered with increasing pH and it showed increased susceptibility to UV-induced degradation. In close, the system composed of tetracycline and ferric iron shows coordination and photo-redox chemistry that is dependent of pH in relation to the solubility of Fe3+ species and protonation of tetracycline. The development and optimization of advanced oxidation processes should take into account that iron may bind and stabilize pollutants and that the redox landscape of water changes drastically with pH.",
publisher = "Elsevier",
journal = "Journal of Photochemistry & Photobiology, A: Chemistry",
title = "The impact of ferric iron and pH on photo-degradation of tetracycline in water",
volume = "433",
pages = "114155",
doi = "10.1016/j.jphotochem.2022.114155"
}
Korać Jačić, J., Milenković, M. R., Bajuk-Bogdanović, D., Stanković, D., Dimitrijević, M.,& Spasojević, I.. (2022). The impact of ferric iron and pH on photo-degradation of tetracycline in water. in Journal of Photochemistry & Photobiology, A: Chemistry
Elsevier., 433, 114155.
https://doi.org/10.1016/j.jphotochem.2022.114155
Korać Jačić J, Milenković MR, Bajuk-Bogdanović D, Stanković D, Dimitrijević M, Spasojević I. The impact of ferric iron and pH on photo-degradation of tetracycline in water. in Journal of Photochemistry & Photobiology, A: Chemistry. 2022;433:114155.
doi:10.1016/j.jphotochem.2022.114155 .
Korać Jačić, Jelena, Milenković, Milica R., Bajuk-Bogdanović, Danica, Stanković, Dalibor, Dimitrijević, Milena, Spasojević, Ivan, "The impact of ferric iron and pH on photo-degradation of tetracycline in water" in Journal of Photochemistry & Photobiology, A: Chemistry, 433 (2022):114155,
https://doi.org/10.1016/j.jphotochem.2022.114155 . .

Supplementary information for the article: Korać Jačić, J.; Milenković, M. R.; Bajuk-Bogdanović, D.; Stanković, D.; Dimitrijević, M.; Spasojević, I. The Impact of Ferric Iron and PH on Photo-Degradation of Tetracycline in Water. Journal of Photochemistry and Photobiology A: Chemistry 2022, 433, 114155. https://doi.org/10.1016/j.jphotochem.2022.114155.

Korać Jačić, Jelena; Milenković, Milica R.; Bajuk-Bogdanović, Danica; Stanković, Dalibor; Dimitrijević, Milena; Spasojević, Ivan

(Elsevier, 2022)

TY  - DATA
AU  - Korać Jačić, Jelena
AU  - Milenković, Milica R.
AU  - Bajuk-Bogdanović, Danica
AU  - Stanković, Dalibor
AU  - Dimitrijević, Milena
AU  - Spasojević, Ivan
PY  - 2022
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5511
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5512
AB  - There is a significant interest in understanding coordination and photo-chemistry of tetracycline antibiotics, primarily in relation to the development of advanced oxidation processes for degradation of these pollutants in water processing. Herein we analyzed the pH-dependence of interactions of tetracycline with ferric iron and photosensitivity of tetracycline to UV-A and UV-B, using a set of methods – UV–vis, Raman and electron paramagnetic resonance spectroscopy, MS spectrometry, HPLC, and cyclic voltammetry. Tetracycline and Fe3+ mainly bind through amide and OH groups in tricarbonylamide moiety to form a stable complex with 1:1 stoichiometry at pH ≤ 5. The interaction is reversible and tetracycline is released from the complex with pH increase. Tetracycline in the complex is stabilized and less susceptible than free tetracycline to oxidation by hydroxyl radical that is produced by UV-induced photolysis of Fe3+–OH- complexes. Redox properties of tetracycline were altered with increasing pH and it showed increased susceptibility to UV-induced degradation. In close, the system composed of tetracycline and ferric iron shows coordination and photo-redox chemistry that is dependent of pH in relation to the solubility of Fe3+ species and protonation of tetracycline. The development and optimization of advanced oxidation processes should take into account that iron may bind and stabilize pollutants and that the redox landscape of water changes drastically with pH.
PB  - Elsevier
T2  - Journal of Photochemistry & Photobiology, A: Chemistry
T1  - Supplementary information for the article: Korać Jačić, J.; Milenković, M. R.; Bajuk-Bogdanović, D.; Stanković, D.; Dimitrijević, M.; Spasojević, I. The Impact of Ferric Iron and PH on Photo-Degradation of Tetracycline in Water. Journal of Photochemistry and Photobiology A: Chemistry 2022, 433, 114155. https://doi.org/10.1016/j.jphotochem.2022.114155.
VL  - 433
SP  - 114155
UR  - https://hdl.handle.net/21.15107/rcub_cherry_5512
ER  - 
@misc{
author = "Korać Jačić, Jelena and Milenković, Milica R. and Bajuk-Bogdanović, Danica and Stanković, Dalibor and Dimitrijević, Milena and Spasojević, Ivan",
year = "2022",
abstract = "There is a significant interest in understanding coordination and photo-chemistry of tetracycline antibiotics, primarily in relation to the development of advanced oxidation processes for degradation of these pollutants in water processing. Herein we analyzed the pH-dependence of interactions of tetracycline with ferric iron and photosensitivity of tetracycline to UV-A and UV-B, using a set of methods – UV–vis, Raman and electron paramagnetic resonance spectroscopy, MS spectrometry, HPLC, and cyclic voltammetry. Tetracycline and Fe3+ mainly bind through amide and OH groups in tricarbonylamide moiety to form a stable complex with 1:1 stoichiometry at pH ≤ 5. The interaction is reversible and tetracycline is released from the complex with pH increase. Tetracycline in the complex is stabilized and less susceptible than free tetracycline to oxidation by hydroxyl radical that is produced by UV-induced photolysis of Fe3+–OH- complexes. Redox properties of tetracycline were altered with increasing pH and it showed increased susceptibility to UV-induced degradation. In close, the system composed of tetracycline and ferric iron shows coordination and photo-redox chemistry that is dependent of pH in relation to the solubility of Fe3+ species and protonation of tetracycline. The development and optimization of advanced oxidation processes should take into account that iron may bind and stabilize pollutants and that the redox landscape of water changes drastically with pH.",
publisher = "Elsevier",
journal = "Journal of Photochemistry & Photobiology, A: Chemistry",
title = "Supplementary information for the article: Korać Jačić, J.; Milenković, M. R.; Bajuk-Bogdanović, D.; Stanković, D.; Dimitrijević, M.; Spasojević, I. The Impact of Ferric Iron and PH on Photo-Degradation of Tetracycline in Water. Journal of Photochemistry and Photobiology A: Chemistry 2022, 433, 114155. https://doi.org/10.1016/j.jphotochem.2022.114155.",
volume = "433",
pages = "114155",
url = "https://hdl.handle.net/21.15107/rcub_cherry_5512"
}
Korać Jačić, J., Milenković, M. R., Bajuk-Bogdanović, D., Stanković, D., Dimitrijević, M.,& Spasojević, I.. (2022). Supplementary information for the article: Korać Jačić, J.; Milenković, M. R.; Bajuk-Bogdanović, D.; Stanković, D.; Dimitrijević, M.; Spasojević, I. The Impact of Ferric Iron and PH on Photo-Degradation of Tetracycline in Water. Journal of Photochemistry and Photobiology A: Chemistry 2022, 433, 114155. https://doi.org/10.1016/j.jphotochem.2022.114155.. in Journal of Photochemistry & Photobiology, A: Chemistry
Elsevier., 433, 114155.
https://hdl.handle.net/21.15107/rcub_cherry_5512
Korać Jačić J, Milenković MR, Bajuk-Bogdanović D, Stanković D, Dimitrijević M, Spasojević I. Supplementary information for the article: Korać Jačić, J.; Milenković, M. R.; Bajuk-Bogdanović, D.; Stanković, D.; Dimitrijević, M.; Spasojević, I. The Impact of Ferric Iron and PH on Photo-Degradation of Tetracycline in Water. Journal of Photochemistry and Photobiology A: Chemistry 2022, 433, 114155. https://doi.org/10.1016/j.jphotochem.2022.114155.. in Journal of Photochemistry & Photobiology, A: Chemistry. 2022;433:114155.
https://hdl.handle.net/21.15107/rcub_cherry_5512 .
Korać Jačić, Jelena, Milenković, Milica R., Bajuk-Bogdanović, Danica, Stanković, Dalibor, Dimitrijević, Milena, Spasojević, Ivan, "Supplementary information for the article: Korać Jačić, J.; Milenković, M. R.; Bajuk-Bogdanović, D.; Stanković, D.; Dimitrijević, M.; Spasojević, I. The Impact of Ferric Iron and PH on Photo-Degradation of Tetracycline in Water. Journal of Photochemistry and Photobiology A: Chemistry 2022, 433, 114155. https://doi.org/10.1016/j.jphotochem.2022.114155." in Journal of Photochemistry & Photobiology, A: Chemistry, 433 (2022):114155,
https://hdl.handle.net/21.15107/rcub_cherry_5512 .

Silver distribution and binding mode as key determinants of the antimicrobial performance of iron oxide/silver nanocomposites

Šuljagić, Marija; Milenković, Milica R.; Uskoković, Vuk; Mirković, Miljana; Vrbica, Boško; Pavlović, Vladimir D.; Živković-Radovanović, Vukosava; Stanković, Dalibor; Andjelković, Ljubica

(Elsevier, 2022)

TY  - JOUR
AU  - Šuljagić, Marija
AU  - Milenković, Milica R.
AU  - Uskoković, Vuk
AU  - Mirković, Miljana
AU  - Vrbica, Boško
AU  - Pavlović, Vladimir D.
AU  - Živković-Radovanović, Vukosava
AU  - Stanković, Dalibor
AU  - Andjelković, Ljubica
PY  - 2022
UR  - https://www.sciencedirect.com/journal/materials-today-communications
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5521
AB  - The emerging threat of bacterial resistance to antibiotics prompts the urgent search for biomaterials for the treatment of infectious disease. Here we report on the synthesis and characterization of a multiphasic nanocomposite comprising magnetic iron oxide and silver nanoparticles. The method of synthesis involved the combustion of a metalorganic complex and reduction of the silver ions that were exchanged and/or adsorbed on the surface of iron oxide. Different physical and chemical treatments coupled to the reduction process, including ultrasound and Lugol's iodine solution, respectively, homogenized the distribution of the silver nanoparticles on the iron oxide phase. Remarkably, using ascorbic acid as a reductant enhanced the magnetic properties of the material as a result of the reduction of the magnetic matrix alongside the silver cations. The treatment with ultrasound detached large amounts of silver from the iron oxide phase and resulted in the lowest amount of silver incorporated in the nanocomposite. Despite that, this treatment led to the highest antibacterial activity against both Gram-positive and Gram-negative strains, indicating that the homogeneity of the distribution of silver on the iron oxide matrix is a more important determinant of the antibacterial performance than the amount of silver incorporated in the material. At the same time, the treatment with Lugol's iodine equally increased the distribution homogeneity, but induced excessive ion exchange and crystal lattice substitutions, thereby adversely affecting the antibacterial performance. This has indicated that the mode of binding silver to iron oxide can compensate for the positive effects of homogeneous distribution with respect to the antibacterial performance.
PB  - Elsevier
T2  - Materials Today Communications
T1  - Silver distribution and binding mode as key determinants of the antimicrobial performance of iron oxide/silver nanocomposites
VL  - 32
SP  - 104157
DO  - 10.1016/j.mtcomm.2022.104157
ER  - 
@article{
author = "Šuljagić, Marija and Milenković, Milica R. and Uskoković, Vuk and Mirković, Miljana and Vrbica, Boško and Pavlović, Vladimir D. and Živković-Radovanović, Vukosava and Stanković, Dalibor and Andjelković, Ljubica",
year = "2022",
abstract = "The emerging threat of bacterial resistance to antibiotics prompts the urgent search for biomaterials for the treatment of infectious disease. Here we report on the synthesis and characterization of a multiphasic nanocomposite comprising magnetic iron oxide and silver nanoparticles. The method of synthesis involved the combustion of a metalorganic complex and reduction of the silver ions that were exchanged and/or adsorbed on the surface of iron oxide. Different physical and chemical treatments coupled to the reduction process, including ultrasound and Lugol's iodine solution, respectively, homogenized the distribution of the silver nanoparticles on the iron oxide phase. Remarkably, using ascorbic acid as a reductant enhanced the magnetic properties of the material as a result of the reduction of the magnetic matrix alongside the silver cations. The treatment with ultrasound detached large amounts of silver from the iron oxide phase and resulted in the lowest amount of silver incorporated in the nanocomposite. Despite that, this treatment led to the highest antibacterial activity against both Gram-positive and Gram-negative strains, indicating that the homogeneity of the distribution of silver on the iron oxide matrix is a more important determinant of the antibacterial performance than the amount of silver incorporated in the material. At the same time, the treatment with Lugol's iodine equally increased the distribution homogeneity, but induced excessive ion exchange and crystal lattice substitutions, thereby adversely affecting the antibacterial performance. This has indicated that the mode of binding silver to iron oxide can compensate for the positive effects of homogeneous distribution with respect to the antibacterial performance.",
publisher = "Elsevier",
journal = "Materials Today Communications",
title = "Silver distribution and binding mode as key determinants of the antimicrobial performance of iron oxide/silver nanocomposites",
volume = "32",
pages = "104157",
doi = "10.1016/j.mtcomm.2022.104157"
}
Šuljagić, M., Milenković, M. R., Uskoković, V., Mirković, M., Vrbica, B., Pavlović, V. D., Živković-Radovanović, V., Stanković, D.,& Andjelković, L.. (2022). Silver distribution and binding mode as key determinants of the antimicrobial performance of iron oxide/silver nanocomposites. in Materials Today Communications
Elsevier., 32, 104157.
https://doi.org/10.1016/j.mtcomm.2022.104157
Šuljagić M, Milenković MR, Uskoković V, Mirković M, Vrbica B, Pavlović VD, Živković-Radovanović V, Stanković D, Andjelković L. Silver distribution and binding mode as key determinants of the antimicrobial performance of iron oxide/silver nanocomposites. in Materials Today Communications. 2022;32:104157.
doi:10.1016/j.mtcomm.2022.104157 .
Šuljagić, Marija, Milenković, Milica R., Uskoković, Vuk, Mirković, Miljana, Vrbica, Boško, Pavlović, Vladimir D., Živković-Radovanović, Vukosava, Stanković, Dalibor, Andjelković, Ljubica, "Silver distribution and binding mode as key determinants of the antimicrobial performance of iron oxide/silver nanocomposites" in Materials Today Communications, 32 (2022):104157,
https://doi.org/10.1016/j.mtcomm.2022.104157 . .

La(OH)3 Multi-Walled Carbon Nanotube/Carbon Paste-Based Sensing Approach for the Detection of Uric Acid—A Product of Environmentally Stressed Cells

Knežević, Sara; Ognjanović, Miloš; Stanković, Vesna; Zlatanova, Milena; Nešić, Andrijana; Gavrović-Jankulović, Marija; Stanković, Dalibor

(MDPI, 2022)

TY  - JOUR
AU  - Knežević, Sara
AU  - Ognjanović, Miloš
AU  - Stanković, Vesna
AU  - Zlatanova, Milena
AU  - Nešić, Andrijana
AU  - Gavrović-Jankulović, Marija
AU  - Stanković, Dalibor
PY  - 2022
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5622
AB  - This paper aims to develop an amperometric, non-enzymatic sensor for detecting and quantifying UA as an alert signal induced by allergens with protease activity in human cell lines (HEK293 and HeLa). Uric acid (UA) has been classified as a damage-associated molecular pattern (DAMP) molecule that serves a physiological purpose inside the cell, while outside the cell it can be an indicator of cell damage. Cell damage or stress can be caused by different health problems or by environmental irritants, such as allergens. We can act and prevent the events that generate stress by determining the extent to which cells are under stress. Amperometric calibration measurements were performed with a carbon paste electrode modified with La(OH)3@MWCNT, at the potential of 0.3 V. The calibration curve was constructed in a linear operating range from 0.67 μM to 121 μM UA. The proposed sensor displayed good reproducibility with an RSD of 3.65% calculated for five subsequent measurements, and a low detection limit of 64.28 nM, determined using the 3 S/m method. Interference studies and the real sample analysis of allergen-treated cell lines proved that the proposed sensing platform possesses excellent sensitivity, reproducibility, and stability. Therefore, it can potentially be used to evaluate stress factors in medical research and clinical practice.
PB  - MDPI
T2  - Biosensors
T1  - La(OH)3 Multi-Walled Carbon Nanotube/Carbon Paste-Based Sensing Approach for the Detection of Uric Acid—A Product of Environmentally Stressed Cells
VL  - 12
IS  - 9
SP  - 705
DO  - 10.3390/bios12090705
ER  - 
@article{
author = "Knežević, Sara and Ognjanović, Miloš and Stanković, Vesna and Zlatanova, Milena and Nešić, Andrijana and Gavrović-Jankulović, Marija and Stanković, Dalibor",
year = "2022",
abstract = "This paper aims to develop an amperometric, non-enzymatic sensor for detecting and quantifying UA as an alert signal induced by allergens with protease activity in human cell lines (HEK293 and HeLa). Uric acid (UA) has been classified as a damage-associated molecular pattern (DAMP) molecule that serves a physiological purpose inside the cell, while outside the cell it can be an indicator of cell damage. Cell damage or stress can be caused by different health problems or by environmental irritants, such as allergens. We can act and prevent the events that generate stress by determining the extent to which cells are under stress. Amperometric calibration measurements were performed with a carbon paste electrode modified with La(OH)3@MWCNT, at the potential of 0.3 V. The calibration curve was constructed in a linear operating range from 0.67 μM to 121 μM UA. The proposed sensor displayed good reproducibility with an RSD of 3.65% calculated for five subsequent measurements, and a low detection limit of 64.28 nM, determined using the 3 S/m method. Interference studies and the real sample analysis of allergen-treated cell lines proved that the proposed sensing platform possesses excellent sensitivity, reproducibility, and stability. Therefore, it can potentially be used to evaluate stress factors in medical research and clinical practice.",
publisher = "MDPI",
journal = "Biosensors",
title = "La(OH)3 Multi-Walled Carbon Nanotube/Carbon Paste-Based Sensing Approach for the Detection of Uric Acid—A Product of Environmentally Stressed Cells",
volume = "12",
number = "9",
pages = "705",
doi = "10.3390/bios12090705"
}
Knežević, S., Ognjanović, M., Stanković, V., Zlatanova, M., Nešić, A., Gavrović-Jankulović, M.,& Stanković, D.. (2022). La(OH)3 Multi-Walled Carbon Nanotube/Carbon Paste-Based Sensing Approach for the Detection of Uric Acid—A Product of Environmentally Stressed Cells. in Biosensors
MDPI., 12(9), 705.
https://doi.org/10.3390/bios12090705
Knežević S, Ognjanović M, Stanković V, Zlatanova M, Nešić A, Gavrović-Jankulović M, Stanković D. La(OH)3 Multi-Walled Carbon Nanotube/Carbon Paste-Based Sensing Approach for the Detection of Uric Acid—A Product of Environmentally Stressed Cells. in Biosensors. 2022;12(9):705.
doi:10.3390/bios12090705 .
Knežević, Sara, Ognjanović, Miloš, Stanković, Vesna, Zlatanova, Milena, Nešić, Andrijana, Gavrović-Jankulović, Marija, Stanković, Dalibor, "La(OH)3 Multi-Walled Carbon Nanotube/Carbon Paste-Based Sensing Approach for the Detection of Uric Acid—A Product of Environmentally Stressed Cells" in Biosensors, 12, no. 9 (2022):705,
https://doi.org/10.3390/bios12090705 . .
2
1

Supplementary material for: Knežević, S., Ognjanović, M., Stanković, V., Zlatanova, M., Nešić, A., Gavrović-Jankulović, M.,& Stanković, D.. (2022). La(OH)3 Multi-Walled Carbon Nanotube/Carbon Paste-Based Sensing Approach for the Detection of Uric Acid—A Product of Environmentally Stressed Cells. in Biosensors MDPI., 12(9), 705. https://doi.org/10.3390/bios12090705

Knežević, Sara; Ognjanović, Miloš; Stanković, Vesna; Zlatanova, Milena; Nešić, Andrijana; Gavrović-Jankulović, Marija; Stanković, Dalibor

(MDPI, 2022)

TY  - DATA
AU  - Knežević, Sara
AU  - Ognjanović, Miloš
AU  - Stanković, Vesna
AU  - Zlatanova, Milena
AU  - Nešić, Andrijana
AU  - Gavrović-Jankulović, Marija
AU  - Stanković, Dalibor
PY  - 2022
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5632
AB  - This paper aims to develop an amperometric, non-enzymatic sensor for detecting and quantifying UA as an alert signal induced by allergens with protease activity in human cell lines (HEK293 and HeLa). Uric acid (UA) has been classified as a damage-associated molecular pattern (DAMP) molecule that serves a physiological purpose inside the cell, while outside the cell it can be an indicator of cell damage. Cell damage or stress can be caused by different health problems or by environmental irritants, such as allergens. We can act and prevent the events that generate stress by determining the extent to which cells are under stress. Amperometric calibration measurements were performed with a carbon paste electrode modified with La(OH)3@MWCNT, at the potential of 0.3 V. The calibration curve was constructed in a linear operating range from 0.67 μM to 121 μM UA. The proposed sensor displayed good reproducibility with an RSD of 3.65% calculated for five subsequent measurements, and a low detection limit of 64.28 nM, determined using the 3 S/m method. Interference studies and the real sample analysis of allergen-treated cell lines proved that the proposed sensing platform possesses excellent sensitivity, reproducibility, and stability. Therefore, it can potentially be used to evaluate stress factors in medical research and clinical practice.
PB  - MDPI
T2  - Biosensors
T1  - Supplementary material for: Knežević, S., Ognjanović, M., Stanković, V., Zlatanova, M., Nešić, A., Gavrović-Jankulović, M.,& Stanković, D.. (2022). La(OH)3 Multi-Walled Carbon Nanotube/Carbon Paste-Based Sensing Approach for the Detection of Uric Acid—A Product of Environmentally Stressed Cells. in Biosensors MDPI., 12(9), 705. https://doi.org/10.3390/bios12090705
VL  - 12
IS  - 9
SP  - 705
UR  - https://hdl.handle.net/21.15107/rcub_cherry_5632
ER  - 
@misc{
author = "Knežević, Sara and Ognjanović, Miloš and Stanković, Vesna and Zlatanova, Milena and Nešić, Andrijana and Gavrović-Jankulović, Marija and Stanković, Dalibor",
year = "2022",
abstract = "This paper aims to develop an amperometric, non-enzymatic sensor for detecting and quantifying UA as an alert signal induced by allergens with protease activity in human cell lines (HEK293 and HeLa). Uric acid (UA) has been classified as a damage-associated molecular pattern (DAMP) molecule that serves a physiological purpose inside the cell, while outside the cell it can be an indicator of cell damage. Cell damage or stress can be caused by different health problems or by environmental irritants, such as allergens. We can act and prevent the events that generate stress by determining the extent to which cells are under stress. Amperometric calibration measurements were performed with a carbon paste electrode modified with La(OH)3@MWCNT, at the potential of 0.3 V. The calibration curve was constructed in a linear operating range from 0.67 μM to 121 μM UA. The proposed sensor displayed good reproducibility with an RSD of 3.65% calculated for five subsequent measurements, and a low detection limit of 64.28 nM, determined using the 3 S/m method. Interference studies and the real sample analysis of allergen-treated cell lines proved that the proposed sensing platform possesses excellent sensitivity, reproducibility, and stability. Therefore, it can potentially be used to evaluate stress factors in medical research and clinical practice.",
publisher = "MDPI",
journal = "Biosensors",
title = "Supplementary material for: Knežević, S., Ognjanović, M., Stanković, V., Zlatanova, M., Nešić, A., Gavrović-Jankulović, M.,& Stanković, D.. (2022). La(OH)3 Multi-Walled Carbon Nanotube/Carbon Paste-Based Sensing Approach for the Detection of Uric Acid—A Product of Environmentally Stressed Cells. in Biosensors MDPI., 12(9), 705. https://doi.org/10.3390/bios12090705",
volume = "12",
number = "9",
pages = "705",
url = "https://hdl.handle.net/21.15107/rcub_cherry_5632"
}
Knežević, S., Ognjanović, M., Stanković, V., Zlatanova, M., Nešić, A., Gavrović-Jankulović, M.,& Stanković, D.. (2022). Supplementary material for: Knežević, S., Ognjanović, M., Stanković, V., Zlatanova, M., Nešić, A., Gavrović-Jankulović, M.,& Stanković, D.. (2022). La(OH)3 Multi-Walled Carbon Nanotube/Carbon Paste-Based Sensing Approach for the Detection of Uric Acid—A Product of Environmentally Stressed Cells. in Biosensors MDPI., 12(9), 705. https://doi.org/10.3390/bios12090705. in Biosensors
MDPI., 12(9), 705.
https://hdl.handle.net/21.15107/rcub_cherry_5632
Knežević S, Ognjanović M, Stanković V, Zlatanova M, Nešić A, Gavrović-Jankulović M, Stanković D. Supplementary material for: Knežević, S., Ognjanović, M., Stanković, V., Zlatanova, M., Nešić, A., Gavrović-Jankulović, M.,& Stanković, D.. (2022). La(OH)3 Multi-Walled Carbon Nanotube/Carbon Paste-Based Sensing Approach for the Detection of Uric Acid—A Product of Environmentally Stressed Cells. in Biosensors MDPI., 12(9), 705. https://doi.org/10.3390/bios12090705. in Biosensors. 2022;12(9):705.
https://hdl.handle.net/21.15107/rcub_cherry_5632 .
Knežević, Sara, Ognjanović, Miloš, Stanković, Vesna, Zlatanova, Milena, Nešić, Andrijana, Gavrović-Jankulović, Marija, Stanković, Dalibor, "Supplementary material for: Knežević, S., Ognjanović, M., Stanković, V., Zlatanova, M., Nešić, A., Gavrović-Jankulović, M.,& Stanković, D.. (2022). La(OH)3 Multi-Walled Carbon Nanotube/Carbon Paste-Based Sensing Approach for the Detection of Uric Acid—A Product of Environmentally Stressed Cells. in Biosensors MDPI., 12(9), 705. https://doi.org/10.3390/bios12090705" in Biosensors, 12, no. 9 (2022):705,
https://hdl.handle.net/21.15107/rcub_cherry_5632 .

Picosecond laser-assisted synthesis of silver nanoparticles with high practical application as electroanalytical sensor

Ognjanović, Miloš; Nikolić, Katarina; Radenković, Marina; Lolić, Aleksandar; Stanković, Dalibor; Živković, Sanja

(Elsevier, 2022)

TY  - JOUR
AU  - Ognjanović, Miloš
AU  - Nikolić, Katarina
AU  - Radenković, Marina
AU  - Lolić, Aleksandar
AU  - Stanković, Dalibor
AU  - Živković, Sanja
PY  - 2022
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5675
AB  - Gallic acid (GA) is one of the most important and present natural phenolic compounds due to its well-known biological properties, and its detection and monitoring is of great importance. Silver nanoparticles (AgNPs) are one of the most studied metallic nanomaterials used in various fields, from biomedical applications to electrochemical sensing devices. In this work, we used the pulsed laser ablation technique in liquid for the one-step preparation of nanoparticles of silver from a pure silver plate base in N,N-dimethylformamide. Obtained nanomaterial was characterized using morphological and electrochemical methods and used for modification of screen-printed carbon electrodes (SPCE). Successful immobilization at the surface is confirmed using the surface profiling method. A newly obtained sensor was used for the detection of GA. After parameters optimization, a differential pulse voltammetric protocol was developed, using two approaches - concentration vs. current (GA determination) and peak area vs. current (estimation of the antioxidant capacity). For the first approach sensor linearity was found to be in the range from 0.50 µM to 10 µM, with the limit of detection (LOD) of 0.16 µM and limit of quantification (LOQ) of 0.50 µM. In the second system operating linear range was the same, while LOD and LOQ were 0.11 µM and 0.34 µM, respectively. Practical application of the method was tested using two approaches: direct measurement of gallic acid in biological fluids and estimation of the antioxidant capacity and food quality purpose.
PB  - Elsevier
T2  - Surfaces and Interfaces
T1  - Picosecond laser-assisted synthesis of silver nanoparticles with high practical application as electroanalytical sensor
VL  - 35
SP  - 102464
DO  - 10.1016/j.surfin.2022.102464
ER  - 
@article{
author = "Ognjanović, Miloš and Nikolić, Katarina and Radenković, Marina and Lolić, Aleksandar and Stanković, Dalibor and Živković, Sanja",
year = "2022",
abstract = "Gallic acid (GA) is one of the most important and present natural phenolic compounds due to its well-known biological properties, and its detection and monitoring is of great importance. Silver nanoparticles (AgNPs) are one of the most studied metallic nanomaterials used in various fields, from biomedical applications to electrochemical sensing devices. In this work, we used the pulsed laser ablation technique in liquid for the one-step preparation of nanoparticles of silver from a pure silver plate base in N,N-dimethylformamide. Obtained nanomaterial was characterized using morphological and electrochemical methods and used for modification of screen-printed carbon electrodes (SPCE). Successful immobilization at the surface is confirmed using the surface profiling method. A newly obtained sensor was used for the detection of GA. After parameters optimization, a differential pulse voltammetric protocol was developed, using two approaches - concentration vs. current (GA determination) and peak area vs. current (estimation of the antioxidant capacity). For the first approach sensor linearity was found to be in the range from 0.50 µM to 10 µM, with the limit of detection (LOD) of 0.16 µM and limit of quantification (LOQ) of 0.50 µM. In the second system operating linear range was the same, while LOD and LOQ were 0.11 µM and 0.34 µM, respectively. Practical application of the method was tested using two approaches: direct measurement of gallic acid in biological fluids and estimation of the antioxidant capacity and food quality purpose.",
publisher = "Elsevier",
journal = "Surfaces and Interfaces",
title = "Picosecond laser-assisted synthesis of silver nanoparticles with high practical application as electroanalytical sensor",
volume = "35",
pages = "102464",
doi = "10.1016/j.surfin.2022.102464"
}
Ognjanović, M., Nikolić, K., Radenković, M., Lolić, A., Stanković, D.,& Živković, S.. (2022). Picosecond laser-assisted synthesis of silver nanoparticles with high practical application as electroanalytical sensor. in Surfaces and Interfaces
Elsevier., 35, 102464.
https://doi.org/10.1016/j.surfin.2022.102464
Ognjanović M, Nikolić K, Radenković M, Lolić A, Stanković D, Živković S. Picosecond laser-assisted synthesis of silver nanoparticles with high practical application as electroanalytical sensor. in Surfaces and Interfaces. 2022;35:102464.
doi:10.1016/j.surfin.2022.102464 .
Ognjanović, Miloš, Nikolić, Katarina, Radenković, Marina, Lolić, Aleksandar, Stanković, Dalibor, Živković, Sanja, "Picosecond laser-assisted synthesis of silver nanoparticles with high practical application as electroanalytical sensor" in Surfaces and Interfaces, 35 (2022):102464,
https://doi.org/10.1016/j.surfin.2022.102464 . .

Electrochemical Determination of Morphine in Urine Samples by Tailoring FeWO4/CPE Sensor

Ognjanović, Miloš; Nikolić, Katarina; Bošković, Marko; Pastor, Ferenc; Popov, Nina; Marciuš, Marijan; Krehula, Stjepko; Antić, Bratislav; Stanković, Dalibor

(MDPI, 2022)

TY  - JOUR
AU  - Ognjanović, Miloš
AU  - Nikolić, Katarina
AU  - Bošković, Marko
AU  - Pastor, Ferenc
AU  - Popov, Nina
AU  - Marciuš, Marijan
AU  - Krehula, Stjepko
AU  - Antić, Bratislav
AU  - Stanković, Dalibor
PY  - 2022
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5682
AB  - Morphine (MORPH) is natural alkaloid and mainly used as a pain reliever. Its monitoring in human body fluids is crucial for modern medicine. In this paper, we have developed an electrochemical sensor for submicromolar detection of MORPH. The sensor is based on modified carbon paste electrode (CPE) by investigating the FexW1-xO4 ratio in iron tungstate (FeWO4), as well as the ratio of this material in CPE. For the first time, the effect of the iron–tungsten ratio in terms of achieving the best possible electrochemical characteristics for the detection of an important molecule for humans was examined. Morphological and electrochemical characteristics of materials were studied. The best results were obtained using Fe1W3 and 7.5% of modifier in CPE. For MORPH detection, square wave voltammetry (SWV) was optimized. Under the optimized conditions, Fe1W3@CPE resulted in limit of detection (LOD) of the method of 0.58 µM and limit of quantification (LOQ) of 1.94 µM. The linear operating range between 5 and 85 µM of MORPH in the Britton–Robinson buffer solution (BRBS) at pH 8 as supporting electrolyte was obtained. The Fe1W3@CPE sensor resulted in good selectivity and excellent repeatability with relative standard deviation (RSD) and was applied in real-world samples of human urine. Application for direct MORPH detection, without tedious sample pretreatment procedures, suggests that developed electrochemical sensor has appeared to be a suitable competitor for efficient, precise, and accurate monitoring of the MORPH in biological fluids.
PB  - MDPI
T2  - Biosensors
T1  - Electrochemical Determination of Morphine in Urine Samples by Tailoring FeWO4/CPE Sensor
VL  - 12
IS  - 11
SP  - 932
DO  - 10.3390/bios12110932
ER  - 
@article{
author = "Ognjanović, Miloš and Nikolić, Katarina and Bošković, Marko and Pastor, Ferenc and Popov, Nina and Marciuš, Marijan and Krehula, Stjepko and Antić, Bratislav and Stanković, Dalibor",
year = "2022",
abstract = "Morphine (MORPH) is natural alkaloid and mainly used as a pain reliever. Its monitoring in human body fluids is crucial for modern medicine. In this paper, we have developed an electrochemical sensor for submicromolar detection of MORPH. The sensor is based on modified carbon paste electrode (CPE) by investigating the FexW1-xO4 ratio in iron tungstate (FeWO4), as well as the ratio of this material in CPE. For the first time, the effect of the iron–tungsten ratio in terms of achieving the best possible electrochemical characteristics for the detection of an important molecule for humans was examined. Morphological and electrochemical characteristics of materials were studied. The best results were obtained using Fe1W3 and 7.5% of modifier in CPE. For MORPH detection, square wave voltammetry (SWV) was optimized. Under the optimized conditions, Fe1W3@CPE resulted in limit of detection (LOD) of the method of 0.58 µM and limit of quantification (LOQ) of 1.94 µM. The linear operating range between 5 and 85 µM of MORPH in the Britton–Robinson buffer solution (BRBS) at pH 8 as supporting electrolyte was obtained. The Fe1W3@CPE sensor resulted in good selectivity and excellent repeatability with relative standard deviation (RSD) and was applied in real-world samples of human urine. Application for direct MORPH detection, without tedious sample pretreatment procedures, suggests that developed electrochemical sensor has appeared to be a suitable competitor for efficient, precise, and accurate monitoring of the MORPH in biological fluids.",
publisher = "MDPI",
journal = "Biosensors",
title = "Electrochemical Determination of Morphine in Urine Samples by Tailoring FeWO4/CPE Sensor",
volume = "12",
number = "11",
pages = "932",
doi = "10.3390/bios12110932"
}
Ognjanović, M., Nikolić, K., Bošković, M., Pastor, F., Popov, N., Marciuš, M., Krehula, S., Antić, B.,& Stanković, D.. (2022). Electrochemical Determination of Morphine in Urine Samples by Tailoring FeWO4/CPE Sensor. in Biosensors
MDPI., 12(11), 932.
https://doi.org/10.3390/bios12110932
Ognjanović M, Nikolić K, Bošković M, Pastor F, Popov N, Marciuš M, Krehula S, Antić B, Stanković D. Electrochemical Determination of Morphine in Urine Samples by Tailoring FeWO4/CPE Sensor. in Biosensors. 2022;12(11):932.
doi:10.3390/bios12110932 .
Ognjanović, Miloš, Nikolić, Katarina, Bošković, Marko, Pastor, Ferenc, Popov, Nina, Marciuš, Marijan, Krehula, Stjepko, Antić, Bratislav, Stanković, Dalibor, "Electrochemical Determination of Morphine in Urine Samples by Tailoring FeWO4/CPE Sensor" in Biosensors, 12, no. 11 (2022):932,
https://doi.org/10.3390/bios12110932 . .
2
1

Sponge-like europium oxide from hollow carbon sphere as a template for an anode material for Reactive Blue 52 electrochemical degradation

Stanković, Dalibor; Kukuruzar, Andrej J.; Savić, Slađana D.; Ognjannović, Miloš; Janković-Častvan, Ivona M.; Roglić, Goran; Antić, Bratislav; Manojlović, Dragan D.; Dojčinović, Biljana P.

(Elsevier, 2021)

TY  - JOUR
AU  - Stanković, Dalibor
AU  - Kukuruzar, Andrej J.
AU  - Savić, Slađana D.
AU  - Ognjannović, Miloš
AU  - Janković-Častvan, Ivona M.
AU  - Roglić, Goran
AU  - Antić, Bratislav
AU  - Manojlović, Dragan D.
AU  - Dojčinović, Biljana P.
PY  - 2021
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/4934
AB  - The textile industry is one of the major pollutants of waterbodies with effluents high in biochemical and chemical oxygen demand values, high values of total dissolved solids, total suspended solids, and low dissolved oxygen values along with strong color. The existence of a successful method for its decontamination would be beneficial. In this work, we synthesized sponge-like europium oxide (Eu2O3) using a template-directed route from carbon hollow spheres, obtained from glucose as a carbon source. The material synthesis method was done in an aqueous environment, without using any organic solvents. Electrochemical properties of the synthesized material were investigated using cyclic voltammetry and electrical impedance spectroscopy, while morphological characterization was done using scanning electron microscopy and X-ray powder diffraction analysis. Eu2O3 were successfully immobilized at the surface of a screen-printed carbon electrode (Eu2O3/SPCE) using the drop-casting method. Finally, the prepared electrodes were tested toward the removal of Reactive Blue 52 (RB52) using electrochemical advanced oxidation processes (EAOPs). Important parameters, that is, the supporting electrolyte, its concentration, pH value, and the applied voltage, were optimized for RB52 degradation. The rate of removal was monitored spectrophotometrically and by high-performance liquid chromatography with a diode array detector (HPLC-DAD). It was found that the proposed approach reaches complete decolorization of the RB52 solution after a 60-min treatment, at pH 5.6 of KCl supporting electrolyte at a concentration of 0.05 M. Under optimal parameters, after 3 h of treatment, total organic carbon (TOC) was lowered by ~40%. The obtained results indicate that the proposed method may find potential application in EAOPs, considering electrode stability, durability, and efficiency and simplicity of the method.
PB  - Elsevier
T2  - Materials Chemistry and Physics
T1  - Sponge-like europium oxide from hollow carbon sphere as a template for an anode material for Reactive Blue 52 electrochemical degradation
VL  - 273
SP  - 125154
DO  - 10.1016/j.matchemphys.2021.125154
ER  - 
@article{
author = "Stanković, Dalibor and Kukuruzar, Andrej J. and Savić, Slađana D. and Ognjannović, Miloš and Janković-Častvan, Ivona M. and Roglić, Goran and Antić, Bratislav and Manojlović, Dragan D. and Dojčinović, Biljana P.",
year = "2021",
abstract = "The textile industry is one of the major pollutants of waterbodies with effluents high in biochemical and chemical oxygen demand values, high values of total dissolved solids, total suspended solids, and low dissolved oxygen values along with strong color. The existence of a successful method for its decontamination would be beneficial. In this work, we synthesized sponge-like europium oxide (Eu2O3) using a template-directed route from carbon hollow spheres, obtained from glucose as a carbon source. The material synthesis method was done in an aqueous environment, without using any organic solvents. Electrochemical properties of the synthesized material were investigated using cyclic voltammetry and electrical impedance spectroscopy, while morphological characterization was done using scanning electron microscopy and X-ray powder diffraction analysis. Eu2O3 were successfully immobilized at the surface of a screen-printed carbon electrode (Eu2O3/SPCE) using the drop-casting method. Finally, the prepared electrodes were tested toward the removal of Reactive Blue 52 (RB52) using electrochemical advanced oxidation processes (EAOPs). Important parameters, that is, the supporting electrolyte, its concentration, pH value, and the applied voltage, were optimized for RB52 degradation. The rate of removal was monitored spectrophotometrically and by high-performance liquid chromatography with a diode array detector (HPLC-DAD). It was found that the proposed approach reaches complete decolorization of the RB52 solution after a 60-min treatment, at pH 5.6 of KCl supporting electrolyte at a concentration of 0.05 M. Under optimal parameters, after 3 h of treatment, total organic carbon (TOC) was lowered by ~40%. The obtained results indicate that the proposed method may find potential application in EAOPs, considering electrode stability, durability, and efficiency and simplicity of the method.",
publisher = "Elsevier",
journal = "Materials Chemistry and Physics",
title = "Sponge-like europium oxide from hollow carbon sphere as a template for an anode material for Reactive Blue 52 electrochemical degradation",
volume = "273",
pages = "125154",
doi = "10.1016/j.matchemphys.2021.125154"
}
Stanković, D., Kukuruzar, A. J., Savić, S. D., Ognjannović, M., Janković-Častvan, I. M., Roglić, G., Antić, B., Manojlović, D. D.,& Dojčinović, B. P.. (2021). Sponge-like europium oxide from hollow carbon sphere as a template for an anode material for Reactive Blue 52 electrochemical degradation. in Materials Chemistry and Physics
Elsevier., 273, 125154.
https://doi.org/10.1016/j.matchemphys.2021.125154
Stanković D, Kukuruzar AJ, Savić SD, Ognjannović M, Janković-Častvan IM, Roglić G, Antić B, Manojlović DD, Dojčinović BP. Sponge-like europium oxide from hollow carbon sphere as a template for an anode material for Reactive Blue 52 electrochemical degradation. in Materials Chemistry and Physics. 2021;273:125154.
doi:10.1016/j.matchemphys.2021.125154 .
Stanković, Dalibor, Kukuruzar, Andrej J., Savić, Slađana D., Ognjannović, Miloš, Janković-Častvan, Ivona M., Roglić, Goran, Antić, Bratislav, Manojlović, Dragan D., Dojčinović, Biljana P., "Sponge-like europium oxide from hollow carbon sphere as a template for an anode material for Reactive Blue 52 electrochemical degradation" in Materials Chemistry and Physics, 273 (2021):125154,
https://doi.org/10.1016/j.matchemphys.2021.125154 . .
1
2
2
2

Sponge-like europium oxide from hollow carbon sphere as a template for an anode material for Reactive Blue 52 electrochemical degradation

Stanković, Dalibor; Kukuruzar, Andrej J.; Savić, Slađana D.; Ognjannović, Miloš; Janković-Častvan, Ivona M.; Roglić, Goran; Antić, Bratislav; Manojlović, Dragan D.; Dojčinović, Biljana P.

(Elsevier, 2021)

TY  - JOUR
AU  - Stanković, Dalibor
AU  - Kukuruzar, Andrej J.
AU  - Savić, Slađana D.
AU  - Ognjannović, Miloš
AU  - Janković-Častvan, Ivona M.
AU  - Roglić, Goran
AU  - Antić, Bratislav
AU  - Manojlović, Dragan D.
AU  - Dojčinović, Biljana P.
PY  - 2021
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/4935
AB  - The textile industry is one of the major pollutants of waterbodies with effluents high in biochemical and chemical oxygen demand values, high values of total dissolved solids, total suspended solids, and low dissolved oxygen values along with strong color. The existence of a successful method for its decontamination would be beneficial. In this work, we synthesized sponge-like europium oxide (Eu2O3) using a template-directed route from carbon hollow spheres, obtained from glucose as a carbon source. The material synthesis method was done in an aqueous environment, without using any organic solvents. Electrochemical properties of the synthesized material were investigated using cyclic voltammetry and electrical impedance spectroscopy, while morphological characterization was done using scanning electron microscopy and X-ray powder diffraction analysis. Eu2O3 were successfully immobilized at the surface of a screen-printed carbon electrode (Eu2O3/SPCE) using the drop-casting method. Finally, the prepared electrodes were tested toward the removal of Reactive Blue 52 (RB52) using electrochemical advanced oxidation processes (EAOPs). Important parameters, that is, the supporting electrolyte, its concentration, pH value, and the applied voltage, were optimized for RB52 degradation. The rate of removal was monitored spectrophotometrically and by high-performance liquid chromatography with a diode array detector (HPLC-DAD). It was found that the proposed approach reaches complete decolorization of the RB52 solution after a 60-min treatment, at pH 5.6 of KCl supporting electrolyte at a concentration of 0.05 M. Under optimal parameters, after 3 h of treatment, total organic carbon (TOC) was lowered by ~40%. The obtained results indicate that the proposed method may find potential application in EAOPs, considering electrode stability, durability, and efficiency and simplicity of the method.
PB  - Elsevier
T2  - Materials Chemistry and Physics
T1  - Sponge-like europium oxide from hollow carbon sphere as a template for an anode material for Reactive Blue 52 electrochemical degradation
VL  - 273
SP  - 125154
DO  - 10.1016/j.matchemphys.2021.125154
ER  - 
@article{
author = "Stanković, Dalibor and Kukuruzar, Andrej J. and Savić, Slađana D. and Ognjannović, Miloš and Janković-Častvan, Ivona M. and Roglić, Goran and Antić, Bratislav and Manojlović, Dragan D. and Dojčinović, Biljana P.",
year = "2021",
abstract = "The textile industry is one of the major pollutants of waterbodies with effluents high in biochemical and chemical oxygen demand values, high values of total dissolved solids, total suspended solids, and low dissolved oxygen values along with strong color. The existence of a successful method for its decontamination would be beneficial. In this work, we synthesized sponge-like europium oxide (Eu2O3) using a template-directed route from carbon hollow spheres, obtained from glucose as a carbon source. The material synthesis method was done in an aqueous environment, without using any organic solvents. Electrochemical properties of the synthesized material were investigated using cyclic voltammetry and electrical impedance spectroscopy, while morphological characterization was done using scanning electron microscopy and X-ray powder diffraction analysis. Eu2O3 were successfully immobilized at the surface of a screen-printed carbon electrode (Eu2O3/SPCE) using the drop-casting method. Finally, the prepared electrodes were tested toward the removal of Reactive Blue 52 (RB52) using electrochemical advanced oxidation processes (EAOPs). Important parameters, that is, the supporting electrolyte, its concentration, pH value, and the applied voltage, were optimized for RB52 degradation. The rate of removal was monitored spectrophotometrically and by high-performance liquid chromatography with a diode array detector (HPLC-DAD). It was found that the proposed approach reaches complete decolorization of the RB52 solution after a 60-min treatment, at pH 5.6 of KCl supporting electrolyte at a concentration of 0.05 M. Under optimal parameters, after 3 h of treatment, total organic carbon (TOC) was lowered by ~40%. The obtained results indicate that the proposed method may find potential application in EAOPs, considering electrode stability, durability, and efficiency and simplicity of the method.",
publisher = "Elsevier",
journal = "Materials Chemistry and Physics",
title = "Sponge-like europium oxide from hollow carbon sphere as a template for an anode material for Reactive Blue 52 electrochemical degradation",
volume = "273",
pages = "125154",
doi = "10.1016/j.matchemphys.2021.125154"
}
Stanković, D., Kukuruzar, A. J., Savić, S. D., Ognjannović, M., Janković-Častvan, I. M., Roglić, G., Antić, B., Manojlović, D. D.,& Dojčinović, B. P.. (2021). Sponge-like europium oxide from hollow carbon sphere as a template for an anode material for Reactive Blue 52 electrochemical degradation. in Materials Chemistry and Physics
Elsevier., 273, 125154.
https://doi.org/10.1016/j.matchemphys.2021.125154
Stanković D, Kukuruzar AJ, Savić SD, Ognjannović M, Janković-Častvan IM, Roglić G, Antić B, Manojlović DD, Dojčinović BP. Sponge-like europium oxide from hollow carbon sphere as a template for an anode material for Reactive Blue 52 electrochemical degradation. in Materials Chemistry and Physics. 2021;273:125154.
doi:10.1016/j.matchemphys.2021.125154 .
Stanković, Dalibor, Kukuruzar, Andrej J., Savić, Slađana D., Ognjannović, Miloš, Janković-Častvan, Ivona M., Roglić, Goran, Antić, Bratislav, Manojlović, Dragan D., Dojčinović, Biljana P., "Sponge-like europium oxide from hollow carbon sphere as a template for an anode material for Reactive Blue 52 electrochemical degradation" in Materials Chemistry and Physics, 273 (2021):125154,
https://doi.org/10.1016/j.matchemphys.2021.125154 . .
1
2
2
2

Carboxylated single-wall carbon nanotubes decorated with SiO2 coated-Nd2O3 nanoparticles as an electrochemical sensor for L-DOPA detection

Đurđić, Slađana Z.; Stanković, Vesna; Vlahović, Filip; Ognjanović, Miloš; Kalcher, Kurt; Manojlović, Dragan D.; Mutić, Jelena; Stanković, Dalibor

(2021)

TY  - JOUR
AU  - Đurđić, Slađana Z.
AU  - Stanković, Vesna
AU  - Vlahović, Filip
AU  - Ognjanović, Miloš
AU  - Kalcher, Kurt
AU  - Manojlović, Dragan D.
AU  - Mutić, Jelena
AU  - Stanković, Dalibor
PY  - 2021
UR  - https://www.sciencedirect.com/science/article/pii/S0026265X21005002
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4543
AB  - L-DOPA (L-3,4-dihydroxyphenylalanine), the precursor of dopamine, is widely used in the treatment of Parkinson’s disease, thus determining and monitoring the concentration of L-DOPA is of utmost importance for both medical and scientific purposes. Although many analytical approaches, designed for drug detection and quantification, already exist, there is a constant need for modification of old and tailoring of new, faster, and selective methods. Redox active chemical species, such as L-DOPA, can be measured directly by electrochemical means, whereas electrochemical sensors combine sensitivity and selectivity within a small analytical device. This work demonstrates the development of such electrochemical sensor, based on carboxylated single-wall carbon nanotubes (SWCNT-COOH) decorated with SiO2 coated-Nd2O3 nanoparticles, and further application for the detection of L-DOPA. Developed SWCNT-COOH@Nd2O3-SiO2 sensor shows linear response in the range from 2 µmol L−1 to 52 µmol L−1 analyte concentration, and beside the low detection limit, it is characterized by a fast response time, as well as good life-time, reproducibility and repeatability.
T2  - Microchemical Journal
T1  - Carboxylated single-wall carbon nanotubes decorated with SiO2 coated-Nd2O3 nanoparticles as an electrochemical sensor for L-DOPA detection
VL  - 168
SP  - 106416
DO  - 10.1016/j.microc.2021.106416
ER  - 
@article{
author = "Đurđić, Slađana Z. and Stanković, Vesna and Vlahović, Filip and Ognjanović, Miloš and Kalcher, Kurt and Manojlović, Dragan D. and Mutić, Jelena and Stanković, Dalibor",
year = "2021",
abstract = "L-DOPA (L-3,4-dihydroxyphenylalanine), the precursor of dopamine, is widely used in the treatment of Parkinson’s disease, thus determining and monitoring the concentration of L-DOPA is of utmost importance for both medical and scientific purposes. Although many analytical approaches, designed for drug detection and quantification, already exist, there is a constant need for modification of old and tailoring of new, faster, and selective methods. Redox active chemical species, such as L-DOPA, can be measured directly by electrochemical means, whereas electrochemical sensors combine sensitivity and selectivity within a small analytical device. This work demonstrates the development of such electrochemical sensor, based on carboxylated single-wall carbon nanotubes (SWCNT-COOH) decorated with SiO2 coated-Nd2O3 nanoparticles, and further application for the detection of L-DOPA. Developed SWCNT-COOH@Nd2O3-SiO2 sensor shows linear response in the range from 2 µmol L−1 to 52 µmol L−1 analyte concentration, and beside the low detection limit, it is characterized by a fast response time, as well as good life-time, reproducibility and repeatability.",
journal = "Microchemical Journal",
title = "Carboxylated single-wall carbon nanotubes decorated with SiO2 coated-Nd2O3 nanoparticles as an electrochemical sensor for L-DOPA detection",
volume = "168",
pages = "106416",
doi = "10.1016/j.microc.2021.106416"
}
Đurđić, S. Z., Stanković, V., Vlahović, F., Ognjanović, M., Kalcher, K., Manojlović, D. D., Mutić, J.,& Stanković, D.. (2021). Carboxylated single-wall carbon nanotubes decorated with SiO2 coated-Nd2O3 nanoparticles as an electrochemical sensor for L-DOPA detection. in Microchemical Journal, 168, 106416.
https://doi.org/10.1016/j.microc.2021.106416
Đurđić SZ, Stanković V, Vlahović F, Ognjanović M, Kalcher K, Manojlović DD, Mutić J, Stanković D. Carboxylated single-wall carbon nanotubes decorated with SiO2 coated-Nd2O3 nanoparticles as an electrochemical sensor for L-DOPA detection. in Microchemical Journal. 2021;168:106416.
doi:10.1016/j.microc.2021.106416 .
Đurđić, Slađana Z., Stanković, Vesna, Vlahović, Filip, Ognjanović, Miloš, Kalcher, Kurt, Manojlović, Dragan D., Mutić, Jelena, Stanković, Dalibor, "Carboxylated single-wall carbon nanotubes decorated with SiO2 coated-Nd2O3 nanoparticles as an electrochemical sensor for L-DOPA detection" in Microchemical Journal, 168 (2021):106416,
https://doi.org/10.1016/j.microc.2021.106416 . .
13
14

Supplementary data for the article: Đurđić, S.; Stanković, V.; Vlahović, F.; Ognjanović, M.; Kalcher, K.; Manojlović, D.; Mutić, J.; Stanković, D. M. Carboxylated Single-Wall Carbon Nanotubes Decorated with SiO2 Coated-Nd2O3 Nanoparticles as an Electrochemical Sensor for L-DOPA Detection. Microchemical Journal 2021, 168, 106416. https://doi.org/10.1016/j.microc.2021.106416.

Đurđić, Slađana Z.; Stanković, Vesna; Vlahović, Filip; Ognjanović, Miloš; Kalcher, Kurt; Manojlović, Dragan D.; Mutić, Jelena; Stanković, Dalibor

(2021)

TY  - DATA
AU  - Đurđić, Slađana Z.
AU  - Stanković, Vesna
AU  - Vlahović, Filip
AU  - Ognjanović, Miloš
AU  - Kalcher, Kurt
AU  - Manojlović, Dragan D.
AU  - Mutić, Jelena
AU  - Stanković, Dalibor
PY  - 2021
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4544
T2  - Microchemical Journal
T1  - Supplementary data for the article: Đurđić, S.; Stanković, V.; Vlahović, F.; Ognjanović, M.; Kalcher, K.; Manojlović, D.; Mutić, J.; Stanković, D. M. Carboxylated Single-Wall Carbon Nanotubes Decorated with SiO2 Coated-Nd2O3 Nanoparticles as an Electrochemical Sensor for L-DOPA Detection. Microchemical Journal 2021, 168, 106416. https://doi.org/10.1016/j.microc.2021.106416.
UR  - https://hdl.handle.net/21.15107/rcub_cherry_4544
ER  - 
@misc{
author = "Đurđić, Slađana Z. and Stanković, Vesna and Vlahović, Filip and Ognjanović, Miloš and Kalcher, Kurt and Manojlović, Dragan D. and Mutić, Jelena and Stanković, Dalibor",
year = "2021",
journal = "Microchemical Journal",
title = "Supplementary data for the article: Đurđić, S.; Stanković, V.; Vlahović, F.; Ognjanović, M.; Kalcher, K.; Manojlović, D.; Mutić, J.; Stanković, D. M. Carboxylated Single-Wall Carbon Nanotubes Decorated with SiO2 Coated-Nd2O3 Nanoparticles as an Electrochemical Sensor for L-DOPA Detection. Microchemical Journal 2021, 168, 106416. https://doi.org/10.1016/j.microc.2021.106416.",
url = "https://hdl.handle.net/21.15107/rcub_cherry_4544"
}
Đurđić, S. Z., Stanković, V., Vlahović, F., Ognjanović, M., Kalcher, K., Manojlović, D. D., Mutić, J.,& Stanković, D.. (2021). Supplementary data for the article: Đurđić, S.; Stanković, V.; Vlahović, F.; Ognjanović, M.; Kalcher, K.; Manojlović, D.; Mutić, J.; Stanković, D. M. Carboxylated Single-Wall Carbon Nanotubes Decorated with SiO2 Coated-Nd2O3 Nanoparticles as an Electrochemical Sensor for L-DOPA Detection. Microchemical Journal 2021, 168, 106416. https://doi.org/10.1016/j.microc.2021.106416.. in Microchemical Journal.
https://hdl.handle.net/21.15107/rcub_cherry_4544
Đurđić SZ, Stanković V, Vlahović F, Ognjanović M, Kalcher K, Manojlović DD, Mutić J, Stanković D. Supplementary data for the article: Đurđić, S.; Stanković, V.; Vlahović, F.; Ognjanović, M.; Kalcher, K.; Manojlović, D.; Mutić, J.; Stanković, D. M. Carboxylated Single-Wall Carbon Nanotubes Decorated with SiO2 Coated-Nd2O3 Nanoparticles as an Electrochemical Sensor for L-DOPA Detection. Microchemical Journal 2021, 168, 106416. https://doi.org/10.1016/j.microc.2021.106416.. in Microchemical Journal. 2021;.
https://hdl.handle.net/21.15107/rcub_cherry_4544 .
Đurđić, Slađana Z., Stanković, Vesna, Vlahović, Filip, Ognjanović, Miloš, Kalcher, Kurt, Manojlović, Dragan D., Mutić, Jelena, Stanković, Dalibor, "Supplementary data for the article: Đurđić, S.; Stanković, V.; Vlahović, F.; Ognjanović, M.; Kalcher, K.; Manojlović, D.; Mutić, J.; Stanković, D. M. Carboxylated Single-Wall Carbon Nanotubes Decorated with SiO2 Coated-Nd2O3 Nanoparticles as an Electrochemical Sensor for L-DOPA Detection. Microchemical Journal 2021, 168, 106416. https://doi.org/10.1016/j.microc.2021.106416." in Microchemical Journal (2021),
https://hdl.handle.net/21.15107/rcub_cherry_4544 .

CeO2-doped – domestic carbon material decorated with MWCNT as an efficient green sensing platform for electrooxidation of dopamine

Stanković, Dalibor; Ognjanović, Miloš; Fabián, Martin; Avdin, Vyacheslav Viktorovich; Manojlović, Dragan D.; Vranješ-Đurić, Sanja ; Petković, Branka B.

(Elsevier, 2021)

TY  - JOUR
AU  - Stanković, Dalibor
AU  - Ognjanović, Miloš
AU  - Fabián, Martin
AU  - Avdin, Vyacheslav Viktorovich
AU  - Manojlović, Dragan D.
AU  - Vranješ-Đurić, Sanja 
AU  - Petković, Branka B.
PY  - 2021
UR  - https://www.sciencedirect.com/science/article/pii/S2468023021002881
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4545
AB  - The goal of this work was to develop green electrode material that unites all advantages of domestic made, synthesized porous carbon powder and ceria dioxide nanoparticles known due to exceptional catalytic properties. Thermal decomposition of Novolac phenol-formaldehyde resin and cerium sulfate resulting in producing a high-performance CeO2 porous carbon material highly sensitive to dopamine (DA) electrooxidation. Morphological and structural characteristics of the material were determined by SEM and XRD measurements, while electrochemical characterization was performed by EIS and CV. The sensitivity of DA determination on the proposed CeO2-doped carbon material was enhanced by adding multi-wall carbon nanotubes to finally prepare a mixture for a specific carbon paste electrode (TPCeO2&MWCNT@CPE). SWV technique was used for quantification of dopamine in Britton-Robinson buffer pH 6 in the concentration range of 0.5-100 μM of DA, with the detection limit of 0.14 μM and quantification limit of 0.44 μM. Good selectivity overstudied bioactive compounds enables the successful and efficient application of the proposed electrode and developed an analytical procedure for the determination of dopamine in spiked urine samples.
PB  - Elsevier
T2  - Surfaces and Interfaces
T1  - CeO2-doped – domestic carbon material decorated with MWCNT as an efficient green sensing platform for electrooxidation of dopamine
VL  - 25
SP  - 101211
DO  - 10.1016/j.surfin.2021.101211
ER  - 
@article{
author = "Stanković, Dalibor and Ognjanović, Miloš and Fabián, Martin and Avdin, Vyacheslav Viktorovich and Manojlović, Dragan D. and Vranješ-Đurić, Sanja  and Petković, Branka B.",
year = "2021",
abstract = "The goal of this work was to develop green electrode material that unites all advantages of domestic made, synthesized porous carbon powder and ceria dioxide nanoparticles known due to exceptional catalytic properties. Thermal decomposition of Novolac phenol-formaldehyde resin and cerium sulfate resulting in producing a high-performance CeO2 porous carbon material highly sensitive to dopamine (DA) electrooxidation. Morphological and structural characteristics of the material were determined by SEM and XRD measurements, while electrochemical characterization was performed by EIS and CV. The sensitivity of DA determination on the proposed CeO2-doped carbon material was enhanced by adding multi-wall carbon nanotubes to finally prepare a mixture for a specific carbon paste electrode (TPCeO2&MWCNT@CPE). SWV technique was used for quantification of dopamine in Britton-Robinson buffer pH 6 in the concentration range of 0.5-100 μM of DA, with the detection limit of 0.14 μM and quantification limit of 0.44 μM. Good selectivity overstudied bioactive compounds enables the successful and efficient application of the proposed electrode and developed an analytical procedure for the determination of dopamine in spiked urine samples.",
publisher = "Elsevier",
journal = "Surfaces and Interfaces",
title = "CeO2-doped – domestic carbon material decorated with MWCNT as an efficient green sensing platform for electrooxidation of dopamine",
volume = "25",
pages = "101211",
doi = "10.1016/j.surfin.2021.101211"
}
Stanković, D., Ognjanović, M., Fabián, M., Avdin, V. V., Manojlović, D. D., Vranješ-Đurić, S.,& Petković, B. B.. (2021). CeO2-doped – domestic carbon material decorated with MWCNT as an efficient green sensing platform for electrooxidation of dopamine. in Surfaces and Interfaces
Elsevier., 25, 101211.
https://doi.org/10.1016/j.surfin.2021.101211
Stanković D, Ognjanović M, Fabián M, Avdin VV, Manojlović DD, Vranješ-Đurić S, Petković BB. CeO2-doped – domestic carbon material decorated with MWCNT as an efficient green sensing platform for electrooxidation of dopamine. in Surfaces and Interfaces. 2021;25:101211.
doi:10.1016/j.surfin.2021.101211 .
Stanković, Dalibor, Ognjanović, Miloš, Fabián, Martin, Avdin, Vyacheslav Viktorovich, Manojlović, Dragan D., Vranješ-Đurić, Sanja , Petković, Branka B., "CeO2-doped – domestic carbon material decorated with MWCNT as an efficient green sensing platform for electrooxidation of dopamine" in Surfaces and Interfaces, 25 (2021):101211,
https://doi.org/10.1016/j.surfin.2021.101211 . .
2
2
2