Kazazić, Saša

Link to this page

Authority KeyName Variants
55decdbf-183a-4100-8384-825489e28cff
  • Kazazić, Saša (4)
Projects

Author's Bibliography

A comprehensive study of conditions of the biodegradation of a plastic additive 2,6-di-: Tert -butylphenol and proteomic changes in the degrader Pseudomonas aeruginosa san ai

Medić, Ana; Stojanović, Ksenija A.; Izrael-Živković, Lidija; Beškoski, Vladimir; Lončarević, Branka D.; Kazazić, Saša; Karadžić, Ivanka M.

(2019)

TY  - JOUR
AU  - Medić, Ana
AU  - Stojanović, Ksenija A.
AU  - Izrael-Živković, Lidija
AU  - Beškoski, Vladimir
AU  - Lončarević, Branka D.
AU  - Kazazić, Saša
AU  - Karadžić, Ivanka M.
PY  - 2019
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3346
AB  - The Pseudomonas aeruginosa san ai strain was investigated for its capability to degrade the 2,6-di-tert-butylphenol (2,6-DTBP) plastic additive, a hazardous and toxic substance for aquatic life. This investigation was performed under different parameter values: 2,6-DTBP concentration, inoculum size, pH, and temperature. The GC-MS study showed that P. aeruginosa efficiently degraded 2,6-DTBP in the pH range of 5-8 at higher temperatures. Under exposure to 2,6-DTBP concentrations of 2, 10, and 100 mg L-1, the strain degraded by 100, 100, and 85%, respectively, for 7 days. Crude enzyme preparation from the biomass of P. aeruginosa san ai showed higher efficiency in 2,6-DTBP removal than that shown by whole microbial cells. Gene encoding for the enzymes involved in the degradation of aromatic compounds in P. aeruginosa san ai was identified. To complement the genomic data, a comparative proteomic study of P. aeruginosa san ai grown on 2,6-DTBP or sunflower oil was conducted by means of nanoLC-MS/MS. The presence of aromatic substances resulted in the upregulation of aromatic ring cleavage enzymes, whose activity was confirmed by enzymatic tests; therefore, it could be concluded that 2,6-DTBP might be degraded by ortho-ring cleavage. A comparative proteomics study of P. aeruginosa san ai indicated that the core molecular responses to aromatic substances can be summarized as the upregulation of proteins responsible for amino acid metabolism with emphasized glutamate metabolism and energy production with upregulated enzymes of glyoxylate bypass. P. aeruginosa san ai has a high capacity to efficiently degrade aromatic compounds, and therefore its whole cells or enzymes could be used in the treatment of contaminated areas.
T2  - RSC Advances
T1  - A comprehensive study of conditions of the biodegradation of a plastic additive 2,6-di-: Tert -butylphenol and proteomic changes in the degrader Pseudomonas aeruginosa san ai
VL  - 9
IS  - 41
SP  - 23696
EP  - 23710
DO  - 10.1039/C9RA04298A
ER  - 
@article{
author = "Medić, Ana and Stojanović, Ksenija A. and Izrael-Živković, Lidija and Beškoski, Vladimir and Lončarević, Branka D. and Kazazić, Saša and Karadžić, Ivanka M.",
year = "2019",
abstract = "The Pseudomonas aeruginosa san ai strain was investigated for its capability to degrade the 2,6-di-tert-butylphenol (2,6-DTBP) plastic additive, a hazardous and toxic substance for aquatic life. This investigation was performed under different parameter values: 2,6-DTBP concentration, inoculum size, pH, and temperature. The GC-MS study showed that P. aeruginosa efficiently degraded 2,6-DTBP in the pH range of 5-8 at higher temperatures. Under exposure to 2,6-DTBP concentrations of 2, 10, and 100 mg L-1, the strain degraded by 100, 100, and 85%, respectively, for 7 days. Crude enzyme preparation from the biomass of P. aeruginosa san ai showed higher efficiency in 2,6-DTBP removal than that shown by whole microbial cells. Gene encoding for the enzymes involved in the degradation of aromatic compounds in P. aeruginosa san ai was identified. To complement the genomic data, a comparative proteomic study of P. aeruginosa san ai grown on 2,6-DTBP or sunflower oil was conducted by means of nanoLC-MS/MS. The presence of aromatic substances resulted in the upregulation of aromatic ring cleavage enzymes, whose activity was confirmed by enzymatic tests; therefore, it could be concluded that 2,6-DTBP might be degraded by ortho-ring cleavage. A comparative proteomics study of P. aeruginosa san ai indicated that the core molecular responses to aromatic substances can be summarized as the upregulation of proteins responsible for amino acid metabolism with emphasized glutamate metabolism and energy production with upregulated enzymes of glyoxylate bypass. P. aeruginosa san ai has a high capacity to efficiently degrade aromatic compounds, and therefore its whole cells or enzymes could be used in the treatment of contaminated areas.",
journal = "RSC Advances",
title = "A comprehensive study of conditions of the biodegradation of a plastic additive 2,6-di-: Tert -butylphenol and proteomic changes in the degrader Pseudomonas aeruginosa san ai",
volume = "9",
number = "41",
pages = "23696-23710",
doi = "10.1039/C9RA04298A"
}
Medić, A., Stojanović, K. A., Izrael-Živković, L., Beškoski, V., Lončarević, B. D., Kazazić, S.,& Karadžić, I. M.. (2019). A comprehensive study of conditions of the biodegradation of a plastic additive 2,6-di-: Tert -butylphenol and proteomic changes in the degrader Pseudomonas aeruginosa san ai. in RSC Advances, 9(41), 23696-23710.
https://doi.org/10.1039/C9RA04298A
Medić A, Stojanović KA, Izrael-Živković L, Beškoski V, Lončarević BD, Kazazić S, Karadžić IM. A comprehensive study of conditions of the biodegradation of a plastic additive 2,6-di-: Tert -butylphenol and proteomic changes in the degrader Pseudomonas aeruginosa san ai. in RSC Advances. 2019;9(41):23696-23710.
doi:10.1039/C9RA04298A .
Medić, Ana, Stojanović, Ksenija A., Izrael-Živković, Lidija, Beškoski, Vladimir, Lončarević, Branka D., Kazazić, Saša, Karadžić, Ivanka M., "A comprehensive study of conditions of the biodegradation of a plastic additive 2,6-di-: Tert -butylphenol and proteomic changes in the degrader Pseudomonas aeruginosa san ai" in RSC Advances, 9, no. 41 (2019):23696-23710,
https://doi.org/10.1039/C9RA04298A . .
23
7
19
19

Supplementary data for the article: Medić, A.; Stojanović, K.; Izrael-Živković, L.; Beškoski, V.; Lončarević, B.; Kazazić, S.; Karadžić, I. A Comprehensive Study of Conditions of the Biodegradation of a Plastic Additive 2,6-Di-: Tert -Butylphenol and Proteomic Changes in the Degrader Pseudomonas Aeruginosa San Ai. RSC Advances 2019, 9 (41), 23696–23710. https://doi.org/10.1039/c9ra04298a

Medić, Ana; Stojanović, Ksenija A.; Izrael-Živković, Lidija; Beškoski, Vladimir; Lončarević, Branka D.; Kazazić, Saša; Karadžić, Ivanka M.

(2019)

TY  - DATA
AU  - Medić, Ana
AU  - Stojanović, Ksenija A.
AU  - Izrael-Živković, Lidija
AU  - Beškoski, Vladimir
AU  - Lončarević, Branka D.
AU  - Kazazić, Saša
AU  - Karadžić, Ivanka M.
PY  - 2019
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3347
T2  - RSC Advances
T1  - Supplementary data for the article: Medić, A.; Stojanović, K.; Izrael-Živković, L.; Beškoski, V.; Lončarević, B.; Kazazić, S.; Karadžić, I. A Comprehensive Study of Conditions of the Biodegradation of a Plastic Additive 2,6-Di-: Tert -Butylphenol and Proteomic Changes in the Degrader Pseudomonas Aeruginosa San Ai. RSC Advances 2019, 9 (41), 23696–23710. https://doi.org/10.1039/c9ra04298a
UR  - https://hdl.handle.net/21.15107/rcub_cherry_3347
ER  - 
@misc{
author = "Medić, Ana and Stojanović, Ksenija A. and Izrael-Živković, Lidija and Beškoski, Vladimir and Lončarević, Branka D. and Kazazić, Saša and Karadžić, Ivanka M.",
year = "2019",
journal = "RSC Advances",
title = "Supplementary data for the article: Medić, A.; Stojanović, K.; Izrael-Živković, L.; Beškoski, V.; Lončarević, B.; Kazazić, S.; Karadžić, I. A Comprehensive Study of Conditions of the Biodegradation of a Plastic Additive 2,6-Di-: Tert -Butylphenol and Proteomic Changes in the Degrader Pseudomonas Aeruginosa San Ai. RSC Advances 2019, 9 (41), 23696–23710. https://doi.org/10.1039/c9ra04298a",
url = "https://hdl.handle.net/21.15107/rcub_cherry_3347"
}
Medić, A., Stojanović, K. A., Izrael-Živković, L., Beškoski, V., Lončarević, B. D., Kazazić, S.,& Karadžić, I. M.. (2019). Supplementary data for the article: Medić, A.; Stojanović, K.; Izrael-Živković, L.; Beškoski, V.; Lončarević, B.; Kazazić, S.; Karadžić, I. A Comprehensive Study of Conditions of the Biodegradation of a Plastic Additive 2,6-Di-: Tert -Butylphenol and Proteomic Changes in the Degrader Pseudomonas Aeruginosa San Ai. RSC Advances 2019, 9 (41), 23696–23710. https://doi.org/10.1039/c9ra04298a. in RSC Advances.
https://hdl.handle.net/21.15107/rcub_cherry_3347
Medić A, Stojanović KA, Izrael-Živković L, Beškoski V, Lončarević BD, Kazazić S, Karadžić IM. Supplementary data for the article: Medić, A.; Stojanović, K.; Izrael-Živković, L.; Beškoski, V.; Lončarević, B.; Kazazić, S.; Karadžić, I. A Comprehensive Study of Conditions of the Biodegradation of a Plastic Additive 2,6-Di-: Tert -Butylphenol and Proteomic Changes in the Degrader Pseudomonas Aeruginosa San Ai. RSC Advances 2019, 9 (41), 23696–23710. https://doi.org/10.1039/c9ra04298a. in RSC Advances. 2019;.
https://hdl.handle.net/21.15107/rcub_cherry_3347 .
Medić, Ana, Stojanović, Ksenija A., Izrael-Živković, Lidija, Beškoski, Vladimir, Lončarević, Branka D., Kazazić, Saša, Karadžić, Ivanka M., "Supplementary data for the article: Medić, A.; Stojanović, K.; Izrael-Živković, L.; Beškoski, V.; Lončarević, B.; Kazazić, S.; Karadžić, I. A Comprehensive Study of Conditions of the Biodegradation of a Plastic Additive 2,6-Di-: Tert -Butylphenol and Proteomic Changes in the Degrader Pseudomonas Aeruginosa San Ai. RSC Advances 2019, 9 (41), 23696–23710. https://doi.org/10.1039/c9ra04298a" in RSC Advances (2019),
https://hdl.handle.net/21.15107/rcub_cherry_3347 .

Cadmium specific proteomic responses of a highly resistant Pseudomonas aeruginosa san ai

Izrael-Živković, Lidija; Rikalović, Milena G.; Gojgić-Cvijović, Gordana D.; Kazazić, Saša; Vrvić, Miroslav M.; Brčeski, Ilija; Beškoski, Vladimir; Lončarević, Branka D.; Gopčević, Kristina; Karadžić, Ivanka M.

(Royal Soc Chemistry, Cambridge, 2018)

TY  - JOUR
AU  - Izrael-Živković, Lidija
AU  - Rikalović, Milena G.
AU  - Gojgić-Cvijović, Gordana D.
AU  - Kazazić, Saša
AU  - Vrvić, Miroslav M.
AU  - Brčeski, Ilija
AU  - Beškoski, Vladimir
AU  - Lončarević, Branka D.
AU  - Gopčević, Kristina
AU  - Karadžić, Ivanka M.
PY  - 2018
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/2118
AB  - Pseudomonas aeruginosa san ai is a promising candidate for bioremediation of cadmium pollution, as it resists a high concentration of up to 7.2 mM of cadmium. Leaving biomass of P. aeruginosa san ai exposed to cadmium has a large biosorption potential, implying its capacity to extract heavy metal from contaminated medium. In the present study, we investigated tolerance and accumulation of cadmium on protein level by shotgun proteomics approach based on liquid chromatography and tandem mass spectrometry coupled with bioinformatics to identify proteins. Size exclusion chromatography was used for protein prefractionation to preserve native forms of metalloproteins and protein complexes. Using this approach a total of 60 proteins were observed as up-regulated in cadmium-amended culture. Almost a third of the total numbers of up-regulated were metalloproteins. Particularly interesting are denitrification proteins which are over expressed but not active, suggesting their protective role in conditions of heavy metal exposure. P. aeruginosa san ai developed a complex mechanism to adapt to cadmium, based on: extracellular biosorption, bioaccumulation, the formation of biofilm, controlled siderophore production, enhanced respiration and modified protein profile. An increased abundance of proteins involved in: cell energy metabolism, including denitrification proteins; amino acid metabolism; cell motility and posttranslational modifications, primarily based on thiol-disulfide exchange, were observed. Enhanced oxygen consumption of biomass in cadmium-amended culture versus control was found. Our results signify that P. aeruginosa san ai is naturally well equipped to overcome and survive high doses of cadmium and, as such, has a great potential for application in bioremediation of cadmium polluted sites.
PB  - Royal Soc Chemistry, Cambridge
T2  - RSC Advances
T1  - Cadmium specific proteomic responses of a highly resistant Pseudomonas aeruginosa san ai
VL  - 8
IS  - 19
SP  - 10549
EP  - 10560
DO  - 10.1039/c8ra00371h
ER  - 
@article{
author = "Izrael-Živković, Lidija and Rikalović, Milena G. and Gojgić-Cvijović, Gordana D. and Kazazić, Saša and Vrvić, Miroslav M. and Brčeski, Ilija and Beškoski, Vladimir and Lončarević, Branka D. and Gopčević, Kristina and Karadžić, Ivanka M.",
year = "2018",
abstract = "Pseudomonas aeruginosa san ai is a promising candidate for bioremediation of cadmium pollution, as it resists a high concentration of up to 7.2 mM of cadmium. Leaving biomass of P. aeruginosa san ai exposed to cadmium has a large biosorption potential, implying its capacity to extract heavy metal from contaminated medium. In the present study, we investigated tolerance and accumulation of cadmium on protein level by shotgun proteomics approach based on liquid chromatography and tandem mass spectrometry coupled with bioinformatics to identify proteins. Size exclusion chromatography was used for protein prefractionation to preserve native forms of metalloproteins and protein complexes. Using this approach a total of 60 proteins were observed as up-regulated in cadmium-amended culture. Almost a third of the total numbers of up-regulated were metalloproteins. Particularly interesting are denitrification proteins which are over expressed but not active, suggesting their protective role in conditions of heavy metal exposure. P. aeruginosa san ai developed a complex mechanism to adapt to cadmium, based on: extracellular biosorption, bioaccumulation, the formation of biofilm, controlled siderophore production, enhanced respiration and modified protein profile. An increased abundance of proteins involved in: cell energy metabolism, including denitrification proteins; amino acid metabolism; cell motility and posttranslational modifications, primarily based on thiol-disulfide exchange, were observed. Enhanced oxygen consumption of biomass in cadmium-amended culture versus control was found. Our results signify that P. aeruginosa san ai is naturally well equipped to overcome and survive high doses of cadmium and, as such, has a great potential for application in bioremediation of cadmium polluted sites.",
publisher = "Royal Soc Chemistry, Cambridge",
journal = "RSC Advances",
title = "Cadmium specific proteomic responses of a highly resistant Pseudomonas aeruginosa san ai",
volume = "8",
number = "19",
pages = "10549-10560",
doi = "10.1039/c8ra00371h"
}
Izrael-Živković, L., Rikalović, M. G., Gojgić-Cvijović, G. D., Kazazić, S., Vrvić, M. M., Brčeski, I., Beškoski, V., Lončarević, B. D., Gopčević, K.,& Karadžić, I. M.. (2018). Cadmium specific proteomic responses of a highly resistant Pseudomonas aeruginosa san ai. in RSC Advances
Royal Soc Chemistry, Cambridge., 8(19), 10549-10560.
https://doi.org/10.1039/c8ra00371h
Izrael-Živković L, Rikalović MG, Gojgić-Cvijović GD, Kazazić S, Vrvić MM, Brčeski I, Beškoski V, Lončarević BD, Gopčević K, Karadžić IM. Cadmium specific proteomic responses of a highly resistant Pseudomonas aeruginosa san ai. in RSC Advances. 2018;8(19):10549-10560.
doi:10.1039/c8ra00371h .
Izrael-Živković, Lidija, Rikalović, Milena G., Gojgić-Cvijović, Gordana D., Kazazić, Saša, Vrvić, Miroslav M., Brčeski, Ilija, Beškoski, Vladimir, Lončarević, Branka D., Gopčević, Kristina, Karadžić, Ivanka M., "Cadmium specific proteomic responses of a highly resistant Pseudomonas aeruginosa san ai" in RSC Advances, 8, no. 19 (2018):10549-10560,
https://doi.org/10.1039/c8ra00371h . .
1
46
25
45
41

Supplementary material for the article: Izrael-Živković, L.; Rikalović, M.; Gojgić-Cvijović, G.; Kazazić, S.; Vrvić, M.; Brčeski, I.; Beškoski, V.; Lončarević, B.; Gopčević, K.; Karadžić, I. Cadmium Specific Proteomic Responses of a Highly Resistant: Pseudomonas Aeruginosa San Ai. RSC Advances 2018, 8 (19), 10549–10560. https://doi.org/10.1039/c8ra00371h

Izrael-Živković, Lidija; Rikalović, Milena G.; Gojgić-Cvijović, Gordana D.; Kazazić, Saša; Vrvić, Miroslav M.; Brčeski, Ilija; Beškoski, Vladimir; Lončarević, Branka D.; Gopčević, Kristina; Karadžić, Ivanka M.

(Royal Soc Chemistry, Cambridge, 2018)

TY  - DATA
AU  - Izrael-Živković, Lidija
AU  - Rikalović, Milena G.
AU  - Gojgić-Cvijović, Gordana D.
AU  - Kazazić, Saša
AU  - Vrvić, Miroslav M.
AU  - Brčeski, Ilija
AU  - Beškoski, Vladimir
AU  - Lončarević, Branka D.
AU  - Gopčević, Kristina
AU  - Karadžić, Ivanka M.
PY  - 2018
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3179
PB  - Royal Soc Chemistry, Cambridge
T2  - RSC Advances
T1  - Supplementary material for the article: Izrael-Živković, L.; Rikalović, M.; Gojgić-Cvijović, G.; Kazazić, S.; Vrvić, M.; Brčeski, I.;  Beškoski, V.; Lončarević, B.; Gopčević, K.; Karadžić, I. Cadmium Specific Proteomic  Responses of a Highly Resistant: Pseudomonas Aeruginosa San Ai. RSC Advances 2018, 8  (19), 10549–10560. https://doi.org/10.1039/c8ra00371h
UR  - https://hdl.handle.net/21.15107/rcub_cherry_3179
ER  - 
@misc{
author = "Izrael-Živković, Lidija and Rikalović, Milena G. and Gojgić-Cvijović, Gordana D. and Kazazić, Saša and Vrvić, Miroslav M. and Brčeski, Ilija and Beškoski, Vladimir and Lončarević, Branka D. and Gopčević, Kristina and Karadžić, Ivanka M.",
year = "2018",
publisher = "Royal Soc Chemistry, Cambridge",
journal = "RSC Advances",
title = "Supplementary material for the article: Izrael-Živković, L.; Rikalović, M.; Gojgić-Cvijović, G.; Kazazić, S.; Vrvić, M.; Brčeski, I.;  Beškoski, V.; Lončarević, B.; Gopčević, K.; Karadžić, I. Cadmium Specific Proteomic  Responses of a Highly Resistant: Pseudomonas Aeruginosa San Ai. RSC Advances 2018, 8  (19), 10549–10560. https://doi.org/10.1039/c8ra00371h",
url = "https://hdl.handle.net/21.15107/rcub_cherry_3179"
}
Izrael-Živković, L., Rikalović, M. G., Gojgić-Cvijović, G. D., Kazazić, S., Vrvić, M. M., Brčeski, I., Beškoski, V., Lončarević, B. D., Gopčević, K.,& Karadžić, I. M.. (2018). Supplementary material for the article: Izrael-Živković, L.; Rikalović, M.; Gojgić-Cvijović, G.; Kazazić, S.; Vrvić, M.; Brčeski, I.;  Beškoski, V.; Lončarević, B.; Gopčević, K.; Karadžić, I. Cadmium Specific Proteomic  Responses of a Highly Resistant: Pseudomonas Aeruginosa San Ai. RSC Advances 2018, 8  (19), 10549–10560. https://doi.org/10.1039/c8ra00371h. in RSC Advances
Royal Soc Chemistry, Cambridge..
https://hdl.handle.net/21.15107/rcub_cherry_3179
Izrael-Živković L, Rikalović MG, Gojgić-Cvijović GD, Kazazić S, Vrvić MM, Brčeski I, Beškoski V, Lončarević BD, Gopčević K, Karadžić IM. Supplementary material for the article: Izrael-Živković, L.; Rikalović, M.; Gojgić-Cvijović, G.; Kazazić, S.; Vrvić, M.; Brčeski, I.;  Beškoski, V.; Lončarević, B.; Gopčević, K.; Karadžić, I. Cadmium Specific Proteomic  Responses of a Highly Resistant: Pseudomonas Aeruginosa San Ai. RSC Advances 2018, 8  (19), 10549–10560. https://doi.org/10.1039/c8ra00371h. in RSC Advances. 2018;.
https://hdl.handle.net/21.15107/rcub_cherry_3179 .
Izrael-Živković, Lidija, Rikalović, Milena G., Gojgić-Cvijović, Gordana D., Kazazić, Saša, Vrvić, Miroslav M., Brčeski, Ilija, Beškoski, Vladimir, Lončarević, Branka D., Gopčević, Kristina, Karadžić, Ivanka M., "Supplementary material for the article: Izrael-Živković, L.; Rikalović, M.; Gojgić-Cvijović, G.; Kazazić, S.; Vrvić, M.; Brčeski, I.;  Beškoski, V.; Lončarević, B.; Gopčević, K.; Karadžić, I. Cadmium Specific Proteomic  Responses of a Highly Resistant: Pseudomonas Aeruginosa San Ai. RSC Advances 2018, 8  (19), 10549–10560. https://doi.org/10.1039/c8ra00371h" in RSC Advances (2018),
https://hdl.handle.net/21.15107/rcub_cherry_3179 .