Morina, Filis

Link to this page

Authority KeyName Variants
orcid::0000-0003-1521-125X
  • Morina, Filis (6)
Projects

Author's Bibliography

Differential Antioxidant Response to Supplemental UV-B Irradiation and Sunlight in Three Basil Varieties

Milić Komić, Sonja; Živanović, Bojana; Dumanović, Jelena; Kolarž, Predrag; Sedlarević Zorić, Ana; Morina, Filis; Vidović, Marija; Veljović Jovanović, Sonja

(MDPI, 2023)

TY  - JOUR
AU  - Milić Komić, Sonja
AU  - Živanović, Bojana
AU  - Dumanović, Jelena
AU  - Kolarž, Predrag
AU  - Sedlarević Zorić, Ana
AU  - Morina, Filis
AU  - Vidović, Marija
AU  - Veljović Jovanović, Sonja
PY  - 2023
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/6386
AB  - Three basil plant varieties (Ocimum basilicum var. Genovese, Ocimum × citriodorum, and Ocimum basilicum var. purpurascens) were grown under moderate light (about 300 µmol photons m−2 s−1) in a glasshouse or growth chamber and then either transferred to an open field (average daily dose: 29.2 kJ m−2 d−1) or additionally exposed to UV-B irradiation in a growth chamber (29.16 kJ m−2 d−1), to reveal the variety-specific and light-specific acclimation responses. Total antioxidant capacity (TAC), phenolic profile, ascorbate content, and class III peroxidase (POD) activity were used to determine the antioxidant status of leaves under all four light regimes. Exposure to high solar irradiation at the open field resulted in an increase in TAC, total hydroxycinnamic acids (HCAs, especially caffeic acid), flavonoids, and epidermal UV-absorbing substances in all three varieties, as well as a two-fold increase in the leaf dry/fresh weight ratio. The supplemental UV-B irradiation induced preferential accumulation of HCAs (rosmarinic acid) over flavonoids, increased TAC and POD activity, but decreased the ascorbate content in the leaves, and inhibited the accumulation of epidermal flavonoids in all basil varieties. Furthermore, characteristic leaf curling and UV-B-induced inhibition of plant growth were observed in all basil varieties, while a pro-oxidant effect of UV-B was indicated with H2O2 accumulation in the leaves and spotty leaf browning. The extent of these morphological changes, and oxidative damage depended on the basil cultivar, implies a genotype-specific tolerance mechanism to high doses of UV-B irradiation.
PB  - MDPI
T2  - International Journal of Molecular Sciences
T1  - Differential Antioxidant Response to Supplemental UV-B Irradiation and Sunlight in Three Basil Varieties
VL  - 24
IS  - 20
SP  - 15350
DO  - 10.3390/ijms242015350
ER  - 
@article{
author = "Milić Komić, Sonja and Živanović, Bojana and Dumanović, Jelena and Kolarž, Predrag and Sedlarević Zorić, Ana and Morina, Filis and Vidović, Marija and Veljović Jovanović, Sonja",
year = "2023",
abstract = "Three basil plant varieties (Ocimum basilicum var. Genovese, Ocimum × citriodorum, and Ocimum basilicum var. purpurascens) were grown under moderate light (about 300 µmol photons m−2 s−1) in a glasshouse or growth chamber and then either transferred to an open field (average daily dose: 29.2 kJ m−2 d−1) or additionally exposed to UV-B irradiation in a growth chamber (29.16 kJ m−2 d−1), to reveal the variety-specific and light-specific acclimation responses. Total antioxidant capacity (TAC), phenolic profile, ascorbate content, and class III peroxidase (POD) activity were used to determine the antioxidant status of leaves under all four light regimes. Exposure to high solar irradiation at the open field resulted in an increase in TAC, total hydroxycinnamic acids (HCAs, especially caffeic acid), flavonoids, and epidermal UV-absorbing substances in all three varieties, as well as a two-fold increase in the leaf dry/fresh weight ratio. The supplemental UV-B irradiation induced preferential accumulation of HCAs (rosmarinic acid) over flavonoids, increased TAC and POD activity, but decreased the ascorbate content in the leaves, and inhibited the accumulation of epidermal flavonoids in all basil varieties. Furthermore, characteristic leaf curling and UV-B-induced inhibition of plant growth were observed in all basil varieties, while a pro-oxidant effect of UV-B was indicated with H2O2 accumulation in the leaves and spotty leaf browning. The extent of these morphological changes, and oxidative damage depended on the basil cultivar, implies a genotype-specific tolerance mechanism to high doses of UV-B irradiation.",
publisher = "MDPI",
journal = "International Journal of Molecular Sciences",
title = "Differential Antioxidant Response to Supplemental UV-B Irradiation and Sunlight in Three Basil Varieties",
volume = "24",
number = "20",
pages = "15350",
doi = "10.3390/ijms242015350"
}
Milić Komić, S., Živanović, B., Dumanović, J., Kolarž, P., Sedlarević Zorić, A., Morina, F., Vidović, M.,& Veljović Jovanović, S.. (2023). Differential Antioxidant Response to Supplemental UV-B Irradiation and Sunlight in Three Basil Varieties. in International Journal of Molecular Sciences
MDPI., 24(20), 15350.
https://doi.org/10.3390/ijms242015350
Milić Komić S, Živanović B, Dumanović J, Kolarž P, Sedlarević Zorić A, Morina F, Vidović M, Veljović Jovanović S. Differential Antioxidant Response to Supplemental UV-B Irradiation and Sunlight in Three Basil Varieties. in International Journal of Molecular Sciences. 2023;24(20):15350.
doi:10.3390/ijms242015350 .
Milić Komić, Sonja, Živanović, Bojana, Dumanović, Jelena, Kolarž, Predrag, Sedlarević Zorić, Ana, Morina, Filis, Vidović, Marija, Veljović Jovanović, Sonja, "Differential Antioxidant Response to Supplemental UV-B Irradiation and Sunlight in Three Basil Varieties" in International Journal of Molecular Sciences, 24, no. 20 (2023):15350,
https://doi.org/10.3390/ijms242015350 . .
4
1

Mechanisms of desiccation tolerance in Ramonda serbica Panc.: transcriptomic, proteomic, metabolomic, and photosynthetic aspects

Vidović, Marija; Battisti, Ilaria; Pantelić, Ana; Morina, Filis; Arrigoni, Giorgio; Masi, Antonio; Veljović Jovanović, Sonja

(2022)

TY  - CONF
AU  - Vidović, Marija
AU  - Battisti, Ilaria
AU  - Pantelić, Ana
AU  - Morina, Filis
AU  - Arrigoni, Giorgio
AU  - Masi, Antonio
AU  - Veljović Jovanović, Sonja
PY  - 2022
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5560
AB  - Ramonda serbica Panc. is a resurrection plant species that can survive desiccation for a long
period and fully resume metabolic functions upon rewatering in a very short period, even within
48 h. The goal of this study was to identify key candidates and pathways involved in desiccation tolerance in R. serbica. To achieve this, systems biology approach combining transcriptomics,
proteomics, and analysis of specific metabolites was employed. In addition, FTIR analysis of the
cell wall polymers and a detailed analysis of the photosynthetic electron transport (PET) chain
were performed. In total, 1192 different protein groups were quantified by TMT-based comparative quantitative proteomics. Among them, 408 protein groups showed a statistically significant
difference in abundance between hydrated (HL) and desiccated leaves (DL). Upon desiccation, the
majority of proteins related to photosynthetic processes were less abundant, while chlorophyll
fluorescence measurements implied shifting from linear photosynthetic transport (PET) to cyclic
electron transport (CET). The amounts of H2O2 scavenging enzymes, including ascorbate-glutathione cycle components, catalases, peroxiredoxins, Fe-, and Mn- superoxide dismutase (SOD) were
reduced in DL. However, four Cu/ZnSOD isoforms, three polyphenol oxidases, six germin-like proteins (GLPs), and 22 late embryogenesis abundant proteins (LEAPs; mainly LEA4 and dehydrins),
were desiccation-inducible. Desiccation-induced cell wall remodelling by changes in cell wall
polymer composition might be linked with pectin demethylesterification and GLP-derived H2O2/
HO•. Our study demonstrated that desiccation tolerance in R. serbica is a complex, species-specific process orchestrated by several metabolic pathways and regulatory networks acting at the transcript, protein, metabolite and physiological levels.
C3  - 4th International Conference on Plant Biology, Book of Abstracts
T1  - Mechanisms of desiccation tolerance in Ramonda serbica Panc.: transcriptomic, proteomic, metabolomic, and photosynthetic aspects
SP  - 27
EP  - 27
UR  - https://hdl.handle.net/21.15107/rcub_cherry_5560
ER  - 
@conference{
author = "Vidović, Marija and Battisti, Ilaria and Pantelić, Ana and Morina, Filis and Arrigoni, Giorgio and Masi, Antonio and Veljović Jovanović, Sonja",
year = "2022",
abstract = "Ramonda serbica Panc. is a resurrection plant species that can survive desiccation for a long
period and fully resume metabolic functions upon rewatering in a very short period, even within
48 h. The goal of this study was to identify key candidates and pathways involved in desiccation tolerance in R. serbica. To achieve this, systems biology approach combining transcriptomics,
proteomics, and analysis of specific metabolites was employed. In addition, FTIR analysis of the
cell wall polymers and a detailed analysis of the photosynthetic electron transport (PET) chain
were performed. In total, 1192 different protein groups were quantified by TMT-based comparative quantitative proteomics. Among them, 408 protein groups showed a statistically significant
difference in abundance between hydrated (HL) and desiccated leaves (DL). Upon desiccation, the
majority of proteins related to photosynthetic processes were less abundant, while chlorophyll
fluorescence measurements implied shifting from linear photosynthetic transport (PET) to cyclic
electron transport (CET). The amounts of H2O2 scavenging enzymes, including ascorbate-glutathione cycle components, catalases, peroxiredoxins, Fe-, and Mn- superoxide dismutase (SOD) were
reduced in DL. However, four Cu/ZnSOD isoforms, three polyphenol oxidases, six germin-like proteins (GLPs), and 22 late embryogenesis abundant proteins (LEAPs; mainly LEA4 and dehydrins),
were desiccation-inducible. Desiccation-induced cell wall remodelling by changes in cell wall
polymer composition might be linked with pectin demethylesterification and GLP-derived H2O2/
HO•. Our study demonstrated that desiccation tolerance in R. serbica is a complex, species-specific process orchestrated by several metabolic pathways and regulatory networks acting at the transcript, protein, metabolite and physiological levels.",
journal = "4th International Conference on Plant Biology, Book of Abstracts",
title = "Mechanisms of desiccation tolerance in Ramonda serbica Panc.: transcriptomic, proteomic, metabolomic, and photosynthetic aspects",
pages = "27-27",
url = "https://hdl.handle.net/21.15107/rcub_cherry_5560"
}
Vidović, M., Battisti, I., Pantelić, A., Morina, F., Arrigoni, G., Masi, A.,& Veljović Jovanović, S.. (2022). Mechanisms of desiccation tolerance in Ramonda serbica Panc.: transcriptomic, proteomic, metabolomic, and photosynthetic aspects. in 4th International Conference on Plant Biology, Book of Abstracts, 27-27.
https://hdl.handle.net/21.15107/rcub_cherry_5560
Vidović M, Battisti I, Pantelić A, Morina F, Arrigoni G, Masi A, Veljović Jovanović S. Mechanisms of desiccation tolerance in Ramonda serbica Panc.: transcriptomic, proteomic, metabolomic, and photosynthetic aspects. in 4th International Conference on Plant Biology, Book of Abstracts. 2022;:27-27.
https://hdl.handle.net/21.15107/rcub_cherry_5560 .
Vidović, Marija, Battisti, Ilaria, Pantelić, Ana, Morina, Filis, Arrigoni, Giorgio, Masi, Antonio, Veljović Jovanović, Sonja, "Mechanisms of desiccation tolerance in Ramonda serbica Panc.: transcriptomic, proteomic, metabolomic, and photosynthetic aspects" in 4th International Conference on Plant Biology, Book of Abstracts (2022):27-27,
https://hdl.handle.net/21.15107/rcub_cherry_5560 .

Supplementary data for the article: Vidović, M.; Franchin, C.; Morina, F.; Veljović-Jovanović, S.; Masi, A.; Arrigoni, G. Efficient Protein Extraction for Shotgun Proteomics from Hydrated and Desiccated Leaves of Resurrection Ramonda Serbica Plants. Anal Bioanal Chem 2020, 412 (30), 8299–8312. https://doi.org/10.1007/s00216-020-02965-2.

Vidović, Marija; Franchin, Cinzia; Morina, Filis; Veljović-Jovanović, Sonja; Masi, Antonio; Arrigoni, Giorgio

(SpringerLink, 2020)

TY  - DATA
AU  - Vidović, Marija
AU  - Franchin, Cinzia
AU  - Morina, Filis
AU  - Veljović-Jovanović, Sonja
AU  - Masi, Antonio
AU  - Arrigoni, Giorgio
PY  - 2020
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4504
PB  - SpringerLink
T2  - Analytical and Bioanalytical Chemistry
T1  - Supplementary data for the article: Vidović, M.; Franchin, C.; Morina, F.; Veljović-Jovanović, S.; Masi, A.; Arrigoni, G. Efficient Protein Extraction for Shotgun Proteomics from Hydrated and Desiccated Leaves of Resurrection Ramonda Serbica Plants. Anal Bioanal Chem 2020, 412 (30), 8299–8312. https://doi.org/10.1007/s00216-020-02965-2.
UR  - https://hdl.handle.net/21.15107/rcub_cherry_4504
ER  - 
@misc{
author = "Vidović, Marija and Franchin, Cinzia and Morina, Filis and Veljović-Jovanović, Sonja and Masi, Antonio and Arrigoni, Giorgio",
year = "2020",
publisher = "SpringerLink",
journal = "Analytical and Bioanalytical Chemistry",
title = "Supplementary data for the article: Vidović, M.; Franchin, C.; Morina, F.; Veljović-Jovanović, S.; Masi, A.; Arrigoni, G. Efficient Protein Extraction for Shotgun Proteomics from Hydrated and Desiccated Leaves of Resurrection Ramonda Serbica Plants. Anal Bioanal Chem 2020, 412 (30), 8299–8312. https://doi.org/10.1007/s00216-020-02965-2.",
url = "https://hdl.handle.net/21.15107/rcub_cherry_4504"
}
Vidović, M., Franchin, C., Morina, F., Veljović-Jovanović, S., Masi, A.,& Arrigoni, G.. (2020). Supplementary data for the article: Vidović, M.; Franchin, C.; Morina, F.; Veljović-Jovanović, S.; Masi, A.; Arrigoni, G. Efficient Protein Extraction for Shotgun Proteomics from Hydrated and Desiccated Leaves of Resurrection Ramonda Serbica Plants. Anal Bioanal Chem 2020, 412 (30), 8299–8312. https://doi.org/10.1007/s00216-020-02965-2.. in Analytical and Bioanalytical Chemistry
SpringerLink..
https://hdl.handle.net/21.15107/rcub_cherry_4504
Vidović M, Franchin C, Morina F, Veljović-Jovanović S, Masi A, Arrigoni G. Supplementary data for the article: Vidović, M.; Franchin, C.; Morina, F.; Veljović-Jovanović, S.; Masi, A.; Arrigoni, G. Efficient Protein Extraction for Shotgun Proteomics from Hydrated and Desiccated Leaves of Resurrection Ramonda Serbica Plants. Anal Bioanal Chem 2020, 412 (30), 8299–8312. https://doi.org/10.1007/s00216-020-02965-2.. in Analytical and Bioanalytical Chemistry. 2020;.
https://hdl.handle.net/21.15107/rcub_cherry_4504 .
Vidović, Marija, Franchin, Cinzia, Morina, Filis, Veljović-Jovanović, Sonja, Masi, Antonio, Arrigoni, Giorgio, "Supplementary data for the article: Vidović, M.; Franchin, C.; Morina, F.; Veljović-Jovanović, S.; Masi, A.; Arrigoni, G. Efficient Protein Extraction for Shotgun Proteomics from Hydrated and Desiccated Leaves of Resurrection Ramonda Serbica Plants. Anal Bioanal Chem 2020, 412 (30), 8299–8312. https://doi.org/10.1007/s00216-020-02965-2." in Analytical and Bioanalytical Chemistry (2020),
https://hdl.handle.net/21.15107/rcub_cherry_4504 .

Efficient protein extraction for shotgun proteomics from hydrated and desiccated leaves of resurrection Ramonda serbica plants

Vidović, Marija; Franchin, Cinzia; Morina, Filis; Veljović-Jovanović, Sonja; Masi, Antonio; Arrigoni, Giorgio

(2020)

TY  - JOUR
AU  - Vidović, Marija
AU  - Franchin, Cinzia
AU  - Morina, Filis
AU  - Veljović-Jovanović, Sonja
AU  - Masi, Antonio
AU  - Arrigoni, Giorgio
PY  - 2020
UR  - http://www.ncbi.nlm.nih.gov/pubmed/33037906
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4505
AB  - Resurrection plant Ramonda serbica is a suitable model to investigate vegetative desiccation tolerance. However, the detailed study of these mechanisms at the protein level is hampered by the severe tissue water loss, high amount of phenolics and polysaccharide, and possible protein modifications and aggregations during the extraction and purification steps. When applied to R. serbica leaves, widely used protein extraction protocols containing polyvinylpolypyrrolidone and ascorbate, as well as the phenol/SDS/buffer-based protocol recommended for recalcitrant plant tissues failed to eliminate persistent contamination and ensure high protein quality. Here we compared three protein extraction approaches aiming to establish the optimal one for both hydrated and desiccated R. serbica leaves. To evaluate the efficacy of these protocols by shotgun proteomics, we also created the first R. serbica annotated transcriptome database, available at http://www.biomed.unipd.it/filearrigoni/Trinity_Sample_RT2.fasta . The detergent-free phenol-based extraction combined with dodecyl-β-D-maltoside-assisted extraction enabled high-yield and high-purity protein extracts. The phenol-based protocol improved the protein-band resolution, band number, and intensity upon electrophoresis, and increased the protein yield and the number of identified peptides and protein groups by LC-MS/MS. Additionally, dodecyl-β-D-maltoside enabled solubilisation and identification of more membrane-associated proteins. The presented study paves the way for investigating the desiccation tolerance in R. serbica, and we recommend this protocol for similar recalcitrant plant material.
T2  - Analytical and Bioanalytical Chemistry
T1  - Efficient protein extraction for shotgun proteomics from hydrated and desiccated leaves of resurrection Ramonda serbica plants
VL  - 412
IS  - 30
SP  - 8299
EP  - 8312
DO  - 10.1007/s00216-020-02965-2
ER  - 
@article{
author = "Vidović, Marija and Franchin, Cinzia and Morina, Filis and Veljović-Jovanović, Sonja and Masi, Antonio and Arrigoni, Giorgio",
year = "2020",
abstract = "Resurrection plant Ramonda serbica is a suitable model to investigate vegetative desiccation tolerance. However, the detailed study of these mechanisms at the protein level is hampered by the severe tissue water loss, high amount of phenolics and polysaccharide, and possible protein modifications and aggregations during the extraction and purification steps. When applied to R. serbica leaves, widely used protein extraction protocols containing polyvinylpolypyrrolidone and ascorbate, as well as the phenol/SDS/buffer-based protocol recommended for recalcitrant plant tissues failed to eliminate persistent contamination and ensure high protein quality. Here we compared three protein extraction approaches aiming to establish the optimal one for both hydrated and desiccated R. serbica leaves. To evaluate the efficacy of these protocols by shotgun proteomics, we also created the first R. serbica annotated transcriptome database, available at http://www.biomed.unipd.it/filearrigoni/Trinity_Sample_RT2.fasta . The detergent-free phenol-based extraction combined with dodecyl-β-D-maltoside-assisted extraction enabled high-yield and high-purity protein extracts. The phenol-based protocol improved the protein-band resolution, band number, and intensity upon electrophoresis, and increased the protein yield and the number of identified peptides and protein groups by LC-MS/MS. Additionally, dodecyl-β-D-maltoside enabled solubilisation and identification of more membrane-associated proteins. The presented study paves the way for investigating the desiccation tolerance in R. serbica, and we recommend this protocol for similar recalcitrant plant material.",
journal = "Analytical and Bioanalytical Chemistry",
title = "Efficient protein extraction for shotgun proteomics from hydrated and desiccated leaves of resurrection Ramonda serbica plants",
volume = "412",
number = "30",
pages = "8299-8312",
doi = "10.1007/s00216-020-02965-2"
}
Vidović, M., Franchin, C., Morina, F., Veljović-Jovanović, S., Masi, A.,& Arrigoni, G.. (2020). Efficient protein extraction for shotgun proteomics from hydrated and desiccated leaves of resurrection Ramonda serbica plants. in Analytical and Bioanalytical Chemistry, 412(30), 8299-8312.
https://doi.org/10.1007/s00216-020-02965-2
Vidović M, Franchin C, Morina F, Veljović-Jovanović S, Masi A, Arrigoni G. Efficient protein extraction for shotgun proteomics from hydrated and desiccated leaves of resurrection Ramonda serbica plants. in Analytical and Bioanalytical Chemistry. 2020;412(30):8299-8312.
doi:10.1007/s00216-020-02965-2 .
Vidović, Marija, Franchin, Cinzia, Morina, Filis, Veljović-Jovanović, Sonja, Masi, Antonio, Arrigoni, Giorgio, "Efficient protein extraction for shotgun proteomics from hydrated and desiccated leaves of resurrection Ramonda serbica plants" in Analytical and Bioanalytical Chemistry, 412, no. 30 (2020):8299-8312,
https://doi.org/10.1007/s00216-020-02965-2 . .
3
7
2
8
6

Comparative analysis of phenolic profiles of ovipositional fluid of Rhinusa pilosa (Mecinini, Curculionidae) and its host plant Linaria vulgaris (Plantaginaceae)

Sedlarević, Ana; Morina, Filis; Toševski, Ivo; Gašić, Uroš M.; Natić, Maja; Jović, Jelena; Krstić, Oliver; Veljović-Jovanović, Sonja

(Springer, Dordrecht, 2016)

TY  - JOUR
AU  - Sedlarević, Ana
AU  - Morina, Filis
AU  - Toševski, Ivo
AU  - Gašić, Uroš M.
AU  - Natić, Maja
AU  - Jović, Jelena
AU  - Krstić, Oliver
AU  - Veljović-Jovanović, Sonja
PY  - 2016
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/2279
AB  - Rhinusa pilosa (Gyllenhal) is a highly specific weevil that induces stem galls on the common toadflax Linaria vulgaris Mill. females oviposit the eggs near the apex of a growing shoot. The act of oviposition is accompanied by secretion of an ovipositional fluid, which is considered to be cecidogen, directly involved in gall induction. The remains of cecidogenic fluid were collected from the surface of the oviposition point on the stem. We performed a comparative analysis of the phenolics extracted from cecidogen, the stem and galls of L. vulgaris and adult and larva of R. pilosa by HPLC-DAD. One compound with A (max) at 273, 332 nm (R (t) 30.65 min) was exclusively found in the methanol extract of cecidogen. To further characterize the cecidogen and stem phenolic profiles, we used UHPLC coupled with an OrbiTrap mass analyzer. Among 49 phenolic compounds extracted from both the ovipositional fluid and the plant, protocatechuic acid and two phenolic glycosides were exclusively found in cecidogen: diosmetin-O-acetylrutinoside and an unidentified compound. The unknown compound produced an MS2 base peak at 387 and 327 and 267 m/z base peaks at MS3 and MS4 fragmentation, respectively, and had the molecular formula C32H31O18. The plausible role of phenolic compounds in the induction of gall formation on L. vulgaris is discussed.
PB  - Springer, Dordrecht
T2  - Arthropod-Plant Interactions
T1  - Comparative analysis of phenolic profiles of ovipositional fluid of Rhinusa pilosa (Mecinini, Curculionidae) and its host plant Linaria vulgaris (Plantaginaceae)
VL  - 10
IS  - 4
SP  - 311
EP  - 322
DO  - 10.1007/s11829-016-9435-y
ER  - 
@article{
author = "Sedlarević, Ana and Morina, Filis and Toševski, Ivo and Gašić, Uroš M. and Natić, Maja and Jović, Jelena and Krstić, Oliver and Veljović-Jovanović, Sonja",
year = "2016",
abstract = "Rhinusa pilosa (Gyllenhal) is a highly specific weevil that induces stem galls on the common toadflax Linaria vulgaris Mill. females oviposit the eggs near the apex of a growing shoot. The act of oviposition is accompanied by secretion of an ovipositional fluid, which is considered to be cecidogen, directly involved in gall induction. The remains of cecidogenic fluid were collected from the surface of the oviposition point on the stem. We performed a comparative analysis of the phenolics extracted from cecidogen, the stem and galls of L. vulgaris and adult and larva of R. pilosa by HPLC-DAD. One compound with A (max) at 273, 332 nm (R (t) 30.65 min) was exclusively found in the methanol extract of cecidogen. To further characterize the cecidogen and stem phenolic profiles, we used UHPLC coupled with an OrbiTrap mass analyzer. Among 49 phenolic compounds extracted from both the ovipositional fluid and the plant, protocatechuic acid and two phenolic glycosides were exclusively found in cecidogen: diosmetin-O-acetylrutinoside and an unidentified compound. The unknown compound produced an MS2 base peak at 387 and 327 and 267 m/z base peaks at MS3 and MS4 fragmentation, respectively, and had the molecular formula C32H31O18. The plausible role of phenolic compounds in the induction of gall formation on L. vulgaris is discussed.",
publisher = "Springer, Dordrecht",
journal = "Arthropod-Plant Interactions",
title = "Comparative analysis of phenolic profiles of ovipositional fluid of Rhinusa pilosa (Mecinini, Curculionidae) and its host plant Linaria vulgaris (Plantaginaceae)",
volume = "10",
number = "4",
pages = "311-322",
doi = "10.1007/s11829-016-9435-y"
}
Sedlarević, A., Morina, F., Toševski, I., Gašić, U. M., Natić, M., Jović, J., Krstić, O.,& Veljović-Jovanović, S.. (2016). Comparative analysis of phenolic profiles of ovipositional fluid of Rhinusa pilosa (Mecinini, Curculionidae) and its host plant Linaria vulgaris (Plantaginaceae). in Arthropod-Plant Interactions
Springer, Dordrecht., 10(4), 311-322.
https://doi.org/10.1007/s11829-016-9435-y
Sedlarević A, Morina F, Toševski I, Gašić UM, Natić M, Jović J, Krstić O, Veljović-Jovanović S. Comparative analysis of phenolic profiles of ovipositional fluid of Rhinusa pilosa (Mecinini, Curculionidae) and its host plant Linaria vulgaris (Plantaginaceae). in Arthropod-Plant Interactions. 2016;10(4):311-322.
doi:10.1007/s11829-016-9435-y .
Sedlarević, Ana, Morina, Filis, Toševski, Ivo, Gašić, Uroš M., Natić, Maja, Jović, Jelena, Krstić, Oliver, Veljović-Jovanović, Sonja, "Comparative analysis of phenolic profiles of ovipositional fluid of Rhinusa pilosa (Mecinini, Curculionidae) and its host plant Linaria vulgaris (Plantaginaceae)" in Arthropod-Plant Interactions, 10, no. 4 (2016):311-322,
https://doi.org/10.1007/s11829-016-9435-y . .
4
2
3
4

Carbon allocation from source to sink leaf tissue in relation to flavonoid biosynthesis in variegated Pelargonium zonale under UV-B radiation and high PAR intensity

Vidović, Marija; Morina, Filis; Milic, Sonja; Albert, Andreas; Zechmann, Bernd; Tosti, Tomislav; Winkler, Jana Barbro; Veljović-Jovanović, Sonja

(Elsevier France-Editions Scientifiques Medicales Elsevier, Paris, 2015)

TY  - JOUR
AU  - Vidović, Marija
AU  - Morina, Filis
AU  - Milic, Sonja
AU  - Albert, Andreas
AU  - Zechmann, Bernd
AU  - Tosti, Tomislav
AU  - Winkler, Jana Barbro
AU  - Veljović-Jovanović, Sonja
PY  - 2015
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/1727
AB  - We studied the specific effects of high photosynthetically active radiation (PAR, 400-700 nm) and ecologically relevant UV-B radiation (0.90 W m(-2)) on antioxidative and phenolic metabolism by exploiting the green-white leaf variegation of Pelargonium zonale plants. This is a suitable model system for examining "source-sink" interactions within the same leaf. High PAR intensity (1350 mu mol m(-2) s(-1)) and UV-B radiation induced different responses in green and white leaf sectors. High PAR intensity had a greater influence on green tissue, triggering the accumulation of phenylpropanoids and flavonoids with strong antioxidative function. Induced phenolics, together with ascorbate, ascorbate peroxidase (APX, EC 1.11.1.11) and catalase (CAT, EC 1.11.1.6) provided efficient defense against potential oxidative pressure. UV-B-induced up-regulation of non-phenolic H2O2 scavengers in green leaf sectors was greater than high PAR-induced changes, indicating a UV-B role in antioxidative defense under light excess; on the contrary, minimal effects were observed in white tissue. However, UV-B radiation had greater influence on phenolics in white leaf sections compared to green ones, inducing accumulation of phenolic glycosides whose function was UV-B screening rather than antioxidative. By stimulation of starch and sucrose breakdown and carbon allocation in the form of soluble sugars from "source" (green) tissue to "sink" (white) tissue, UV-B radiation compensated the absence of photosynthetic activity and phenylpropanoid and flavonoid biosynthesis in white sectors. (C) 2015 Elsevier Masson SAS. All rights reserved.
PB  - Elsevier France-Editions Scientifiques Medicales Elsevier, Paris
T2  - Plant Physiology and Biochemistry
T1  - Carbon allocation from source to sink leaf tissue in relation to flavonoid biosynthesis in variegated Pelargonium zonale under UV-B radiation and high PAR intensity
VL  - 93
SP  - 44
EP  - 55
DO  - 10.1016/j.plaphy.2015.01.008
ER  - 
@article{
author = "Vidović, Marija and Morina, Filis and Milic, Sonja and Albert, Andreas and Zechmann, Bernd and Tosti, Tomislav and Winkler, Jana Barbro and Veljović-Jovanović, Sonja",
year = "2015",
abstract = "We studied the specific effects of high photosynthetically active radiation (PAR, 400-700 nm) and ecologically relevant UV-B radiation (0.90 W m(-2)) on antioxidative and phenolic metabolism by exploiting the green-white leaf variegation of Pelargonium zonale plants. This is a suitable model system for examining "source-sink" interactions within the same leaf. High PAR intensity (1350 mu mol m(-2) s(-1)) and UV-B radiation induced different responses in green and white leaf sectors. High PAR intensity had a greater influence on green tissue, triggering the accumulation of phenylpropanoids and flavonoids with strong antioxidative function. Induced phenolics, together with ascorbate, ascorbate peroxidase (APX, EC 1.11.1.11) and catalase (CAT, EC 1.11.1.6) provided efficient defense against potential oxidative pressure. UV-B-induced up-regulation of non-phenolic H2O2 scavengers in green leaf sectors was greater than high PAR-induced changes, indicating a UV-B role in antioxidative defense under light excess; on the contrary, minimal effects were observed in white tissue. However, UV-B radiation had greater influence on phenolics in white leaf sections compared to green ones, inducing accumulation of phenolic glycosides whose function was UV-B screening rather than antioxidative. By stimulation of starch and sucrose breakdown and carbon allocation in the form of soluble sugars from "source" (green) tissue to "sink" (white) tissue, UV-B radiation compensated the absence of photosynthetic activity and phenylpropanoid and flavonoid biosynthesis in white sectors. (C) 2015 Elsevier Masson SAS. All rights reserved.",
publisher = "Elsevier France-Editions Scientifiques Medicales Elsevier, Paris",
journal = "Plant Physiology and Biochemistry",
title = "Carbon allocation from source to sink leaf tissue in relation to flavonoid biosynthesis in variegated Pelargonium zonale under UV-B radiation and high PAR intensity",
volume = "93",
pages = "44-55",
doi = "10.1016/j.plaphy.2015.01.008"
}
Vidović, M., Morina, F., Milic, S., Albert, A., Zechmann, B., Tosti, T., Winkler, J. B.,& Veljović-Jovanović, S.. (2015). Carbon allocation from source to sink leaf tissue in relation to flavonoid biosynthesis in variegated Pelargonium zonale under UV-B radiation and high PAR intensity. in Plant Physiology and Biochemistry
Elsevier France-Editions Scientifiques Medicales Elsevier, Paris., 93, 44-55.
https://doi.org/10.1016/j.plaphy.2015.01.008
Vidović M, Morina F, Milic S, Albert A, Zechmann B, Tosti T, Winkler JB, Veljović-Jovanović S. Carbon allocation from source to sink leaf tissue in relation to flavonoid biosynthesis in variegated Pelargonium zonale under UV-B radiation and high PAR intensity. in Plant Physiology and Biochemistry. 2015;93:44-55.
doi:10.1016/j.plaphy.2015.01.008 .
Vidović, Marija, Morina, Filis, Milic, Sonja, Albert, Andreas, Zechmann, Bernd, Tosti, Tomislav, Winkler, Jana Barbro, Veljović-Jovanović, Sonja, "Carbon allocation from source to sink leaf tissue in relation to flavonoid biosynthesis in variegated Pelargonium zonale under UV-B radiation and high PAR intensity" in Plant Physiology and Biochemistry, 93 (2015):44-55,
https://doi.org/10.1016/j.plaphy.2015.01.008 . .
33
19
29
27