Nikolić, Marija S.

Link to this page

Authority KeyName Variants
orcid::0000-0001-9594-9101
  • Nikolić, Marija S. (2)
Projects

Author's Bibliography

The Effect of Glycol Derivatives on the Properties of Bio-Based Unsaturated Polyesters

Pantić, Olga; Spasojević, Milica; Džunuzović, Enis; Nikolić, Marija S.; Savić, Sanja; Marković, Maja; Spasojević, Pavle M.

(MDPI, 2022)

TY  - JOUR
AU  - Pantić, Olga
AU  - Spasojević, Milica
AU  - Džunuzović, Enis
AU  - Nikolić, Marija S.
AU  - Savić, Sanja
AU  - Marković, Maja
AU  - Spasojević, Pavle M.
PY  - 2022
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5605
AB  - The scope of the present study was to prepare fully bio-based unsaturated polyester resins (UPRs) with comparable properties to the commercial formulations. The focus was set on the determination of the optimal prepolymer formulation using the same set of diacids (itaconic and succinic acid) and different diols (propylene glycol, isosorbide and neopentyl glycol) or its equimolar mixtures, keeping the fixed molar ratio of 1:1:2.1 in all feed compositions. Instead of commonly used styrene, bio-based dimethyl itaconate was used as a reactive diluent (RD). The rheology of the obtained resins was studied in detail. The effect of the used diol on structural (FTIR), thermal (DSC), thermomechanical (DMA), and mechanical (tensile) properties was explained. The properties of UPRs were found to be highly dependent on the diol used in the prepolymer formulation. The UPR with an equimolar ratio of propylene glycol and neopentyl glycol was shown to be the most promising candidate to compete with the commercial petroleum-based resins.
PB  - MDPI
T2  - Polymers
T1  - The Effect of Glycol Derivatives on the Properties of Bio-Based Unsaturated Polyesters
VL  - 14
IS  - 15
SP  - 2970
DO  - 10.3390/polym14152970
ER  - 
@article{
author = "Pantić, Olga and Spasojević, Milica and Džunuzović, Enis and Nikolić, Marija S. and Savić, Sanja and Marković, Maja and Spasojević, Pavle M.",
year = "2022",
abstract = "The scope of the present study was to prepare fully bio-based unsaturated polyester resins (UPRs) with comparable properties to the commercial formulations. The focus was set on the determination of the optimal prepolymer formulation using the same set of diacids (itaconic and succinic acid) and different diols (propylene glycol, isosorbide and neopentyl glycol) or its equimolar mixtures, keeping the fixed molar ratio of 1:1:2.1 in all feed compositions. Instead of commonly used styrene, bio-based dimethyl itaconate was used as a reactive diluent (RD). The rheology of the obtained resins was studied in detail. The effect of the used diol on structural (FTIR), thermal (DSC), thermomechanical (DMA), and mechanical (tensile) properties was explained. The properties of UPRs were found to be highly dependent on the diol used in the prepolymer formulation. The UPR with an equimolar ratio of propylene glycol and neopentyl glycol was shown to be the most promising candidate to compete with the commercial petroleum-based resins.",
publisher = "MDPI",
journal = "Polymers",
title = "The Effect of Glycol Derivatives on the Properties of Bio-Based Unsaturated Polyesters",
volume = "14",
number = "15",
pages = "2970",
doi = "10.3390/polym14152970"
}
Pantić, O., Spasojević, M., Džunuzović, E., Nikolić, M. S., Savić, S., Marković, M.,& Spasojević, P. M.. (2022). The Effect of Glycol Derivatives on the Properties of Bio-Based Unsaturated Polyesters. in Polymers
MDPI., 14(15), 2970.
https://doi.org/10.3390/polym14152970
Pantić O, Spasojević M, Džunuzović E, Nikolić MS, Savić S, Marković M, Spasojević PM. The Effect of Glycol Derivatives on the Properties of Bio-Based Unsaturated Polyesters. in Polymers. 2022;14(15):2970.
doi:10.3390/polym14152970 .
Pantić, Olga, Spasojević, Milica, Džunuzović, Enis, Nikolić, Marija S., Savić, Sanja, Marković, Maja, Spasojević, Pavle M., "The Effect of Glycol Derivatives on the Properties of Bio-Based Unsaturated Polyesters" in Polymers, 14, no. 15 (2022):2970,
https://doi.org/10.3390/polym14152970 . .
3
3
2

Degradation behaviour of PCL/PEO/PCL and PCL/PEO block copolymers under controlled hydrolytic, enzymatic and composting conditions

Ponjavic, Marijana; Nikolić, Marija S.; Nikodinović-Runić, Jasmina; Jeremić, Sanja; Stevanovic, Sanja; Djonlagic, Jasna

(Elsevier Sci Ltd, Oxford, 2017)

TY  - JOUR
AU  - Ponjavic, Marijana
AU  - Nikolić, Marija S.
AU  - Nikodinović-Runić, Jasmina
AU  - Jeremić, Sanja
AU  - Stevanovic, Sanja
AU  - Djonlagic, Jasna
PY  - 2017
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/2393
AB  - Short-term hydrolytic and enzymatic degradation of poly(epsilon-caprolactone) (PCL), one series of triblock (PCL/PEO/PCL) and the other of diblock (PCL/PEO) copolymers, with a low content of hydrophilic PEO segments is presented. The effect of the introduction of PEO as the central or lateral segment in the PCL chain on copolymer hydrolysis and biodegradation properties was investigated. FUR results revealed higher hydrolytic degradation susceptibility of diblock copolymers due to a higher hydrophilicity compared to PCL and triblock copolymers. Enzymatic degradation was tested using cell-free extracts of Pseudomonas aeruginosa PAO1, for two weeks by following the weight loss, changes in surface roughness, and changes in carbonyl and crystallinity index. The results confirmed that all samples underwent enzymatic degradation through surface erosion which was accompanied with a decrease in molecular weights. Diblock copolymers showed significantly higher weight loss and decrease in molecular weight in comparison to PCL itself and triblock copolymers. AFM analysis confirmed significant surface erosion and increase in RMS values. In addition, biodegradation of polymer films was tested in compost model system at 37 degrees C, where an effective degradation of block copolymers was observed. (C) 2016 Elsevier Ltd. All rights reserved.
PB  - Elsevier Sci Ltd, Oxford
T2  - Polymer Testing
T1  - Degradation behaviour of PCL/PEO/PCL and PCL/PEO block copolymers under controlled hydrolytic, enzymatic and composting conditions
VL  - 57
SP  - 67
EP  - 77
DO  - 10.1016/j.polymertesting.2016.11.018
ER  - 
@article{
author = "Ponjavic, Marijana and Nikolić, Marija S. and Nikodinović-Runić, Jasmina and Jeremić, Sanja and Stevanovic, Sanja and Djonlagic, Jasna",
year = "2017",
abstract = "Short-term hydrolytic and enzymatic degradation of poly(epsilon-caprolactone) (PCL), one series of triblock (PCL/PEO/PCL) and the other of diblock (PCL/PEO) copolymers, with a low content of hydrophilic PEO segments is presented. The effect of the introduction of PEO as the central or lateral segment in the PCL chain on copolymer hydrolysis and biodegradation properties was investigated. FUR results revealed higher hydrolytic degradation susceptibility of diblock copolymers due to a higher hydrophilicity compared to PCL and triblock copolymers. Enzymatic degradation was tested using cell-free extracts of Pseudomonas aeruginosa PAO1, for two weeks by following the weight loss, changes in surface roughness, and changes in carbonyl and crystallinity index. The results confirmed that all samples underwent enzymatic degradation through surface erosion which was accompanied with a decrease in molecular weights. Diblock copolymers showed significantly higher weight loss and decrease in molecular weight in comparison to PCL itself and triblock copolymers. AFM analysis confirmed significant surface erosion and increase in RMS values. In addition, biodegradation of polymer films was tested in compost model system at 37 degrees C, where an effective degradation of block copolymers was observed. (C) 2016 Elsevier Ltd. All rights reserved.",
publisher = "Elsevier Sci Ltd, Oxford",
journal = "Polymer Testing",
title = "Degradation behaviour of PCL/PEO/PCL and PCL/PEO block copolymers under controlled hydrolytic, enzymatic and composting conditions",
volume = "57",
pages = "67-77",
doi = "10.1016/j.polymertesting.2016.11.018"
}
Ponjavic, M., Nikolić, M. S., Nikodinović-Runić, J., Jeremić, S., Stevanovic, S.,& Djonlagic, J.. (2017). Degradation behaviour of PCL/PEO/PCL and PCL/PEO block copolymers under controlled hydrolytic, enzymatic and composting conditions. in Polymer Testing
Elsevier Sci Ltd, Oxford., 57, 67-77.
https://doi.org/10.1016/j.polymertesting.2016.11.018
Ponjavic M, Nikolić MS, Nikodinović-Runić J, Jeremić S, Stevanovic S, Djonlagic J. Degradation behaviour of PCL/PEO/PCL and PCL/PEO block copolymers under controlled hydrolytic, enzymatic and composting conditions. in Polymer Testing. 2017;57:67-77.
doi:10.1016/j.polymertesting.2016.11.018 .
Ponjavic, Marijana, Nikolić, Marija S., Nikodinović-Runić, Jasmina, Jeremić, Sanja, Stevanovic, Sanja, Djonlagic, Jasna, "Degradation behaviour of PCL/PEO/PCL and PCL/PEO block copolymers under controlled hydrolytic, enzymatic and composting conditions" in Polymer Testing, 57 (2017):67-77,
https://doi.org/10.1016/j.polymertesting.2016.11.018 . .
43
28
44
37