Xie, Chunxia

Link to this page

Authority KeyName Variants
6811529e-ce63-45c5-ba12-c7a1fd4baca0
  • Xie, Chunxia (2)
Projects

Author's Bibliography

Type of precipitation and durations of sediment exposure as important weathering factors

Antić, Nevena; Kašanin-Grubin, Milica; Štrbac, Snežana; Xie, Chunxia; Mijatović, Nevenka; Tosti, Tomislav; Jovančićević, Branimir

(Elsevier, 2023)

TY  - JOUR
AU  - Antić, Nevena
AU  - Kašanin-Grubin, Milica
AU  - Štrbac, Snežana
AU  - Xie, Chunxia
AU  - Mijatović, Nevenka
AU  - Tosti, Tomislav
AU  - Jovančićević, Branimir
PY  - 2023
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/6266
AB  - A diversity of factors, led by lithology, weathering, and erosion processes, plays a significant role in the formation and future of badland terrains. Then on previous observations it can be concluded that surface flow processes are the first trigger of erosion and that intense soil erosion combined with rapid and deep weathering are tightly connected to high erosion rates.Since climate change presents a global issue that gains increasing attention and due to the complexity of the interactions and processes that are a part of general badlands origin and evolution, a weathering experiment on badland sediments from China was conducted. Explaining temporal changes, the impact of different precipitation types and its durations of exposure on sediments during weathering processes, as well as its impact on leachate ions behaviour are the aims behind this experiment.Red clayey siltstone and mudstone badland sediments selected for the laboratory experiment were organized in four sets that included three different samples, making a total of 12 treated samples. Based on field climate data, in laboratory conditions samples were exposed to rain, acid rain, snow, and acid snow through fifteen daily cycles. Leachate was collected after each cycle and its volume, pH, electrical conductivity (EC), and ion concentrations were measured and analysed from the leachate. Changes occurring on the surface of the sample were observed through photographs taken at the end of each cycle.Based on obtained results it can be said that the main differences occur when comparing rain and snow treatments generally. Temporal, cyclic changes were, to a certain extent, noticed through sediment decay. More importantly, durations of sediment exposure to precipitation proved to be crucial for weathering processes of tested siltstones and mudstones, having exclusion and ionic forces - ion exchange chromatography as dominant chemical processes.
PB  - Elsevier
T2  - CATENA
T1  - Type of precipitation and durations of sediment exposure as important weathering factors
VL  - 228
SP  - 107192
DO  - 10.1016/j.catena.2023.107192
ER  - 
@article{
author = "Antić, Nevena and Kašanin-Grubin, Milica and Štrbac, Snežana and Xie, Chunxia and Mijatović, Nevenka and Tosti, Tomislav and Jovančićević, Branimir",
year = "2023",
abstract = "A diversity of factors, led by lithology, weathering, and erosion processes, plays a significant role in the formation and future of badland terrains. Then on previous observations it can be concluded that surface flow processes are the first trigger of erosion and that intense soil erosion combined with rapid and deep weathering are tightly connected to high erosion rates.Since climate change presents a global issue that gains increasing attention and due to the complexity of the interactions and processes that are a part of general badlands origin and evolution, a weathering experiment on badland sediments from China was conducted. Explaining temporal changes, the impact of different precipitation types and its durations of exposure on sediments during weathering processes, as well as its impact on leachate ions behaviour are the aims behind this experiment.Red clayey siltstone and mudstone badland sediments selected for the laboratory experiment were organized in four sets that included three different samples, making a total of 12 treated samples. Based on field climate data, in laboratory conditions samples were exposed to rain, acid rain, snow, and acid snow through fifteen daily cycles. Leachate was collected after each cycle and its volume, pH, electrical conductivity (EC), and ion concentrations were measured and analysed from the leachate. Changes occurring on the surface of the sample were observed through photographs taken at the end of each cycle.Based on obtained results it can be said that the main differences occur when comparing rain and snow treatments generally. Temporal, cyclic changes were, to a certain extent, noticed through sediment decay. More importantly, durations of sediment exposure to precipitation proved to be crucial for weathering processes of tested siltstones and mudstones, having exclusion and ionic forces - ion exchange chromatography as dominant chemical processes.",
publisher = "Elsevier",
journal = "CATENA",
title = "Type of precipitation and durations of sediment exposure as important weathering factors",
volume = "228",
pages = "107192",
doi = "10.1016/j.catena.2023.107192"
}
Antić, N., Kašanin-Grubin, M., Štrbac, S., Xie, C., Mijatović, N., Tosti, T.,& Jovančićević, B.. (2023). Type of precipitation and durations of sediment exposure as important weathering factors. in CATENA
Elsevier., 228, 107192.
https://doi.org/10.1016/j.catena.2023.107192
Antić N, Kašanin-Grubin M, Štrbac S, Xie C, Mijatović N, Tosti T, Jovančićević B. Type of precipitation and durations of sediment exposure as important weathering factors. in CATENA. 2023;228:107192.
doi:10.1016/j.catena.2023.107192 .
Antić, Nevena, Kašanin-Grubin, Milica, Štrbac, Snežana, Xie, Chunxia, Mijatović, Nevenka, Tosti, Tomislav, Jovančićević, Branimir, "Type of precipitation and durations of sediment exposure as important weathering factors" in CATENA, 228 (2023):107192,
https://doi.org/10.1016/j.catena.2023.107192 . .

The Influences of Climatic and Lithological Factors on Weathering of Sediments in Humid Badland Areas

Xie, Chunxia; Antić, Nevena; Nadal-Romero, Estela; Yan, Luobin; Tosti, Tomislav; Đogo-Mračević, Svetlana; Tu, Xinjun; Kašanin-Grubin, Milica

(Frontiers Media S.A., 2022)

TY  - JOUR
AU  - Xie, Chunxia
AU  - Antić, Nevena
AU  - Nadal-Romero, Estela
AU  - Yan, Luobin
AU  - Tosti, Tomislav
AU  - Đogo-Mračević, Svetlana
AU  - Tu, Xinjun
AU  - Kašanin-Grubin, Milica
PY  - 2022
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5510
AB  - Climate variables including temperature, rainfall intensity, rainfall acidity, and lithological properties are among the most important factors affecting rock weathering. However, the relative contribution of these four factors on rock weathering, especially on chemical weathering, is still unclear. In this study, we carried out a series of weathering-leaching rainfall simulations on four types of badland sediments under controlled conditions of two levels of temperature, rainfall intensity, and rainfall acidity based on the real field data from representative weather scenarios. The main objectives are 1) to explore the progressive change of sample surface and leachate characteristics and 2) to reveal the independent effects of temperature, rainfall intensity, rainfall acidity, and lithology and their relative contribution as well, on both mechanical and chemical weathering. Qualitative analysis on crack development and fragmentation of sample surface and quantitative analysis on the leachate volume, pH, electrical conductivity, and total cation and anion releases of sample leachate together demonstrated that for the investigated sediments, under the conditions of temperature, intensity, and acidity of rain that can be achieved in nature, high drying temperature obviously increases mechanical disintegration by promoting the rate and magnitude of moisture variations (wetting–drying alterations), while high rainfall intensity and acid rain have no obvious effect. Impact and importance of the drying process caused by high temperature between wetting events need more attention, rather than high rainfall intensity. Low temperature, high rainfall intensity, and acid rain contributing more hydrogen ions required for cation exchanges, rock type with more soluble minerals, all promote chemical weathering, and the influence of climatic and lithological factors on chemical weathering decreases in the following order: mineral composition> rainfall intensity > temperature > rainfall acidity. Climatic variations on temperature can modify weathering processes and in that way conditioned hydro-geomorphological processes in badland areas. Such changes should be considered for direct and indirect implications on badland dynamics.
PB  - Frontiers Media S.A.
T2  - Frontiers in Earth Science
T1  - The Influences of Climatic and Lithological Factors on Weathering of Sediments in Humid Badland Areas
VL  - 10
DO  - 10.3389/feart.2022.900314
ER  - 
@article{
author = "Xie, Chunxia and Antić, Nevena and Nadal-Romero, Estela and Yan, Luobin and Tosti, Tomislav and Đogo-Mračević, Svetlana and Tu, Xinjun and Kašanin-Grubin, Milica",
year = "2022",
abstract = "Climate variables including temperature, rainfall intensity, rainfall acidity, and lithological properties are among the most important factors affecting rock weathering. However, the relative contribution of these four factors on rock weathering, especially on chemical weathering, is still unclear. In this study, we carried out a series of weathering-leaching rainfall simulations on four types of badland sediments under controlled conditions of two levels of temperature, rainfall intensity, and rainfall acidity based on the real field data from representative weather scenarios. The main objectives are 1) to explore the progressive change of sample surface and leachate characteristics and 2) to reveal the independent effects of temperature, rainfall intensity, rainfall acidity, and lithology and their relative contribution as well, on both mechanical and chemical weathering. Qualitative analysis on crack development and fragmentation of sample surface and quantitative analysis on the leachate volume, pH, electrical conductivity, and total cation and anion releases of sample leachate together demonstrated that for the investigated sediments, under the conditions of temperature, intensity, and acidity of rain that can be achieved in nature, high drying temperature obviously increases mechanical disintegration by promoting the rate and magnitude of moisture variations (wetting–drying alterations), while high rainfall intensity and acid rain have no obvious effect. Impact and importance of the drying process caused by high temperature between wetting events need more attention, rather than high rainfall intensity. Low temperature, high rainfall intensity, and acid rain contributing more hydrogen ions required for cation exchanges, rock type with more soluble minerals, all promote chemical weathering, and the influence of climatic and lithological factors on chemical weathering decreases in the following order: mineral composition> rainfall intensity > temperature > rainfall acidity. Climatic variations on temperature can modify weathering processes and in that way conditioned hydro-geomorphological processes in badland areas. Such changes should be considered for direct and indirect implications on badland dynamics.",
publisher = "Frontiers Media S.A.",
journal = "Frontiers in Earth Science",
title = "The Influences of Climatic and Lithological Factors on Weathering of Sediments in Humid Badland Areas",
volume = "10",
doi = "10.3389/feart.2022.900314"
}
Xie, C., Antić, N., Nadal-Romero, E., Yan, L., Tosti, T., Đogo-Mračević, S., Tu, X.,& Kašanin-Grubin, M.. (2022). The Influences of Climatic and Lithological Factors on Weathering of Sediments in Humid Badland Areas. in Frontiers in Earth Science
Frontiers Media S.A.., 10.
https://doi.org/10.3389/feart.2022.900314
Xie C, Antić N, Nadal-Romero E, Yan L, Tosti T, Đogo-Mračević S, Tu X, Kašanin-Grubin M. The Influences of Climatic and Lithological Factors on Weathering of Sediments in Humid Badland Areas. in Frontiers in Earth Science. 2022;10.
doi:10.3389/feart.2022.900314 .
Xie, Chunxia, Antić, Nevena, Nadal-Romero, Estela, Yan, Luobin, Tosti, Tomislav, Đogo-Mračević, Svetlana, Tu, Xinjun, Kašanin-Grubin, Milica, "The Influences of Climatic and Lithological Factors on Weathering of Sediments in Humid Badland Areas" in Frontiers in Earth Science, 10 (2022),
https://doi.org/10.3389/feart.2022.900314 . .
1
6
4
2