Schwall, Gerhard

Link to this page

Authority KeyName Variants
99e15747-a00a-4ebd-bddb-40c15442051f
  • Schwall, Gerhard (1)
Projects

Author's Bibliography

Identification of NQO1 and ferrochelatase as interaction partners for neuroprotective N-{[2-(4-phenyl-piperazin-1-yl)-ethyl]-phenyl}-arylamides

Kostić-Rajačić, Slađana; Schwall, Gerhard; Penjišević, Jelena; Andrić, Deana; Šukalović, Vladimir; Šoškić, Vukić

(Wiley, Hoboken, 2018)

TY  - JOUR
AU  - Kostić-Rajačić, Slađana
AU  - Schwall, Gerhard
AU  - Penjišević, Jelena
AU  - Andrić, Deana
AU  - Šukalović, Vladimir
AU  - Šoškić, Vukić
PY  - 2018
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/2167
AB  - Affinity chromatography was used to identify potential cellular targets that are responsible for neuroprotective activity of N-{[2-(4-phenyl-piperazin-1-yl)-ethyl]-phenyl}-arylamides. Active and inactive representatives of N-{[2-(4-phenyl-piperazin-1-yl)-ethyl]-phenyl}-arylamides bearing an extended linker were synthesized and immobilized on an agarose-based matrix. This was followed by the identification of specifically bound proteins isolated out of the whole rat brain extract. Inducible flavoprotein NAD(P)H:quinone oxidoreductase (NQO1) was identified as candidates for cellular targets.
PB  - Wiley, Hoboken
T2  - Chemical Biology and Drug Design
T1  - Identification of NQO1 and ferrochelatase as interaction partners for neuroprotective N-{[2-(4-phenyl-piperazin-1-yl)-ethyl]-phenyl}-arylamides
VL  - 92
IS  - 1
SP  - 1393
EP  - 1397
DO  - 10.1111/cbdd.13193
ER  - 
@article{
author = "Kostić-Rajačić, Slađana and Schwall, Gerhard and Penjišević, Jelena and Andrić, Deana and Šukalović, Vladimir and Šoškić, Vukić",
year = "2018",
abstract = "Affinity chromatography was used to identify potential cellular targets that are responsible for neuroprotective activity of N-{[2-(4-phenyl-piperazin-1-yl)-ethyl]-phenyl}-arylamides. Active and inactive representatives of N-{[2-(4-phenyl-piperazin-1-yl)-ethyl]-phenyl}-arylamides bearing an extended linker were synthesized and immobilized on an agarose-based matrix. This was followed by the identification of specifically bound proteins isolated out of the whole rat brain extract. Inducible flavoprotein NAD(P)H:quinone oxidoreductase (NQO1) was identified as candidates for cellular targets.",
publisher = "Wiley, Hoboken",
journal = "Chemical Biology and Drug Design",
title = "Identification of NQO1 and ferrochelatase as interaction partners for neuroprotective N-{[2-(4-phenyl-piperazin-1-yl)-ethyl]-phenyl}-arylamides",
volume = "92",
number = "1",
pages = "1393-1397",
doi = "10.1111/cbdd.13193"
}
Kostić-Rajačić, S., Schwall, G., Penjišević, J., Andrić, D., Šukalović, V.,& Šoškić, V.. (2018). Identification of NQO1 and ferrochelatase as interaction partners for neuroprotective N-{[2-(4-phenyl-piperazin-1-yl)-ethyl]-phenyl}-arylamides. in Chemical Biology and Drug Design
Wiley, Hoboken., 92(1), 1393-1397.
https://doi.org/10.1111/cbdd.13193
Kostić-Rajačić S, Schwall G, Penjišević J, Andrić D, Šukalović V, Šoškić V. Identification of NQO1 and ferrochelatase as interaction partners for neuroprotective N-{[2-(4-phenyl-piperazin-1-yl)-ethyl]-phenyl}-arylamides. in Chemical Biology and Drug Design. 2018;92(1):1393-1397.
doi:10.1111/cbdd.13193 .
Kostić-Rajačić, Slađana, Schwall, Gerhard, Penjišević, Jelena, Andrić, Deana, Šukalović, Vladimir, Šoškić, Vukić, "Identification of NQO1 and ferrochelatase as interaction partners for neuroprotective N-{[2-(4-phenyl-piperazin-1-yl)-ethyl]-phenyl}-arylamides" in Chemical Biology and Drug Design, 92, no. 1 (2018):1393-1397,
https://doi.org/10.1111/cbdd.13193 . .