Tognetti, Roberto

Link to this page

Authority KeyName Variants
a329c4e4-bb72-4fdf-879a-6b220b9972bc
  • Tognetti, Roberto (4)

Author's Bibliography

Spatial distribution and source identification of heavy metals in European mountain beech forests soils

Štrbac, Snežana; Ranđelović, Dragana; Gajica, Gordana; Hukić, Emira; Stojadinović, Sanja M.; Veselinović, Gorica; Orlić, Jovana; Tognetti, Roberto; Kašanin-Grubin, Milica

(Elsevier, 2022)

TY  - JOUR
AU  - Štrbac, Snežana
AU  - Ranđelović, Dragana
AU  - Gajica, Gordana
AU  - Hukić, Emira
AU  - Stojadinović, Sanja M.
AU  - Veselinović, Gorica
AU  - Orlić, Jovana
AU  - Tognetti, Roberto
AU  - Kašanin-Grubin, Milica
PY  - 2022
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5648
AB  - The main objectives of this research were to (i) investigate the concentration; (ii) characterize the distribution;
(iii) determine the sources apportionment; (iv) estimate environmental and health risks of heavy metals in soil
from mountain beech forest. A total of 76 soil samples from 20 pure beech forest stands from Bosnia and Her-
zegovina (BA), Bulgaria (BG), Check Republic (CZ), Germany (DE), Italy (IT), Poland (PL), Romania (RO), Serbia
(RS), Slovakia (SK), Slovenia (SL), and Spain (ES) were collected. The content of major elements was measured
by X-ray fluorescence spectroscopy (XRF). The content of heavy metals was measured by inductively coupled
plasma–optical emission spectrometry (ICP/OES). Heavy metals had a specific concentration range, which fol-
lowed in soil samples from depth 0–40 cm the common order (low to high): Hg < Cd < As < Co < Pb < Ni < Cu
< Cr < Zn, and from depth 40–80 cm: Hg < Cd < As < Pb < Co < Ni < Cu < Cr < Zn. The grouping of the
examined parameters according to rock types, soil types, and localities indicated the separation of carbonate
rocks from other substrates, luvisol, and rendzina from other soil types, and samples from BA, SL, and IT from
other localities. According to sources apportionment As, Pb and Zn are of anthropogenic origin, Cd, Co, Cr, and Ni are of geogenic origin, while the middle position of Cu and Hg indicates a combined contribution of both
sources. Elements Cd and Hg indicated severe to extremely severe enrichment with a mean value of 24.3 and
70.6, respectively. Based on the determined values Ni, Cr, As and Cd do not pose a health risk.
PB  - Elsevier
T2  - Chemosphere
T1  - Spatial distribution and source identification of heavy metals in European mountain beech forests soils
VL  - 309
SP  - 136662
DO  - 10.1016/j.chemosphere.2022.136662
ER  - 
@article{
author = "Štrbac, Snežana and Ranđelović, Dragana and Gajica, Gordana and Hukić, Emira and Stojadinović, Sanja M. and Veselinović, Gorica and Orlić, Jovana and Tognetti, Roberto and Kašanin-Grubin, Milica",
year = "2022",
abstract = "The main objectives of this research were to (i) investigate the concentration; (ii) characterize the distribution;
(iii) determine the sources apportionment; (iv) estimate environmental and health risks of heavy metals in soil
from mountain beech forest. A total of 76 soil samples from 20 pure beech forest stands from Bosnia and Her-
zegovina (BA), Bulgaria (BG), Check Republic (CZ), Germany (DE), Italy (IT), Poland (PL), Romania (RO), Serbia
(RS), Slovakia (SK), Slovenia (SL), and Spain (ES) were collected. The content of major elements was measured
by X-ray fluorescence spectroscopy (XRF). The content of heavy metals was measured by inductively coupled
plasma–optical emission spectrometry (ICP/OES). Heavy metals had a specific concentration range, which fol-
lowed in soil samples from depth 0–40 cm the common order (low to high): Hg < Cd < As < Co < Pb < Ni < Cu
< Cr < Zn, and from depth 40–80 cm: Hg < Cd < As < Pb < Co < Ni < Cu < Cr < Zn. The grouping of the
examined parameters according to rock types, soil types, and localities indicated the separation of carbonate
rocks from other substrates, luvisol, and rendzina from other soil types, and samples from BA, SL, and IT from
other localities. According to sources apportionment As, Pb and Zn are of anthropogenic origin, Cd, Co, Cr, and Ni are of geogenic origin, while the middle position of Cu and Hg indicates a combined contribution of both
sources. Elements Cd and Hg indicated severe to extremely severe enrichment with a mean value of 24.3 and
70.6, respectively. Based on the determined values Ni, Cr, As and Cd do not pose a health risk.",
publisher = "Elsevier",
journal = "Chemosphere",
title = "Spatial distribution and source identification of heavy metals in European mountain beech forests soils",
volume = "309",
pages = "136662",
doi = "10.1016/j.chemosphere.2022.136662"
}
Štrbac, S., Ranđelović, D., Gajica, G., Hukić, E., Stojadinović, S. M., Veselinović, G., Orlić, J., Tognetti, R.,& Kašanin-Grubin, M.. (2022). Spatial distribution and source identification of heavy metals in European mountain beech forests soils. in Chemosphere
Elsevier., 309, 136662.
https://doi.org/10.1016/j.chemosphere.2022.136662
Štrbac S, Ranđelović D, Gajica G, Hukić E, Stojadinović SM, Veselinović G, Orlić J, Tognetti R, Kašanin-Grubin M. Spatial distribution and source identification of heavy metals in European mountain beech forests soils. in Chemosphere. 2022;309:136662.
doi:10.1016/j.chemosphere.2022.136662 .
Štrbac, Snežana, Ranđelović, Dragana, Gajica, Gordana, Hukić, Emira, Stojadinović, Sanja M., Veselinović, Gorica, Orlić, Jovana, Tognetti, Roberto, Kašanin-Grubin, Milica, "Spatial distribution and source identification of heavy metals in European mountain beech forests soils" in Chemosphere, 309 (2022):136662,
https://doi.org/10.1016/j.chemosphere.2022.136662 . .
6
7
3

Soil erodibility in European mountain beech forests

Kašanin-Grubin, Milica; Hukić, Emira; Bellan, Michal; Bialek, Kamil; Bosela, Michal; Coll, Lluis; Czacharowski, Marcin; Gajica, Gordana; Giammarchi, Francesco; Gömöryová, Erika; del Rio, Miren; Dinca, Lucian; Đogo Mračević, Svetlana; Klopčić, Matija; Mitrović, Suzana; Pach, Maciej; Ranđelović, Dragana; Ruiz-Peinado, Ricardo; Skrzyszewski, Jerzy; Orlić, Jovana; Štrbac, Snežana; Stojadinović, Sanja M.; Tonon, Giustino; Tosti, Tomislav; Uhl, Enno; Veselinović, Gorica; Veselinović, Milorad; Zlatanov, Tzvetan; Tognetti, Roberto

(Canadian Science Publishing, 2021)

TY  - JOUR
AU  - Kašanin-Grubin, Milica
AU  - Hukić, Emira
AU  - Bellan, Michal
AU  - Bialek, Kamil
AU  - Bosela, Michal
AU  - Coll, Lluis
AU  - Czacharowski, Marcin
AU  - Gajica, Gordana
AU  - Giammarchi, Francesco
AU  - Gömöryová, Erika
AU  - del Rio, Miren
AU  - Dinca, Lucian
AU  - Đogo Mračević, Svetlana
AU  - Klopčić, Matija
AU  - Mitrović, Suzana
AU  - Pach, Maciej
AU  - Ranđelović, Dragana
AU  - Ruiz-Peinado, Ricardo
AU  - Skrzyszewski, Jerzy
AU  - Orlić, Jovana
AU  - Štrbac, Snežana
AU  - Stojadinović, Sanja M.
AU  - Tonon, Giustino
AU  - Tosti, Tomislav
AU  - Uhl, Enno
AU  - Veselinović, Gorica
AU  - Veselinović, Milorad
AU  - Zlatanov, Tzvetan
AU  - Tognetti, Roberto
PY  - 2021
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/4840
AB  - Forests in Europe are currently not endangered by soil erosion. However, this can change with climate change or
with intensified forest management practices. Using a newly established network of plots in beech forests across Europe,
the aims of this study were to (i) distinguish soil properties and erodibility indices in relation to bedrock, (ii) determine geochemical
properties and organic carbon (Corg) influencing erodibility, and (iii) assess the effect of soil depth on erodibility
indices. Seventy-six soil samples from 20 beech forests were collected in 11 countries to quantify soil properties influencing
erodibility indices: clay ratio, modified clay ratio, sodium adsorption ratio, and oxides ratio. The results indicate that the
dominant soil properties, determined by bedrock, that correlate with forest soil erodibility indices are Corg, pH, electrical
conductivity, calcium and sodium ions concentrations, total water-soluble cations, and the percentage of sand. According
to the tested indices, soil susceptibility to erosion follows the order granite > andesite > sandstone > quartzite > limestone.
Deeper soil horizons on granite are more susceptible to erosion than surface horizons are, but this is not the case for
soils on limestones. In conclusion, forest management should consider the predisposition of different soil types to erosion.
PB  - Canadian Science Publishing
T2  - Canadian Journal of Forest Research
T1  - Soil erodibility in European mountain beech forests
VL  - 51
IS  - 12
SP  - 1846
EP  - 1855
DO  - 10.1139/cjfr-2020-0361
ER  - 
@article{
author = "Kašanin-Grubin, Milica and Hukić, Emira and Bellan, Michal and Bialek, Kamil and Bosela, Michal and Coll, Lluis and Czacharowski, Marcin and Gajica, Gordana and Giammarchi, Francesco and Gömöryová, Erika and del Rio, Miren and Dinca, Lucian and Đogo Mračević, Svetlana and Klopčić, Matija and Mitrović, Suzana and Pach, Maciej and Ranđelović, Dragana and Ruiz-Peinado, Ricardo and Skrzyszewski, Jerzy and Orlić, Jovana and Štrbac, Snežana and Stojadinović, Sanja M. and Tonon, Giustino and Tosti, Tomislav and Uhl, Enno and Veselinović, Gorica and Veselinović, Milorad and Zlatanov, Tzvetan and Tognetti, Roberto",
year = "2021",
abstract = "Forests in Europe are currently not endangered by soil erosion. However, this can change with climate change or
with intensified forest management practices. Using a newly established network of plots in beech forests across Europe,
the aims of this study were to (i) distinguish soil properties and erodibility indices in relation to bedrock, (ii) determine geochemical
properties and organic carbon (Corg) influencing erodibility, and (iii) assess the effect of soil depth on erodibility
indices. Seventy-six soil samples from 20 beech forests were collected in 11 countries to quantify soil properties influencing
erodibility indices: clay ratio, modified clay ratio, sodium adsorption ratio, and oxides ratio. The results indicate that the
dominant soil properties, determined by bedrock, that correlate with forest soil erodibility indices are Corg, pH, electrical
conductivity, calcium and sodium ions concentrations, total water-soluble cations, and the percentage of sand. According
to the tested indices, soil susceptibility to erosion follows the order granite > andesite > sandstone > quartzite > limestone.
Deeper soil horizons on granite are more susceptible to erosion than surface horizons are, but this is not the case for
soils on limestones. In conclusion, forest management should consider the predisposition of different soil types to erosion.",
publisher = "Canadian Science Publishing",
journal = "Canadian Journal of Forest Research",
title = "Soil erodibility in European mountain beech forests",
volume = "51",
number = "12",
pages = "1846-1855",
doi = "10.1139/cjfr-2020-0361"
}
Kašanin-Grubin, M., Hukić, E., Bellan, M., Bialek, K., Bosela, M., Coll, L., Czacharowski, M., Gajica, G., Giammarchi, F., Gömöryová, E., del Rio, M., Dinca, L., Đogo Mračević, S., Klopčić, M., Mitrović, S., Pach, M., Ranđelović, D., Ruiz-Peinado, R., Skrzyszewski, J., Orlić, J., Štrbac, S., Stojadinović, S. M., Tonon, G., Tosti, T., Uhl, E., Veselinović, G., Veselinović, M., Zlatanov, T.,& Tognetti, R.. (2021). Soil erodibility in European mountain beech forests. in Canadian Journal of Forest Research
Canadian Science Publishing., 51(12), 1846-1855.
https://doi.org/10.1139/cjfr-2020-0361
Kašanin-Grubin M, Hukić E, Bellan M, Bialek K, Bosela M, Coll L, Czacharowski M, Gajica G, Giammarchi F, Gömöryová E, del Rio M, Dinca L, Đogo Mračević S, Klopčić M, Mitrović S, Pach M, Ranđelović D, Ruiz-Peinado R, Skrzyszewski J, Orlić J, Štrbac S, Stojadinović SM, Tonon G, Tosti T, Uhl E, Veselinović G, Veselinović M, Zlatanov T, Tognetti R. Soil erodibility in European mountain beech forests. in Canadian Journal of Forest Research. 2021;51(12):1846-1855.
doi:10.1139/cjfr-2020-0361 .
Kašanin-Grubin, Milica, Hukić, Emira, Bellan, Michal, Bialek, Kamil, Bosela, Michal, Coll, Lluis, Czacharowski, Marcin, Gajica, Gordana, Giammarchi, Francesco, Gömöryová, Erika, del Rio, Miren, Dinca, Lucian, Đogo Mračević, Svetlana, Klopčić, Matija, Mitrović, Suzana, Pach, Maciej, Ranđelović, Dragana, Ruiz-Peinado, Ricardo, Skrzyszewski, Jerzy, Orlić, Jovana, Štrbac, Snežana, Stojadinović, Sanja M., Tonon, Giustino, Tosti, Tomislav, Uhl, Enno, Veselinović, Gorica, Veselinović, Milorad, Zlatanov, Tzvetan, Tognetti, Roberto, "Soil erodibility in European mountain beech forests" in Canadian Journal of Forest Research, 51, no. 12 (2021):1846-1855,
https://doi.org/10.1139/cjfr-2020-0361 . .
4
1
4
4

Soil erodibility in European mountain beech forests

Kašanin-Grubin, Milica; Hukić, Emira; Bellan, Michal; Bialek, Kamil; Bosela, Michal; Coll, Lluis; Czacharowski, Marcin; Gajica, Gordana; Giammarchi, Francesco; Gömöryová, Erika; del Rio, Miren; Dinca, Lucian; Đogo Mračević, Svetlana; Klopčić, Matija; Mitrović, Suzana; Pach, Maciej; Ranđelović, Dragana; Ruiz-Peinado, Ricardo; Skrzyszewski, Jerzy; Orlić, Jovana; Štrbac, Snežana; Stojadinović, Sanja M.; Tonon, Giustino; Tosti, Tomislav; Uhl, Enno; Veselinović, Gorica; Veselinović, Milorad; Zlatanov, Tzvetan; Tognetti, Roberto

(Canadian Science Publishing, 2021)

TY  - JOUR
AU  - Kašanin-Grubin, Milica
AU  - Hukić, Emira
AU  - Bellan, Michal
AU  - Bialek, Kamil
AU  - Bosela, Michal
AU  - Coll, Lluis
AU  - Czacharowski, Marcin
AU  - Gajica, Gordana
AU  - Giammarchi, Francesco
AU  - Gömöryová, Erika
AU  - del Rio, Miren
AU  - Dinca, Lucian
AU  - Đogo Mračević, Svetlana
AU  - Klopčić, Matija
AU  - Mitrović, Suzana
AU  - Pach, Maciej
AU  - Ranđelović, Dragana
AU  - Ruiz-Peinado, Ricardo
AU  - Skrzyszewski, Jerzy
AU  - Orlić, Jovana
AU  - Štrbac, Snežana
AU  - Stojadinović, Sanja M.
AU  - Tonon, Giustino
AU  - Tosti, Tomislav
AU  - Uhl, Enno
AU  - Veselinović, Gorica
AU  - Veselinović, Milorad
AU  - Zlatanov, Tzvetan
AU  - Tognetti, Roberto
PY  - 2021
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/4841
AB  - Forests in Europe are currently not endangered by soil erosion. However, this can change with climate change orwith intensified forest management practices. Using a newly established network of plots in beech forests across Europe,the aims of this study were to (i) distinguish soil properties and erodibility indices in relation to bedrock, (ii) determine geochemicalproperties and organic carbon (Corg) influencing erodibility, and (iii) assess the effect of soil depth on erodibilityindices. Seventy-six soil samples from 20 beech forests were collected in 11 countries to quantify soil properties influencingerodibility indices: clay ratio, modified clay ratio, sodium adsorption ratio, and oxides ratio. The results indicate that thedominant soil properties, determined by bedrock, that correlate with forest soil erodibility indices are Corg, pH, electricalconductivity, calcium and sodium ions concentrations, total water-soluble cations, and the percentage of sand. Accordingto the tested indices, soil susceptibility to erosion follows the order granite > andesite > sandstone > quartzite > limestone.Deeper soil horizons on granite are more susceptible to erosion than surface horizons are, but this is not the case forsoils on limestones. In conclusion, forest management should consider the predisposition of different soil types to erosion.
PB  - Canadian Science Publishing
T2  - Canadian Journal of Forest Research
T1  - Soil erodibility in European mountain beech forests
VL  - 51
IS  - 12
SP  - 1846
EP  - 1855
DO  - 10.1139/cjfr-2020-0361
ER  - 
@article{
author = "Kašanin-Grubin, Milica and Hukić, Emira and Bellan, Michal and Bialek, Kamil and Bosela, Michal and Coll, Lluis and Czacharowski, Marcin and Gajica, Gordana and Giammarchi, Francesco and Gömöryová, Erika and del Rio, Miren and Dinca, Lucian and Đogo Mračević, Svetlana and Klopčić, Matija and Mitrović, Suzana and Pach, Maciej and Ranđelović, Dragana and Ruiz-Peinado, Ricardo and Skrzyszewski, Jerzy and Orlić, Jovana and Štrbac, Snežana and Stojadinović, Sanja M. and Tonon, Giustino and Tosti, Tomislav and Uhl, Enno and Veselinović, Gorica and Veselinović, Milorad and Zlatanov, Tzvetan and Tognetti, Roberto",
year = "2021",
abstract = "Forests in Europe are currently not endangered by soil erosion. However, this can change with climate change orwith intensified forest management practices. Using a newly established network of plots in beech forests across Europe,the aims of this study were to (i) distinguish soil properties and erodibility indices in relation to bedrock, (ii) determine geochemicalproperties and organic carbon (Corg) influencing erodibility, and (iii) assess the effect of soil depth on erodibilityindices. Seventy-six soil samples from 20 beech forests were collected in 11 countries to quantify soil properties influencingerodibility indices: clay ratio, modified clay ratio, sodium adsorption ratio, and oxides ratio. The results indicate that thedominant soil properties, determined by bedrock, that correlate with forest soil erodibility indices are Corg, pH, electricalconductivity, calcium and sodium ions concentrations, total water-soluble cations, and the percentage of sand. Accordingto the tested indices, soil susceptibility to erosion follows the order granite > andesite > sandstone > quartzite > limestone.Deeper soil horizons on granite are more susceptible to erosion than surface horizons are, but this is not the case forsoils on limestones. In conclusion, forest management should consider the predisposition of different soil types to erosion.",
publisher = "Canadian Science Publishing",
journal = "Canadian Journal of Forest Research",
title = "Soil erodibility in European mountain beech forests",
volume = "51",
number = "12",
pages = "1846-1855",
doi = "10.1139/cjfr-2020-0361"
}
Kašanin-Grubin, M., Hukić, E., Bellan, M., Bialek, K., Bosela, M., Coll, L., Czacharowski, M., Gajica, G., Giammarchi, F., Gömöryová, E., del Rio, M., Dinca, L., Đogo Mračević, S., Klopčić, M., Mitrović, S., Pach, M., Ranđelović, D., Ruiz-Peinado, R., Skrzyszewski, J., Orlić, J., Štrbac, S., Stojadinović, S. M., Tonon, G., Tosti, T., Uhl, E., Veselinović, G., Veselinović, M., Zlatanov, T.,& Tognetti, R.. (2021). Soil erodibility in European mountain beech forests. in Canadian Journal of Forest Research
Canadian Science Publishing., 51(12), 1846-1855.
https://doi.org/10.1139/cjfr-2020-0361
Kašanin-Grubin M, Hukić E, Bellan M, Bialek K, Bosela M, Coll L, Czacharowski M, Gajica G, Giammarchi F, Gömöryová E, del Rio M, Dinca L, Đogo Mračević S, Klopčić M, Mitrović S, Pach M, Ranđelović D, Ruiz-Peinado R, Skrzyszewski J, Orlić J, Štrbac S, Stojadinović SM, Tonon G, Tosti T, Uhl E, Veselinović G, Veselinović M, Zlatanov T, Tognetti R. Soil erodibility in European mountain beech forests. in Canadian Journal of Forest Research. 2021;51(12):1846-1855.
doi:10.1139/cjfr-2020-0361 .
Kašanin-Grubin, Milica, Hukić, Emira, Bellan, Michal, Bialek, Kamil, Bosela, Michal, Coll, Lluis, Czacharowski, Marcin, Gajica, Gordana, Giammarchi, Francesco, Gömöryová, Erika, del Rio, Miren, Dinca, Lucian, Đogo Mračević, Svetlana, Klopčić, Matija, Mitrović, Suzana, Pach, Maciej, Ranđelović, Dragana, Ruiz-Peinado, Ricardo, Skrzyszewski, Jerzy, Orlić, Jovana, Štrbac, Snežana, Stojadinović, Sanja M., Tonon, Giustino, Tosti, Tomislav, Uhl, Enno, Veselinović, Gorica, Veselinović, Milorad, Zlatanov, Tzvetan, Tognetti, Roberto, "Soil erodibility in European mountain beech forests" in Canadian Journal of Forest Research, 51, no. 12 (2021):1846-1855,
https://doi.org/10.1139/cjfr-2020-0361 . .
4
1
4
4

Erratum: Soil erodibility in European mountain beech forests (Can. J. For. Res. 51, 12, 1846–1855, 2021, 10.1139/cjfr-2020-0361)

Kašanin-Grubin, Milica; Hukić, Emira; Bellan, Michal; Bialek, Kamil; Bosela, Michal; Coll, Lluis; Czacharowski, Marcin; Gajica, Gordana; Giammarchi, Francesco; Gömöryová, Erika; del Rio, Miren; Dinca, Lucian; Đogo Mračević, Svetlana; Klopčić, Matija; Mitrović, Suzana; Pach, Maciej; Ranđelović, Dragana; Ruiz-Peinado, Ricardo; Skrzyszewski, Jerzy; Orlić, Jovana; Štrbac, Snežana; Stojadinović, Sanja M.; Tonon, Giustino; Tosti, Tomislav; Uhl, Enno; Veselinović, Gorica; Veselinović, Milorad; Zlatanov, Tzvetan; Tognetti, Roberto

(Canadian Science Publishing, 2021)

TY  - JOUR
AU  - Kašanin-Grubin, Milica
AU  - Hukić, Emira
AU  - Bellan, Michal
AU  - Bialek, Kamil
AU  - Bosela, Michal
AU  - Coll, Lluis
AU  - Czacharowski, Marcin
AU  - Gajica, Gordana
AU  - Giammarchi, Francesco
AU  - Gömöryová, Erika
AU  - del Rio, Miren
AU  - Dinca, Lucian
AU  - Đogo Mračević, Svetlana
AU  - Klopčić, Matija
AU  - Mitrović, Suzana
AU  - Pach, Maciej
AU  - Ranđelović, Dragana
AU  - Ruiz-Peinado, Ricardo
AU  - Skrzyszewski, Jerzy
AU  - Orlić, Jovana
AU  - Štrbac, Snežana
AU  - Stojadinović, Sanja M.
AU  - Tonon, Giustino
AU  - Tosti, Tomislav
AU  - Uhl, Enno
AU  - Veselinović, Gorica
AU  - Veselinović, Milorad
AU  - Zlatanov, Tzvetan
AU  - Tognetti, Roberto
PY  - 2021
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/4840
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/4891
AB  - Forests in Europe are currently not endangered by soil erosion. However, this can change with climate change orwith intensified forest management practices. Using a newly established network of plots in beech forests across Europe,the aims of this study were to (i) distinguish soil properties and erodibility indices in relation to bedrock, (ii) determine geochemicalproperties and organic carbon (Corg) influencing erodibility, and (iii) assess the effect of soil depth on erodibilityindices. Seventy-six soil samples from 20 beech forests were collected in 11 countries to quantify soil properties influencingerodibility indices: clay ratio, modified clay ratio, sodium adsorption ratio, and oxides ratio. The results indicate that thedominant soil properties, determined by bedrock, that correlate with forest soil erodibility indices are Corg, pH, electricalconductivity, calcium and sodium ions concentrations, total water-soluble cations, and the percentage of sand. Accordingto the tested indices, soil susceptibility to erosion follows the order granite > andesite > sandstone > quartzite > limestone.Deeper soil horizons on granite are more susceptible to erosion than surface horizons are, but this is not the case forsoils on limestones. In conclusion, forest management should consider the predisposition of different soil types to erosion.
PB  - Canadian Science Publishing
T2  - Canadian Journal of Forest Research
T1  - Erratum: Soil erodibility in European mountain beech forests (Can. J. For. Res. 51, 12, 1846–1855, 2021, 10.1139/cjfr-2020-0361)
VL  - 51
IS  - 12
SP  - 1846
EP  - 1855
DO  - 10.1139/cjfr-2021-0347
ER  - 
@article{
author = "Kašanin-Grubin, Milica and Hukić, Emira and Bellan, Michal and Bialek, Kamil and Bosela, Michal and Coll, Lluis and Czacharowski, Marcin and Gajica, Gordana and Giammarchi, Francesco and Gömöryová, Erika and del Rio, Miren and Dinca, Lucian and Đogo Mračević, Svetlana and Klopčić, Matija and Mitrović, Suzana and Pach, Maciej and Ranđelović, Dragana and Ruiz-Peinado, Ricardo and Skrzyszewski, Jerzy and Orlić, Jovana and Štrbac, Snežana and Stojadinović, Sanja M. and Tonon, Giustino and Tosti, Tomislav and Uhl, Enno and Veselinović, Gorica and Veselinović, Milorad and Zlatanov, Tzvetan and Tognetti, Roberto",
year = "2021",
abstract = "Forests in Europe are currently not endangered by soil erosion. However, this can change with climate change orwith intensified forest management practices. Using a newly established network of plots in beech forests across Europe,the aims of this study were to (i) distinguish soil properties and erodibility indices in relation to bedrock, (ii) determine geochemicalproperties and organic carbon (Corg) influencing erodibility, and (iii) assess the effect of soil depth on erodibilityindices. Seventy-six soil samples from 20 beech forests were collected in 11 countries to quantify soil properties influencingerodibility indices: clay ratio, modified clay ratio, sodium adsorption ratio, and oxides ratio. The results indicate that thedominant soil properties, determined by bedrock, that correlate with forest soil erodibility indices are Corg, pH, electricalconductivity, calcium and sodium ions concentrations, total water-soluble cations, and the percentage of sand. Accordingto the tested indices, soil susceptibility to erosion follows the order granite > andesite > sandstone > quartzite > limestone.Deeper soil horizons on granite are more susceptible to erosion than surface horizons are, but this is not the case forsoils on limestones. In conclusion, forest management should consider the predisposition of different soil types to erosion.",
publisher = "Canadian Science Publishing",
journal = "Canadian Journal of Forest Research",
title = "Erratum: Soil erodibility in European mountain beech forests (Can. J. For. Res. 51, 12, 1846–1855, 2021, 10.1139/cjfr-2020-0361)",
volume = "51",
number = "12",
pages = "1846-1855",
doi = "10.1139/cjfr-2021-0347"
}
Kašanin-Grubin, M., Hukić, E., Bellan, M., Bialek, K., Bosela, M., Coll, L., Czacharowski, M., Gajica, G., Giammarchi, F., Gömöryová, E., del Rio, M., Dinca, L., Đogo Mračević, S., Klopčić, M., Mitrović, S., Pach, M., Ranđelović, D., Ruiz-Peinado, R., Skrzyszewski, J., Orlić, J., Štrbac, S., Stojadinović, S. M., Tonon, G., Tosti, T., Uhl, E., Veselinović, G., Veselinović, M., Zlatanov, T.,& Tognetti, R.. (2021). Erratum: Soil erodibility in European mountain beech forests (Can. J. For. Res. 51, 12, 1846–1855, 2021, 10.1139/cjfr-2020-0361). in Canadian Journal of Forest Research
Canadian Science Publishing., 51(12), 1846-1855.
https://doi.org/10.1139/cjfr-2021-0347
Kašanin-Grubin M, Hukić E, Bellan M, Bialek K, Bosela M, Coll L, Czacharowski M, Gajica G, Giammarchi F, Gömöryová E, del Rio M, Dinca L, Đogo Mračević S, Klopčić M, Mitrović S, Pach M, Ranđelović D, Ruiz-Peinado R, Skrzyszewski J, Orlić J, Štrbac S, Stojadinović SM, Tonon G, Tosti T, Uhl E, Veselinović G, Veselinović M, Zlatanov T, Tognetti R. Erratum: Soil erodibility in European mountain beech forests (Can. J. For. Res. 51, 12, 1846–1855, 2021, 10.1139/cjfr-2020-0361). in Canadian Journal of Forest Research. 2021;51(12):1846-1855.
doi:10.1139/cjfr-2021-0347 .
Kašanin-Grubin, Milica, Hukić, Emira, Bellan, Michal, Bialek, Kamil, Bosela, Michal, Coll, Lluis, Czacharowski, Marcin, Gajica, Gordana, Giammarchi, Francesco, Gömöryová, Erika, del Rio, Miren, Dinca, Lucian, Đogo Mračević, Svetlana, Klopčić, Matija, Mitrović, Suzana, Pach, Maciej, Ranđelović, Dragana, Ruiz-Peinado, Ricardo, Skrzyszewski, Jerzy, Orlić, Jovana, Štrbac, Snežana, Stojadinović, Sanja M., Tonon, Giustino, Tosti, Tomislav, Uhl, Enno, Veselinović, Gorica, Veselinović, Milorad, Zlatanov, Tzvetan, Tognetti, Roberto, "Erratum: Soil erodibility in European mountain beech forests (Can. J. For. Res. 51, 12, 1846–1855, 2021, 10.1139/cjfr-2020-0361)" in Canadian Journal of Forest Research, 51, no. 12 (2021):1846-1855,
https://doi.org/10.1139/cjfr-2021-0347 . .