Crampon, Marc

Link to this page

Authority KeyName Variants
bac33fc2-0b6b-46fa-b038-bcd678ebacc4
  • Crampon, Marc (1)
Projects

Author's Bibliography

Scientifc Strategy for PFAS Analysis and Bioremediation at UBFC (2023-2033)

Beškoski, Vladimir; Lješević, Marija; Lončarević, Branka; Božić, Tatjana T.; Relić, Dubravka; Vujisić, Ljubodrag V.; Gruden-Pavlović, Maja; Lugonja, Nikoleta; Jiménez, Begoña; Colomer Vidal, Pere; Muñoz Arnanz, Juan; Battaglia, Fabienne; Crampon, Marc

(University of Belgrade – Faculty of Chemistry, 2023)

TY  - GEN
AU  - Beškoski, Vladimir
AU  - Lješević, Marija
AU  - Lončarević, Branka
AU  - Božić, Tatjana T.
AU  - Relić, Dubravka
AU  - Vujisić, Ljubodrag V.
AU  - Gruden-Pavlović, Maja
AU  - Lugonja, Nikoleta
AU  - Jiménez, Begoña
AU  - Colomer Vidal, Pere
AU  - Muñoz Arnanz, Juan
AU  - Battaglia, Fabienne
AU  - Crampon, Marc
PY  - 2023
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/6048
AB  - Per- and polyfluoroalkyl substances (PFAS) are a group of synthetic chemicals that have been widely used in various industrial and consumer products due to their unique properties, such as oil and water repellency, thermal stability, and durability. However, the persistence and mobility of these chemicals in the environment have raised concerns about their potential adverse effects on human health and the environment. PFAS have been detected on a global scale in various environmental media, such as soil, water, air, and biota. As a country undergoing economic development and transition, Serbia faces the challenge of managing and addressing the PFAS contamination in its environment. This challenge requires a comprehensive and science-based strategy that can effectively reduce the exposure and risks of PFAS to human health and the environment. This document aims to provide a scientific strategy for solving the PFAS challenge in Serbia. Firstly, it is important to acknowledge that PFAS are persistent and bioaccumulative in the environment, which means that they do not break down easily and can accumulate in the food chain, posing a long-term risk to human health and the environment. Therefore, a precautionary approach is necessary to minimize the exposure and risks of PFAS. International experience and cooperation are very important for developing an effective scientifc strategy for addressing the PFAS challenge in Serbia. PFAS are a global issue, and many countries have already implemented measures to manage and reduce the exposure and risks of PFAS. Therefore, it is important to draw on international experience and best practices when developing the strategy for Serbia. International experience can provide valuable insights into the sources, pathways, and fate of PFAS, as well as the e"ectiveness of various risk management measures. For example, the United States, Canada, and some European countries have established regulatory frameworks for PFAS, which can serve as a model for Serbia. Other countries have implemented remediation measures for contaminated sites, which can provide valuable insights for selecting appropriate remediation technologies in Serbia. Moreover, international experience can provide access to the latest scientific knowledge, methods, and technologies for assessing and managing PFAS contamination. For example, international organizations such as the United Nations Environment Programme (UNEP) and the Organization for Economic Co-operation and Development (OECD) have developed guidance documents and tools for assessing and managing PFAS contamination. The scientific strategy for solving the PFAS challenge in Serbia is based on a thorough understanding of the sources, pathways, and fate of PFAS in the environment. It is also based on a comprehensive and systematic approach, including risk assessment, monitoring, regulation, remediation, and communication. This strategy is tailored to the specific context and needs of Serbia. It is based on the latest scientifc knowledge and practical experience from other countries and regions, focusing on the European Union, USA, China and Japan. The cultural, social, economic, and political factors can affect the implementation and effectiveness of the strategy, and therefore, the strategy is developed through a collaborative and participatory process involving stakeholders from different sectors and levels. The international experience provided helpful guidance and lessons learned, but ultimately, the strategy is based on local knowledge, priorities, and capacities. By implementing this strategy, we aim to contribute to that Serbia can protect its citizens and environment from the potential harm of PFAS and achieve sustainable development.
PB  - University of Belgrade – Faculty of Chemistry
T1  - Scientifc Strategy for PFAS Analysis and Bioremediation at UBFC  (2023-2033)
UR  - https://hdl.handle.net/21.15107/rcub_cherry_6048
ER  - 
@misc{
author = "Beškoski, Vladimir and Lješević, Marija and Lončarević, Branka and Božić, Tatjana T. and Relić, Dubravka and Vujisić, Ljubodrag V. and Gruden-Pavlović, Maja and Lugonja, Nikoleta and Jiménez, Begoña and Colomer Vidal, Pere and Muñoz Arnanz, Juan and Battaglia, Fabienne and Crampon, Marc",
year = "2023",
abstract = "Per- and polyfluoroalkyl substances (PFAS) are a group of synthetic chemicals that have been widely used in various industrial and consumer products due to their unique properties, such as oil and water repellency, thermal stability, and durability. However, the persistence and mobility of these chemicals in the environment have raised concerns about their potential adverse effects on human health and the environment. PFAS have been detected on a global scale in various environmental media, such as soil, water, air, and biota. As a country undergoing economic development and transition, Serbia faces the challenge of managing and addressing the PFAS contamination in its environment. This challenge requires a comprehensive and science-based strategy that can effectively reduce the exposure and risks of PFAS to human health and the environment. This document aims to provide a scientific strategy for solving the PFAS challenge in Serbia. Firstly, it is important to acknowledge that PFAS are persistent and bioaccumulative in the environment, which means that they do not break down easily and can accumulate in the food chain, posing a long-term risk to human health and the environment. Therefore, a precautionary approach is necessary to minimize the exposure and risks of PFAS. International experience and cooperation are very important for developing an effective scientifc strategy for addressing the PFAS challenge in Serbia. PFAS are a global issue, and many countries have already implemented measures to manage and reduce the exposure and risks of PFAS. Therefore, it is important to draw on international experience and best practices when developing the strategy for Serbia. International experience can provide valuable insights into the sources, pathways, and fate of PFAS, as well as the e"ectiveness of various risk management measures. For example, the United States, Canada, and some European countries have established regulatory frameworks for PFAS, which can serve as a model for Serbia. Other countries have implemented remediation measures for contaminated sites, which can provide valuable insights for selecting appropriate remediation technologies in Serbia. Moreover, international experience can provide access to the latest scientific knowledge, methods, and technologies for assessing and managing PFAS contamination. For example, international organizations such as the United Nations Environment Programme (UNEP) and the Organization for Economic Co-operation and Development (OECD) have developed guidance documents and tools for assessing and managing PFAS contamination. The scientific strategy for solving the PFAS challenge in Serbia is based on a thorough understanding of the sources, pathways, and fate of PFAS in the environment. It is also based on a comprehensive and systematic approach, including risk assessment, monitoring, regulation, remediation, and communication. This strategy is tailored to the specific context and needs of Serbia. It is based on the latest scientifc knowledge and practical experience from other countries and regions, focusing on the European Union, USA, China and Japan. The cultural, social, economic, and political factors can affect the implementation and effectiveness of the strategy, and therefore, the strategy is developed through a collaborative and participatory process involving stakeholders from different sectors and levels. The international experience provided helpful guidance and lessons learned, but ultimately, the strategy is based on local knowledge, priorities, and capacities. By implementing this strategy, we aim to contribute to that Serbia can protect its citizens and environment from the potential harm of PFAS and achieve sustainable development.",
publisher = "University of Belgrade – Faculty of Chemistry",
title = "Scientifc Strategy for PFAS Analysis and Bioremediation at UBFC  (2023-2033)",
url = "https://hdl.handle.net/21.15107/rcub_cherry_6048"
}
Beškoski, V., Lješević, M., Lončarević, B., Božić, T. T., Relić, D., Vujisić, L. V., Gruden-Pavlović, M., Lugonja, N., Jiménez, B., Colomer Vidal, P., Muñoz Arnanz, J., Battaglia, F.,& Crampon, M.. (2023). Scientifc Strategy for PFAS Analysis and Bioremediation at UBFC  (2023-2033). 
University of Belgrade – Faculty of Chemistry..
https://hdl.handle.net/21.15107/rcub_cherry_6048
Beškoski V, Lješević M, Lončarević B, Božić TT, Relić D, Vujisić LV, Gruden-Pavlović M, Lugonja N, Jiménez B, Colomer Vidal P, Muñoz Arnanz J, Battaglia F, Crampon M. Scientifc Strategy for PFAS Analysis and Bioremediation at UBFC  (2023-2033). 2023;.
https://hdl.handle.net/21.15107/rcub_cherry_6048 .
Beškoski, Vladimir, Lješević, Marija, Lončarević, Branka, Božić, Tatjana T., Relić, Dubravka, Vujisić, Ljubodrag V., Gruden-Pavlović, Maja, Lugonja, Nikoleta, Jiménez, Begoña, Colomer Vidal, Pere, Muñoz Arnanz, Juan, Battaglia, Fabienne, Crampon, Marc, "Scientifc Strategy for PFAS Analysis and Bioremediation at UBFC  (2023-2033)" (2023),
https://hdl.handle.net/21.15107/rcub_cherry_6048 .