Kovačević, Gordana

Link to this page

Authority KeyName Variants
orcid::0000-0002-3184-5159
  • Kovačević, Gordana (14)

Author's Bibliography

Production of fructose and gluconic acid from sucrose with cross-linked yeast cell walls expressing glucose oxidase on the surface

Kovačević, Gordana; Elgahwash, Reyadh Gomah Amar; Blažić, Marija; Pantić, Nevena; Prodanović, Olivera; Balaž, Ana Marija; Prodanović, Radivoje

(Elsevier, 2022)

TY  - JOUR
AU  - Kovačević, Gordana
AU  - Elgahwash, Reyadh Gomah Amar
AU  - Blažić, Marija
AU  - Pantić, Nevena
AU  - Prodanović, Olivera
AU  - Balaž, Ana Marija
AU  - Prodanović, Radivoje
PY  - 2022
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5979
AB  - Saccharomyces cerevisiae, known as bakers’ yeast, is one of the most utilized yeasts in industry. Several enzymes that are naturally produced by yeast, such as invertase and catalase, combined with heterologously expressed glucose oxidase (GOx), represent the enzyme machinery for fructose and gluconic acid production. Therefore, we have used yeast cell walls with expressed glucose oxidase as a platform for crosslinking with invertase and catalase to create biocatalyst cells for the high yield sucrose conversion. Using 5% (w/v) suspension of cross-linked yeast cell walls in 0.15 M sucrose solution, 1.86 g L−1 h−1 of gluconic acid has been obtained using wt-GOx, while mutant A2-GOx produced 2.91 g L−1 h−1 of gluconic acid. Increasing the concentration of modified yeast cells walls to 10% (w/v) we were able to obtain almost 100% conversion of glucose to gluconic acid using A2-GOx in the first cycle. Reusing the modified cells walls in three consecutive cycles, conversion dropped to approximately 70% using A2-GOx and 40% using wt-GOx.
PB  - Elsevier
T2  - Molecular Catalysis
T1  - Production of fructose and gluconic acid from sucrose with cross-linked yeast cell walls expressing glucose oxidase on the surface
VL  - 522
IS  - 112215
DO  - 10.1016/j.mcat.2022.112215
ER  - 
@article{
author = "Kovačević, Gordana and Elgahwash, Reyadh Gomah Amar and Blažić, Marija and Pantić, Nevena and Prodanović, Olivera and Balaž, Ana Marija and Prodanović, Radivoje",
year = "2022",
abstract = "Saccharomyces cerevisiae, known as bakers’ yeast, is one of the most utilized yeasts in industry. Several enzymes that are naturally produced by yeast, such as invertase and catalase, combined with heterologously expressed glucose oxidase (GOx), represent the enzyme machinery for fructose and gluconic acid production. Therefore, we have used yeast cell walls with expressed glucose oxidase as a platform for crosslinking with invertase and catalase to create biocatalyst cells for the high yield sucrose conversion. Using 5% (w/v) suspension of cross-linked yeast cell walls in 0.15 M sucrose solution, 1.86 g L−1 h−1 of gluconic acid has been obtained using wt-GOx, while mutant A2-GOx produced 2.91 g L−1 h−1 of gluconic acid. Increasing the concentration of modified yeast cells walls to 10% (w/v) we were able to obtain almost 100% conversion of glucose to gluconic acid using A2-GOx in the first cycle. Reusing the modified cells walls in three consecutive cycles, conversion dropped to approximately 70% using A2-GOx and 40% using wt-GOx.",
publisher = "Elsevier",
journal = "Molecular Catalysis",
title = "Production of fructose and gluconic acid from sucrose with cross-linked yeast cell walls expressing glucose oxidase on the surface",
volume = "522",
number = "112215",
doi = "10.1016/j.mcat.2022.112215"
}
Kovačević, G., Elgahwash, R. G. A., Blažić, M., Pantić, N., Prodanović, O., Balaž, A. M.,& Prodanović, R.. (2022). Production of fructose and gluconic acid from sucrose with cross-linked yeast cell walls expressing glucose oxidase on the surface. in Molecular Catalysis
Elsevier., 522(112215).
https://doi.org/10.1016/j.mcat.2022.112215
Kovačević G, Elgahwash RGA, Blažić M, Pantić N, Prodanović O, Balaž AM, Prodanović R. Production of fructose and gluconic acid from sucrose with cross-linked yeast cell walls expressing glucose oxidase on the surface. in Molecular Catalysis. 2022;522(112215).
doi:10.1016/j.mcat.2022.112215 .
Kovačević, Gordana, Elgahwash, Reyadh Gomah Amar, Blažić, Marija, Pantić, Nevena, Prodanović, Olivera, Balaž, Ana Marija, Prodanović, Radivoje, "Production of fructose and gluconic acid from sucrose with cross-linked yeast cell walls expressing glucose oxidase on the surface" in Molecular Catalysis, 522, no. 112215 (2022),
https://doi.org/10.1016/j.mcat.2022.112215 . .
1
3

Application of N,N’-Bis(acetylacetonato)propylenediimine Copper(II) Complex as Mediator for Glucose Biosensor

Perušković, Danica S.; Stevanović, Nikola R.; Kovačević, Gordana; Stanković, Dalibor; Lolić, Aleksandar; Baošić, Rada

(Wiley-Blackwell, 2020)

TY  - JOUR
AU  - Perušković, Danica S.
AU  - Stevanović, Nikola R.
AU  - Kovačević, Gordana
AU  - Stanković, Dalibor
AU  - Lolić, Aleksandar
AU  - Baošić, Rada
PY  - 2020
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3976
AB  - A new glucose biosensor for selective and sensitive determination of glucose in beverage samples was developed. A copper complex with a Schiff base, N,N’-bis(acetylacetonato) propylenediimine, was used as a mediator. It was mixed with glucose oxidase (GOx) and prepared as carbon paste electrode (CPE). Cyclic voltammetry was used for electrochemical measurements. The biosensor showed improved sensitivity when enzyme mediator ratio was 1 : 5, and working pH was 6.6 in 0.1 M phosphate buffer. The linear response of the biosensor for glucose concentration was in the range from 0.5 to 10 mM, with low detection limit of 0.36 mM (calculated as 3 s/n) and sensitivity of 0.16 μA/mM. The reproducibility of the biosensor, calculated as relative standard deviation, was 1.9% for 6 intra-day measurements. Biosensor was stored at +4 °C between experiments, and it was stable during 14 days after the preparation. The developed biosensor was applied on determination of glucose in commercial beverages (apple and cherry juice) and obtained results showed good agreement with the reference method.
PB  - Wiley-Blackwell
T2  - ChemistrySelect
T1  - Application of N,N’-Bis(acetylacetonato)propylenediimine Copper(II) Complex as Mediator for Glucose Biosensor
VL  - 5
IS  - 5
SP  - 1671
EP  - 1675
DO  - 10.1002/slct.201904873
ER  - 
@article{
author = "Perušković, Danica S. and Stevanović, Nikola R. and Kovačević, Gordana and Stanković, Dalibor and Lolić, Aleksandar and Baošić, Rada",
year = "2020",
abstract = "A new glucose biosensor for selective and sensitive determination of glucose in beverage samples was developed. A copper complex with a Schiff base, N,N’-bis(acetylacetonato) propylenediimine, was used as a mediator. It was mixed with glucose oxidase (GOx) and prepared as carbon paste electrode (CPE). Cyclic voltammetry was used for electrochemical measurements. The biosensor showed improved sensitivity when enzyme mediator ratio was 1 : 5, and working pH was 6.6 in 0.1 M phosphate buffer. The linear response of the biosensor for glucose concentration was in the range from 0.5 to 10 mM, with low detection limit of 0.36 mM (calculated as 3 s/n) and sensitivity of 0.16 μA/mM. The reproducibility of the biosensor, calculated as relative standard deviation, was 1.9% for 6 intra-day measurements. Biosensor was stored at +4 °C between experiments, and it was stable during 14 days after the preparation. The developed biosensor was applied on determination of glucose in commercial beverages (apple and cherry juice) and obtained results showed good agreement with the reference method.",
publisher = "Wiley-Blackwell",
journal = "ChemistrySelect",
title = "Application of N,N’-Bis(acetylacetonato)propylenediimine Copper(II) Complex as Mediator for Glucose Biosensor",
volume = "5",
number = "5",
pages = "1671-1675",
doi = "10.1002/slct.201904873"
}
Perušković, D. S., Stevanović, N. R., Kovačević, G., Stanković, D., Lolić, A.,& Baošić, R.. (2020). Application of N,N’-Bis(acetylacetonato)propylenediimine Copper(II) Complex as Mediator for Glucose Biosensor. in ChemistrySelect
Wiley-Blackwell., 5(5), 1671-1675.
https://doi.org/10.1002/slct.201904873
Perušković DS, Stevanović NR, Kovačević G, Stanković D, Lolić A, Baošić R. Application of N,N’-Bis(acetylacetonato)propylenediimine Copper(II) Complex as Mediator for Glucose Biosensor. in ChemistrySelect. 2020;5(5):1671-1675.
doi:10.1002/slct.201904873 .
Perušković, Danica S., Stevanović, Nikola R., Kovačević, Gordana, Stanković, Dalibor, Lolić, Aleksandar, Baošić, Rada, "Application of N,N’-Bis(acetylacetonato)propylenediimine Copper(II) Complex as Mediator for Glucose Biosensor" in ChemistrySelect, 5, no. 5 (2020):1671-1675,
https://doi.org/10.1002/slct.201904873 . .
1
4
2
3
2

Influence of methionine residue position on oxidative stability of glucose oxidase from Aspergillus niger

Kovačević, Gordana; Ostafe, Raluca; Fischer, Rainer; Prodanović, Radivoje

(Elsevier, 2019)

TY  - JOUR
AU  - Kovačević, Gordana
AU  - Ostafe, Raluca
AU  - Fischer, Rainer
AU  - Prodanović, Radivoje
PY  - 2019
AB  - Glucose oxidase (GOx) is a promising candidate for construction of implantable miniature biofuel cells and biosensors for continuous glucose monitoring. The main drawback that limits current application of GOx in these devices is its low stability, especially sensitivity to reactive oxygen species. In order to address this problem, we performed saturation mutagenesis at all 11 methionine residues as their interaction with reactive oxygen species inactivates enzymes. For successful screening of these libraries a method based on yeast surface display (YSD) systems was developed. Mutations at methionine positions close to the GOx active site contributed the most to the oxidative stability, and combinations of the four best single mutations were tested. Combined mutants did not show higher stability or activity compared to the parental single mutants. To confirm oxidative stability of YSD expressed GOx mutants they were re-cloned in Pichia pastoris, purified and immobilized on macroporous copolymer. The additional kinetic analysis of immobilized GOx mutants confirmed that the best mutant with only one mutation close to the active site (M561S) has 2.5 times increased half-life in the presence of hydrogen peroxide compared to the wild-type variant.
PB  - Elsevier
T2  - Biochemical Engineering Journal
T1  - Influence of methionine residue position on oxidative stability of glucose oxidase from Aspergillus niger
VL  - 146
SP  - 143
EP  - 149
DO  - 10.1016/j.bej.2019.03.016
ER  - 
@article{
author = "Kovačević, Gordana and Ostafe, Raluca and Fischer, Rainer and Prodanović, Radivoje",
year = "2019",
abstract = "Glucose oxidase (GOx) is a promising candidate for construction of implantable miniature biofuel cells and biosensors for continuous glucose monitoring. The main drawback that limits current application of GOx in these devices is its low stability, especially sensitivity to reactive oxygen species. In order to address this problem, we performed saturation mutagenesis at all 11 methionine residues as their interaction with reactive oxygen species inactivates enzymes. For successful screening of these libraries a method based on yeast surface display (YSD) systems was developed. Mutations at methionine positions close to the GOx active site contributed the most to the oxidative stability, and combinations of the four best single mutations were tested. Combined mutants did not show higher stability or activity compared to the parental single mutants. To confirm oxidative stability of YSD expressed GOx mutants they were re-cloned in Pichia pastoris, purified and immobilized on macroporous copolymer. The additional kinetic analysis of immobilized GOx mutants confirmed that the best mutant with only one mutation close to the active site (M561S) has 2.5 times increased half-life in the presence of hydrogen peroxide compared to the wild-type variant.",
publisher = "Elsevier",
journal = "Biochemical Engineering Journal",
title = "Influence of methionine residue position on oxidative stability of glucose oxidase from Aspergillus niger",
volume = "146",
pages = "143-149",
doi = "10.1016/j.bej.2019.03.016"
}
Kovačević, G., Ostafe, R., Fischer, R.,& Prodanović, R.. (2019). Influence of methionine residue position on oxidative stability of glucose oxidase from Aspergillus niger. in Biochemical Engineering Journal
Elsevier., 146, 143-149.
https://doi.org/10.1016/j.bej.2019.03.016
Kovačević G, Ostafe R, Fischer R, Prodanović R. Influence of methionine residue position on oxidative stability of glucose oxidase from Aspergillus niger. in Biochemical Engineering Journal. 2019;146:143-149.
doi:10.1016/j.bej.2019.03.016 .
Kovačević, Gordana, Ostafe, Raluca, Fischer, Rainer, Prodanović, Radivoje, "Influence of methionine residue position on oxidative stability of glucose oxidase from Aspergillus niger" in Biochemical Engineering Journal, 146 (2019):143-149,
https://doi.org/10.1016/j.bej.2019.03.016 . .
11
7
10
10

Supplementary data for the article: Kovačević, G.; Ostafe, R.; Fischer, R.; Prodanović, R. Influence of Methionine Residue Position on Oxidative Stability of Glucose Oxidase from Aspergillus Niger. Biochemical Engineering Journal 2019, 146, 143–149. https://doi.org/10.1016/j.bej.2019.03.016

Kovačević, Gordana; Ostafe, Raluca; Fischer, Rainer; Prodanović, Radivoje

(Elsevier, 2019)

TY  - DATA
AU  - Kovačević, Gordana
AU  - Ostafe, Raluca
AU  - Fischer, Rainer
AU  - Prodanović, Radivoje
PY  - 2019
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/2882
PB  - Elsevier
T2  - Biochemical Engineering Journal
T1  - Supplementary data for the article: Kovačević, G.; Ostafe, R.; Fischer, R.; Prodanović, R. Influence of Methionine Residue Position on Oxidative Stability of Glucose Oxidase from Aspergillus Niger. Biochemical Engineering Journal 2019, 146, 143–149. https://doi.org/10.1016/j.bej.2019.03.016
UR  - https://hdl.handle.net/21.15107/rcub_cherry_2882
ER  - 
@misc{
author = "Kovačević, Gordana and Ostafe, Raluca and Fischer, Rainer and Prodanović, Radivoje",
year = "2019",
publisher = "Elsevier",
journal = "Biochemical Engineering Journal",
title = "Supplementary data for the article: Kovačević, G.; Ostafe, R.; Fischer, R.; Prodanović, R. Influence of Methionine Residue Position on Oxidative Stability of Glucose Oxidase from Aspergillus Niger. Biochemical Engineering Journal 2019, 146, 143–149. https://doi.org/10.1016/j.bej.2019.03.016",
url = "https://hdl.handle.net/21.15107/rcub_cherry_2882"
}
Kovačević, G., Ostafe, R., Fischer, R.,& Prodanović, R.. (2019). Supplementary data for the article: Kovačević, G.; Ostafe, R.; Fischer, R.; Prodanović, R. Influence of Methionine Residue Position on Oxidative Stability of Glucose Oxidase from Aspergillus Niger. Biochemical Engineering Journal 2019, 146, 143–149. https://doi.org/10.1016/j.bej.2019.03.016. in Biochemical Engineering Journal
Elsevier..
https://hdl.handle.net/21.15107/rcub_cherry_2882
Kovačević G, Ostafe R, Fischer R, Prodanović R. Supplementary data for the article: Kovačević, G.; Ostafe, R.; Fischer, R.; Prodanović, R. Influence of Methionine Residue Position on Oxidative Stability of Glucose Oxidase from Aspergillus Niger. Biochemical Engineering Journal 2019, 146, 143–149. https://doi.org/10.1016/j.bej.2019.03.016. in Biochemical Engineering Journal. 2019;.
https://hdl.handle.net/21.15107/rcub_cherry_2882 .
Kovačević, Gordana, Ostafe, Raluca, Fischer, Rainer, Prodanović, Radivoje, "Supplementary data for the article: Kovačević, G.; Ostafe, R.; Fischer, R.; Prodanović, R. Influence of Methionine Residue Position on Oxidative Stability of Glucose Oxidase from Aspergillus Niger. Biochemical Engineering Journal 2019, 146, 143–149. https://doi.org/10.1016/j.bej.2019.03.016" in Biochemical Engineering Journal (2019),
https://hdl.handle.net/21.15107/rcub_cherry_2882 .

Proteinski inženjering i razvoj visoko efikasnih metoda za pretraživanje biblioteke gena glukoza-oksidaze iz Aspergillus niger u cilju povećanja enzimske aktivnosti i stabilnosti

Kovačević, Gordana

(Универзитет у Београду, Хемијски факултет, 2018)

TY  - THES
AU  - Kovačević, Gordana
PY  - 2018
UR  - http://eteze.bg.ac.rs/application/showtheses?thesesId=6425
UR  - https://fedorabg.bg.ac.rs/fedora/get/o:19139/bdef:Content/download
UR  - http://vbs.rs/scripts/cobiss?command=DISPLAY&base=70036&RID=50764559
UR  - http://nardus.mpn.gov.rs/123456789/10586
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3167
AB  - Glukoza-oksidaza (GOx) je vaţan industrijski enzim koji se predominantno koristi kao biokatalizator u industriji hrane za proizvodnju glukonske kiseline, uklanjanje kiseonika i sterilizaciju. U farmaceutskoj industriji i kliničkoj biohemiji se koristi kao biosenzor za određivanje koncentracije glukoze, dok postoje pokušaji da se iskoristi i za proizvodnju biogorivnih ćelija koje proizvode električnu energiju koristeći glukozu i kiseonik iz ljudske krvi u okvirima nanobiotehnologije. Za rasprostranjeniju primenu GOx neophodno je unaprediti neke od njenih osobina kao što su aktivnost, pH optimum, reaktivnost sa kiseonikom i stabilnost. Jedna od metoda kojom se unapređuju proteini je dirigovana evolucija. Ova metoda podrazumeva iterativne tehnike generisanja biblioteka proteinskih mutanata (ili varijanti) i selekciju proteina sa odgovarajućom ţeljenom funkcijom iz ovih biblioteka.U cilju pronalaţenja mutanata GOx iz Aspergillus niger koji su oksidativno stabilniji i aktivniji, u ovom radu su razvijene dve metode pretraţivanja bazirane na ekspresiji proteina na površini ćelija kvasca. Pored razvoja metoda pretraţivanja ispitivana je i optimizacija ekspresije rekombinantne GOx u kvascu Pichia pastoris za heterolognu ekspresiju mutanata GOx i njihovu kinetičku karakterizaciju.Oksidacija bočnih ostataka amino kiselina je jedan od glavnih razloga nestabilnosti nativne trodimenzionalne strukture GOx. Posebno osetljiv prema oksidaciji je metionin, koji se prevodi u metionin-sulfoksid čak i pod blagim uslovima u prisustvu kiseonika i kiseoničnih reaktivnih vrsta kao što su vodonik-peroksid, superoksid anjon radikal i drugi. Da bi utvrdili uticajpozicije metionina na oksidativnu stabilnost GOx, svih 11 metionina je razmatrano za mesto specifičnu mutagenezu...
AB  - Glucose-oxidase (GOx) is an important industrial enzyme that is predominantly used as a biocatalyst in the food industry for the production of gluconic acid, oxygen removal and sterilization. In the pharmaceutical industry and clinical biochemistry it is used as a biosensor for determining glucose concentration, while there are attempts to utilize it in the production of biofuel cells that produce electricity using glucose and oxygen from human blood within the framework of nanobiotechnology. For the widespread use of GOx it is necessary to improve some of its properties such as activity, pH optimum, reactivity with oxygen and stability. One of the methods for improving proteins is directed evolution. This method involves iterative techniques for generating libraries of protein mutants (or variants) and selecting proteins with the desired function from these libraries.In order to find GOx mutants from Aspergillus niger that are oxidatively more stable and active, in this work two methods of screening based on protein expression on the surface of yeast cells have been developed. In addition to the development of the screening methods, the optimization of the expression of recombinant GOx in yeast Pichia pastoris for heterologous expression of GOx mutants and their kinetic characterization was studied.Aminoacid side chain oxidation is one of the main causes for structural instability of native tridimensional structure of GOx. Particularly sensitive to oxidation is methionine residue, which is converted to methionine sulfoxide even under mild conditions in the presence of oxygen and oxygen reactive species such as hydrogen peroxide, superoxide anion radical and others. In order to determine the effect of the position of the methionine amino acidresidue on the oxidative stability of GOx, all 11 methionines were considered for site directed mutagenesis...
PB  - Универзитет у Београду, Хемијски факултет
T2  - Универзитет у Београду
T1  - Proteinski inženjering i razvoj visoko efikasnih metoda za pretraživanje biblioteke gena glukoza-oksidaze iz Aspergillus niger u cilju povećanja enzimske aktivnosti i stabilnosti
UR  - https://hdl.handle.net/21.15107/rcub_nardus_10586
ER  - 
@phdthesis{
author = "Kovačević, Gordana",
year = "2018",
abstract = "Glukoza-oksidaza (GOx) je vaţan industrijski enzim koji se predominantno koristi kao biokatalizator u industriji hrane za proizvodnju glukonske kiseline, uklanjanje kiseonika i sterilizaciju. U farmaceutskoj industriji i kliničkoj biohemiji se koristi kao biosenzor za određivanje koncentracije glukoze, dok postoje pokušaji da se iskoristi i za proizvodnju biogorivnih ćelija koje proizvode električnu energiju koristeći glukozu i kiseonik iz ljudske krvi u okvirima nanobiotehnologije. Za rasprostranjeniju primenu GOx neophodno je unaprediti neke od njenih osobina kao što su aktivnost, pH optimum, reaktivnost sa kiseonikom i stabilnost. Jedna od metoda kojom se unapređuju proteini je dirigovana evolucija. Ova metoda podrazumeva iterativne tehnike generisanja biblioteka proteinskih mutanata (ili varijanti) i selekciju proteina sa odgovarajućom ţeljenom funkcijom iz ovih biblioteka.U cilju pronalaţenja mutanata GOx iz Aspergillus niger koji su oksidativno stabilniji i aktivniji, u ovom radu su razvijene dve metode pretraţivanja bazirane na ekspresiji proteina na površini ćelija kvasca. Pored razvoja metoda pretraţivanja ispitivana je i optimizacija ekspresije rekombinantne GOx u kvascu Pichia pastoris za heterolognu ekspresiju mutanata GOx i njihovu kinetičku karakterizaciju.Oksidacija bočnih ostataka amino kiselina je jedan od glavnih razloga nestabilnosti nativne trodimenzionalne strukture GOx. Posebno osetljiv prema oksidaciji je metionin, koji se prevodi u metionin-sulfoksid čak i pod blagim uslovima u prisustvu kiseonika i kiseoničnih reaktivnih vrsta kao što su vodonik-peroksid, superoksid anjon radikal i drugi. Da bi utvrdili uticajpozicije metionina na oksidativnu stabilnost GOx, svih 11 metionina je razmatrano za mesto specifičnu mutagenezu..., Glucose-oxidase (GOx) is an important industrial enzyme that is predominantly used as a biocatalyst in the food industry for the production of gluconic acid, oxygen removal and sterilization. In the pharmaceutical industry and clinical biochemistry it is used as a biosensor for determining glucose concentration, while there are attempts to utilize it in the production of biofuel cells that produce electricity using glucose and oxygen from human blood within the framework of nanobiotechnology. For the widespread use of GOx it is necessary to improve some of its properties such as activity, pH optimum, reactivity with oxygen and stability. One of the methods for improving proteins is directed evolution. This method involves iterative techniques for generating libraries of protein mutants (or variants) and selecting proteins with the desired function from these libraries.In order to find GOx mutants from Aspergillus niger that are oxidatively more stable and active, in this work two methods of screening based on protein expression on the surface of yeast cells have been developed. In addition to the development of the screening methods, the optimization of the expression of recombinant GOx in yeast Pichia pastoris for heterologous expression of GOx mutants and their kinetic characterization was studied.Aminoacid side chain oxidation is one of the main causes for structural instability of native tridimensional structure of GOx. Particularly sensitive to oxidation is methionine residue, which is converted to methionine sulfoxide even under mild conditions in the presence of oxygen and oxygen reactive species such as hydrogen peroxide, superoxide anion radical and others. In order to determine the effect of the position of the methionine amino acidresidue on the oxidative stability of GOx, all 11 methionines were considered for site directed mutagenesis...",
publisher = "Универзитет у Београду, Хемијски факултет",
journal = "Универзитет у Београду",
title = "Proteinski inženjering i razvoj visoko efikasnih metoda za pretraživanje biblioteke gena glukoza-oksidaze iz Aspergillus niger u cilju povećanja enzimske aktivnosti i stabilnosti",
url = "https://hdl.handle.net/21.15107/rcub_nardus_10586"
}
Kovačević, G.. (2018). Proteinski inženjering i razvoj visoko efikasnih metoda za pretraživanje biblioteke gena glukoza-oksidaze iz Aspergillus niger u cilju povećanja enzimske aktivnosti i stabilnosti. in Универзитет у Београду
Универзитет у Београду, Хемијски факултет..
https://hdl.handle.net/21.15107/rcub_nardus_10586
Kovačević G. Proteinski inženjering i razvoj visoko efikasnih metoda za pretraživanje biblioteke gena glukoza-oksidaze iz Aspergillus niger u cilju povećanja enzimske aktivnosti i stabilnosti. in Универзитет у Београду. 2018;.
https://hdl.handle.net/21.15107/rcub_nardus_10586 .
Kovačević, Gordana, "Proteinski inženjering i razvoj visoko efikasnih metoda za pretraživanje biblioteke gena glukoza-oksidaze iz Aspergillus niger u cilju povećanja enzimske aktivnosti i stabilnosti" in Универзитет у Београду (2018),
https://hdl.handle.net/21.15107/rcub_nardus_10586 .

Supplementary data for the article: Kovačević, G.; Ostafe, R.; Balaž, A. M.; Fischer, R.; Prodanović, R. Development of GFP-Based High-Throughput Screening System for Directed Evolution of Glucose Oxidase. Journal of Bioscience and Bioengineering 2019, 127 (1), 30–37. https://doi.org/10.1016/j.jbiosc.2018.07.002

Kovačević, Gordana; Ostafe, Raluca; Balaž, Ana Marija; Fischer, Rainer; Prodanović, Radivoje

(Elsevier, 2018)

TY  - DATA
AU  - Kovačević, Gordana
AU  - Ostafe, Raluca
AU  - Balaž, Ana Marija
AU  - Fischer, Rainer
AU  - Prodanović, Radivoje
PY  - 2018
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3013
PB  - Elsevier
T2  - Journal of Bioscience and Bioengineering
T1  - Supplementary data for the article: Kovačević, G.; Ostafe, R.; Balaž, A. M.; Fischer, R.; Prodanović, R. Development of GFP-Based High-Throughput Screening System for Directed Evolution of Glucose Oxidase. Journal of Bioscience and Bioengineering 2019, 127 (1), 30–37. https://doi.org/10.1016/j.jbiosc.2018.07.002
UR  - https://hdl.handle.net/21.15107/rcub_cherry_3013
ER  - 
@misc{
author = "Kovačević, Gordana and Ostafe, Raluca and Balaž, Ana Marija and Fischer, Rainer and Prodanović, Radivoje",
year = "2018",
publisher = "Elsevier",
journal = "Journal of Bioscience and Bioengineering",
title = "Supplementary data for the article: Kovačević, G.; Ostafe, R.; Balaž, A. M.; Fischer, R.; Prodanović, R. Development of GFP-Based High-Throughput Screening System for Directed Evolution of Glucose Oxidase. Journal of Bioscience and Bioengineering 2019, 127 (1), 30–37. https://doi.org/10.1016/j.jbiosc.2018.07.002",
url = "https://hdl.handle.net/21.15107/rcub_cherry_3013"
}
Kovačević, G., Ostafe, R., Balaž, A. M., Fischer, R.,& Prodanović, R.. (2018). Supplementary data for the article: Kovačević, G.; Ostafe, R.; Balaž, A. M.; Fischer, R.; Prodanović, R. Development of GFP-Based High-Throughput Screening System for Directed Evolution of Glucose Oxidase. Journal of Bioscience and Bioengineering 2019, 127 (1), 30–37. https://doi.org/10.1016/j.jbiosc.2018.07.002. in Journal of Bioscience and Bioengineering
Elsevier..
https://hdl.handle.net/21.15107/rcub_cherry_3013
Kovačević G, Ostafe R, Balaž AM, Fischer R, Prodanović R. Supplementary data for the article: Kovačević, G.; Ostafe, R.; Balaž, A. M.; Fischer, R.; Prodanović, R. Development of GFP-Based High-Throughput Screening System for Directed Evolution of Glucose Oxidase. Journal of Bioscience and Bioengineering 2019, 127 (1), 30–37. https://doi.org/10.1016/j.jbiosc.2018.07.002. in Journal of Bioscience and Bioengineering. 2018;.
https://hdl.handle.net/21.15107/rcub_cherry_3013 .
Kovačević, Gordana, Ostafe, Raluca, Balaž, Ana Marija, Fischer, Rainer, Prodanović, Radivoje, "Supplementary data for the article: Kovačević, G.; Ostafe, R.; Balaž, A. M.; Fischer, R.; Prodanović, R. Development of GFP-Based High-Throughput Screening System for Directed Evolution of Glucose Oxidase. Journal of Bioscience and Bioengineering 2019, 127 (1), 30–37. https://doi.org/10.1016/j.jbiosc.2018.07.002" in Journal of Bioscience and Bioengineering (2018),
https://hdl.handle.net/21.15107/rcub_cherry_3013 .

Development of GFP-based high-throughput screening system for directed evolution of glucose oxidase

Kovačević, Gordana; Ostafe, Raluca; Balaž, Ana Marija; Fischer, Rainer; Prodanović, Radivoje

(Elsevier, 2018)

TY  - JOUR
AU  - Kovačević, Gordana
AU  - Ostafe, Raluca
AU  - Balaž, Ana Marija
AU  - Fischer, Rainer
AU  - Prodanović, Radivoje
PY  - 2018
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/336
AB  - Glucose oxidase (GOx) mutants with higher activity or stability have important role in industry and in the development of biosensors and biofuel cells. Discovering these mutants can be time-consuming if appropriate high-throughput screening (HTS) systems are not available. GOx gene libraries were successfully screened and sorted using a HTS system based on GOx activity dependent fluorescent labeling of yeast cells with tyramids and quantification of the amount of expressed enzyme by yeast enhanced green fluorescent protein (yGFP) tagging and flow cytometry. For this purpose, we expressed wild type and a mutant GOx as a chimera with the yGFP to confirm differences in catalytic activity between wild-type and mutant GOx. Fluorescence of yGFP is preserved during expression of chimera, and also after the oxidative enzymatic reaction. We have obtained a 2.5-fold enrichment in population of cells expressing active enzyme, and percentage of enzyme variants with enzymatic mean activity higher than wild type activity was increased to 44% after a single round of GOx gene library sorting. We have found two mutants with 1.3 and 2.3-fold increase in Vmax values compared to the wtGOx. By simultaneous detection of protein expression level and enzyme activity we have increased the likelihood of finding GOx variants with increased activity in a single round of flow cytometry sorting. © 2018 The Society for Biotechnology, Japan
PB  - Elsevier
T2  - Journal of Bioscience and Bioengineering
T1  - Development of GFP-based high-throughput screening system for directed evolution of glucose oxidase
DO  - 10.1016/j.jbiosc.2018.07.002
ER  - 
@article{
author = "Kovačević, Gordana and Ostafe, Raluca and Balaž, Ana Marija and Fischer, Rainer and Prodanović, Radivoje",
year = "2018",
abstract = "Glucose oxidase (GOx) mutants with higher activity or stability have important role in industry and in the development of biosensors and biofuel cells. Discovering these mutants can be time-consuming if appropriate high-throughput screening (HTS) systems are not available. GOx gene libraries were successfully screened and sorted using a HTS system based on GOx activity dependent fluorescent labeling of yeast cells with tyramids and quantification of the amount of expressed enzyme by yeast enhanced green fluorescent protein (yGFP) tagging and flow cytometry. For this purpose, we expressed wild type and a mutant GOx as a chimera with the yGFP to confirm differences in catalytic activity between wild-type and mutant GOx. Fluorescence of yGFP is preserved during expression of chimera, and also after the oxidative enzymatic reaction. We have obtained a 2.5-fold enrichment in population of cells expressing active enzyme, and percentage of enzyme variants with enzymatic mean activity higher than wild type activity was increased to 44% after a single round of GOx gene library sorting. We have found two mutants with 1.3 and 2.3-fold increase in Vmax values compared to the wtGOx. By simultaneous detection of protein expression level and enzyme activity we have increased the likelihood of finding GOx variants with increased activity in a single round of flow cytometry sorting. © 2018 The Society for Biotechnology, Japan",
publisher = "Elsevier",
journal = "Journal of Bioscience and Bioengineering",
title = "Development of GFP-based high-throughput screening system for directed evolution of glucose oxidase",
doi = "10.1016/j.jbiosc.2018.07.002"
}
Kovačević, G., Ostafe, R., Balaž, A. M., Fischer, R.,& Prodanović, R.. (2018). Development of GFP-based high-throughput screening system for directed evolution of glucose oxidase. in Journal of Bioscience and Bioengineering
Elsevier..
https://doi.org/10.1016/j.jbiosc.2018.07.002
Kovačević G, Ostafe R, Balaž AM, Fischer R, Prodanović R. Development of GFP-based high-throughput screening system for directed evolution of glucose oxidase. in Journal of Bioscience and Bioengineering. 2018;.
doi:10.1016/j.jbiosc.2018.07.002 .
Kovačević, Gordana, Ostafe, Raluca, Balaž, Ana Marija, Fischer, Rainer, Prodanović, Radivoje, "Development of GFP-based high-throughput screening system for directed evolution of glucose oxidase" in Journal of Bioscience and Bioengineering (2018),
https://doi.org/10.1016/j.jbiosc.2018.07.002 . .
1
24
13
22
21

Tyramine-modified pectins via periodate oxidation for soybean hull peroxidase induced hydrogel formation and immobilization

Prokopijević, Miloš; Prodanović, Olivera; Spasojević, Dragica; Kovačević, Gordana; Polović, Natalija; Radotić, Ksenija; Prodanović, Radivoje

(Springer, New York, 2017)

TY  - JOUR
AU  - Prokopijević, Miloš
AU  - Prodanović, Olivera
AU  - Spasojević, Dragica
AU  - Kovačević, Gordana
AU  - Polović, Natalija
AU  - Radotić, Ksenija
AU  - Prodanović, Radivoje
PY  - 2017
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/2421
AB  - Pectin was modified by oxidation with sodium periodate at molar ratios of 2.5, 5, 10, 15 and 20 mol% and reductive amination with tyramine and sodium cyanoborohydride afterwards. Concentration of tyramine groups within modified pectin ranged from 54.5 to 538 mu mol/g of dry pectin while concentration of ionizable groups ranged from 3.0 to 4.0 mmol/g of dry polymer compared to 1.5 mmol/g before modification due to the introduction of amino group. All tyramine-pectins showed exceptional gelling properties and could form hydrogel both by cross-linking of carboxyl groups with calcium or by cross-linking phenol groups with peroxidase in the presence of hydrogen peroxide. These hydrogels were tested as carriers for soybean hull peroxidase (SHP) immobilization within microbeads formed in an emulsion based enzymatic polymerization reaction. SHP immobilized within tyramine-pectin microbeads had an increased thermal and organic solvent stability compared to the soluble enzyme. Immobilized SHP was more active in acidic pH region and had slightly decreased K (m) value of 2.61 mM compared to the soluble enzyme. After 7 cycles of repeated use in batch reactor for pyrogallol oxidation microbeads, immobilized SHP retained half of the initial activity.
PB  - Springer, New York
T2  - Applied Microbiology and Biotechnology
T1  - Tyramine-modified pectins via periodate oxidation for soybean hull peroxidase induced hydrogel formation and immobilization
VL  - 101
IS  - 6
SP  - 2281
EP  - 2290
DO  - 10.1007/s00253-016-8002-x
ER  - 
@article{
author = "Prokopijević, Miloš and Prodanović, Olivera and Spasojević, Dragica and Kovačević, Gordana and Polović, Natalija and Radotić, Ksenija and Prodanović, Radivoje",
year = "2017",
abstract = "Pectin was modified by oxidation with sodium periodate at molar ratios of 2.5, 5, 10, 15 and 20 mol% and reductive amination with tyramine and sodium cyanoborohydride afterwards. Concentration of tyramine groups within modified pectin ranged from 54.5 to 538 mu mol/g of dry pectin while concentration of ionizable groups ranged from 3.0 to 4.0 mmol/g of dry polymer compared to 1.5 mmol/g before modification due to the introduction of amino group. All tyramine-pectins showed exceptional gelling properties and could form hydrogel both by cross-linking of carboxyl groups with calcium or by cross-linking phenol groups with peroxidase in the presence of hydrogen peroxide. These hydrogels were tested as carriers for soybean hull peroxidase (SHP) immobilization within microbeads formed in an emulsion based enzymatic polymerization reaction. SHP immobilized within tyramine-pectin microbeads had an increased thermal and organic solvent stability compared to the soluble enzyme. Immobilized SHP was more active in acidic pH region and had slightly decreased K (m) value of 2.61 mM compared to the soluble enzyme. After 7 cycles of repeated use in batch reactor for pyrogallol oxidation microbeads, immobilized SHP retained half of the initial activity.",
publisher = "Springer, New York",
journal = "Applied Microbiology and Biotechnology",
title = "Tyramine-modified pectins via periodate oxidation for soybean hull peroxidase induced hydrogel formation and immobilization",
volume = "101",
number = "6",
pages = "2281-2290",
doi = "10.1007/s00253-016-8002-x"
}
Prokopijević, M., Prodanović, O., Spasojević, D., Kovačević, G., Polović, N., Radotić, K.,& Prodanović, R.. (2017). Tyramine-modified pectins via periodate oxidation for soybean hull peroxidase induced hydrogel formation and immobilization. in Applied Microbiology and Biotechnology
Springer, New York., 101(6), 2281-2290.
https://doi.org/10.1007/s00253-016-8002-x
Prokopijević M, Prodanović O, Spasojević D, Kovačević G, Polović N, Radotić K, Prodanović R. Tyramine-modified pectins via periodate oxidation for soybean hull peroxidase induced hydrogel formation and immobilization. in Applied Microbiology and Biotechnology. 2017;101(6):2281-2290.
doi:10.1007/s00253-016-8002-x .
Prokopijević, Miloš, Prodanović, Olivera, Spasojević, Dragica, Kovačević, Gordana, Polović, Natalija, Radotić, Ksenija, Prodanović, Radivoje, "Tyramine-modified pectins via periodate oxidation for soybean hull peroxidase induced hydrogel formation and immobilization" in Applied Microbiology and Biotechnology, 101, no. 6 (2017):2281-2290,
https://doi.org/10.1007/s00253-016-8002-x . .
3
13
6
12
11

Supplementary data for article: Prokopijevic, M.; Prodanovic, O.; Spasojevic, D.; Kovacevic, G.; Polovic, N.; Radotic, K.; Prodanovic, R. Tyramine-Modified Pectins via Periodate Oxidation for Soybean Hull Peroxidase Induced Hydrogel Formation and Immobilization. Applied Microbiology and Biotechnology 2017, 101 (6), 2281–2290. https://doi.org/10.1007/s00253-016-8002-x

Prokopijević, Miloš; Prodanović, Olivera; Spasojević, Dragica; Kovačević, Gordana; Polović, Natalija; Radotić, Ksenija; Prodanović, Radivoje

(Springer, New York, 2017)

TY  - DATA
AU  - Prokopijević, Miloš
AU  - Prodanović, Olivera
AU  - Spasojević, Dragica
AU  - Kovačević, Gordana
AU  - Polović, Natalija
AU  - Radotić, Ksenija
AU  - Prodanović, Radivoje
PY  - 2017
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3053
PB  - Springer, New York
T2  - Applied Microbiology and Biotechnology
T1  - Supplementary data for article: Prokopijevic, M.; Prodanovic, O.; Spasojevic, D.; Kovacevic, G.; Polovic, N.; Radotic, K.; Prodanovic, R. Tyramine-Modified Pectins via Periodate Oxidation for Soybean Hull Peroxidase Induced Hydrogel Formation and Immobilization. Applied Microbiology and Biotechnology 2017, 101 (6), 2281–2290. https://doi.org/10.1007/s00253-016-8002-x
UR  - https://hdl.handle.net/21.15107/rcub_cherry_3053
ER  - 
@misc{
author = "Prokopijević, Miloš and Prodanović, Olivera and Spasojević, Dragica and Kovačević, Gordana and Polović, Natalija and Radotić, Ksenija and Prodanović, Radivoje",
year = "2017",
publisher = "Springer, New York",
journal = "Applied Microbiology and Biotechnology",
title = "Supplementary data for article: Prokopijevic, M.; Prodanovic, O.; Spasojevic, D.; Kovacevic, G.; Polovic, N.; Radotic, K.; Prodanovic, R. Tyramine-Modified Pectins via Periodate Oxidation for Soybean Hull Peroxidase Induced Hydrogel Formation and Immobilization. Applied Microbiology and Biotechnology 2017, 101 (6), 2281–2290. https://doi.org/10.1007/s00253-016-8002-x",
url = "https://hdl.handle.net/21.15107/rcub_cherry_3053"
}
Prokopijević, M., Prodanović, O., Spasojević, D., Kovačević, G., Polović, N., Radotić, K.,& Prodanović, R.. (2017). Supplementary data for article: Prokopijevic, M.; Prodanovic, O.; Spasojevic, D.; Kovacevic, G.; Polovic, N.; Radotic, K.; Prodanovic, R. Tyramine-Modified Pectins via Periodate Oxidation for Soybean Hull Peroxidase Induced Hydrogel Formation and Immobilization. Applied Microbiology and Biotechnology 2017, 101 (6), 2281–2290. https://doi.org/10.1007/s00253-016-8002-x. in Applied Microbiology and Biotechnology
Springer, New York..
https://hdl.handle.net/21.15107/rcub_cherry_3053
Prokopijević M, Prodanović O, Spasojević D, Kovačević G, Polović N, Radotić K, Prodanović R. Supplementary data for article: Prokopijevic, M.; Prodanovic, O.; Spasojevic, D.; Kovacevic, G.; Polovic, N.; Radotic, K.; Prodanovic, R. Tyramine-Modified Pectins via Periodate Oxidation for Soybean Hull Peroxidase Induced Hydrogel Formation and Immobilization. Applied Microbiology and Biotechnology 2017, 101 (6), 2281–2290. https://doi.org/10.1007/s00253-016-8002-x. in Applied Microbiology and Biotechnology. 2017;.
https://hdl.handle.net/21.15107/rcub_cherry_3053 .
Prokopijević, Miloš, Prodanović, Olivera, Spasojević, Dragica, Kovačević, Gordana, Polović, Natalija, Radotić, Ksenija, Prodanović, Radivoje, "Supplementary data for article: Prokopijevic, M.; Prodanovic, O.; Spasojevic, D.; Kovacevic, G.; Polovic, N.; Radotic, K.; Prodanovic, R. Tyramine-Modified Pectins via Periodate Oxidation for Soybean Hull Peroxidase Induced Hydrogel Formation and Immobilization. Applied Microbiology and Biotechnology 2017, 101 (6), 2281–2290. https://doi.org/10.1007/s00253-016-8002-x" in Applied Microbiology and Biotechnology (2017),
https://hdl.handle.net/21.15107/rcub_cherry_3053 .

Preventing oxidative damage at the early phase: The case of glucose oxidase

Petrović, D.; Kovačević, Gordana; Ostafe, Raluca; Fischer, Rainer; Strodel, B.; Prodanović, Radivoje

(Wiley-Blackwell, Hoboken, 2015)

TY  - CONF
AU  - Petrović, D.
AU  - Kovačević, Gordana
AU  - Ostafe, Raluca
AU  - Fischer, Rainer
AU  - Strodel, B.
AU  - Prodanović, Radivoje
PY  - 2015
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/1978
PB  - Wiley-Blackwell, Hoboken
C3  - FEBS Journal / Federation of European of Biochemical Societies
T1  - Preventing oxidative damage at the early phase: The case of glucose oxidase
VL  - 282
SP  - 339
EP  - 340
UR  - https://hdl.handle.net/21.15107/rcub_cherry_1978
ER  - 
@conference{
author = "Petrović, D. and Kovačević, Gordana and Ostafe, Raluca and Fischer, Rainer and Strodel, B. and Prodanović, Radivoje",
year = "2015",
publisher = "Wiley-Blackwell, Hoboken",
journal = "FEBS Journal / Federation of European of Biochemical Societies",
title = "Preventing oxidative damage at the early phase: The case of glucose oxidase",
volume = "282",
pages = "339-340",
url = "https://hdl.handle.net/21.15107/rcub_cherry_1978"
}
Petrović, D., Kovačević, G., Ostafe, R., Fischer, R., Strodel, B.,& Prodanović, R.. (2015). Preventing oxidative damage at the early phase: The case of glucose oxidase. in FEBS Journal / Federation of European of Biochemical Societies
Wiley-Blackwell, Hoboken., 282, 339-340.
https://hdl.handle.net/21.15107/rcub_cherry_1978
Petrović D, Kovačević G, Ostafe R, Fischer R, Strodel B, Prodanović R. Preventing oxidative damage at the early phase: The case of glucose oxidase. in FEBS Journal / Federation of European of Biochemical Societies. 2015;282:339-340.
https://hdl.handle.net/21.15107/rcub_cherry_1978 .
Petrović, D., Kovačević, Gordana, Ostafe, Raluca, Fischer, Rainer, Strodel, B., Prodanović, Radivoje, "Preventing oxidative damage at the early phase: The case of glucose oxidase" in FEBS Journal / Federation of European of Biochemical Societies, 282 (2015):339-340,
https://hdl.handle.net/21.15107/rcub_cherry_1978 .

Cloning, Heterologous Expression, Purification and Characterization of M12 Mutant of Aspergillus niger Glucose Oxidase in Yeast Pichia pastoris KM71H

Kovačević, Gordana; Blažić, Marija; Draganić, Bojana; Ostafe, Raluca; Gavrović-Jankulović, Marija; Fischer, Rainer; Prodanović, Radivoje

(Humana Press Inc, Totowa, 2014)

TY  - JOUR
AU  - Kovačević, Gordana
AU  - Blažić, Marija
AU  - Draganić, Bojana
AU  - Ostafe, Raluca
AU  - Gavrović-Jankulović, Marija
AU  - Fischer, Rainer
AU  - Prodanović, Radivoje
PY  - 2014
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/1517
AB  - Aspergillus niger glucose oxidase (GOx) genes for wild-type (GenBank accession no. X16061, swiss-Prot; P13006) and M12 mutant (N2Y, K13E, T30 V, I94 V, K152R) were cloned into pPICZ alpha A vector for expression in Pichia pastoris KM71H strain. The highest expression level of 17.5 U/mL of fermentation media was obtained in 0.5 % (v/v) methanol after 9 days of fermentation. The recombinant GOx was purified by cross-flow ultrafiltration using membranes of 30 kDa molecular cutoff and DEAE ion-exchange chromatography at pH 6.0. Purified wt GOx had k (cat) of 189.4 s(-1) and K (m) of 28.26 mM while M12 GOx had k (cat) of 352.0 s(-1) and K (m) of 13.33 mM for glucose at pH 5.5. Specificity constants k (cat)/K (m) of wt (6.70 mM(-1) s(-1)) and M12 GOx (26.7 mM(-1) s(-1)) expressed in P. pastoris KM71H were around three times higher than for the same enzymes previously expressed in Saccharomyces cerevisiae InvSc1 strain. The pH optimum and sugar specificity of M12 mutant of GOx remained similar to the wild-type form of the enzyme, while thermostability was slightly decreased. M12 GOx expressed in P. pastoris showed three times higher activity compared to the wt GOx toward redox mediators like N,N-dimethyl-nitroso-aniline used for glucose strips manufacturing. M12 mutant of GOx produced in P. pastoris KM71H could be useful for manufacturing of glucose biosensors and biofuel cells.
PB  - Humana Press Inc, Totowa
T2  - Molecular Biotechnology
T1  - Cloning, Heterologous Expression, Purification and Characterization of M12 Mutant of Aspergillus niger Glucose Oxidase in Yeast Pichia pastoris KM71H
VL  - 56
IS  - 4
SP  - 305
EP  - 311
DO  - 10.1007/s12033-013-9709-x
ER  - 
@article{
author = "Kovačević, Gordana and Blažić, Marija and Draganić, Bojana and Ostafe, Raluca and Gavrović-Jankulović, Marija and Fischer, Rainer and Prodanović, Radivoje",
year = "2014",
abstract = "Aspergillus niger glucose oxidase (GOx) genes for wild-type (GenBank accession no. X16061, swiss-Prot; P13006) and M12 mutant (N2Y, K13E, T30 V, I94 V, K152R) were cloned into pPICZ alpha A vector for expression in Pichia pastoris KM71H strain. The highest expression level of 17.5 U/mL of fermentation media was obtained in 0.5 % (v/v) methanol after 9 days of fermentation. The recombinant GOx was purified by cross-flow ultrafiltration using membranes of 30 kDa molecular cutoff and DEAE ion-exchange chromatography at pH 6.0. Purified wt GOx had k (cat) of 189.4 s(-1) and K (m) of 28.26 mM while M12 GOx had k (cat) of 352.0 s(-1) and K (m) of 13.33 mM for glucose at pH 5.5. Specificity constants k (cat)/K (m) of wt (6.70 mM(-1) s(-1)) and M12 GOx (26.7 mM(-1) s(-1)) expressed in P. pastoris KM71H were around three times higher than for the same enzymes previously expressed in Saccharomyces cerevisiae InvSc1 strain. The pH optimum and sugar specificity of M12 mutant of GOx remained similar to the wild-type form of the enzyme, while thermostability was slightly decreased. M12 GOx expressed in P. pastoris showed three times higher activity compared to the wt GOx toward redox mediators like N,N-dimethyl-nitroso-aniline used for glucose strips manufacturing. M12 mutant of GOx produced in P. pastoris KM71H could be useful for manufacturing of glucose biosensors and biofuel cells.",
publisher = "Humana Press Inc, Totowa",
journal = "Molecular Biotechnology",
title = "Cloning, Heterologous Expression, Purification and Characterization of M12 Mutant of Aspergillus niger Glucose Oxidase in Yeast Pichia pastoris KM71H",
volume = "56",
number = "4",
pages = "305-311",
doi = "10.1007/s12033-013-9709-x"
}
Kovačević, G., Blažić, M., Draganić, B., Ostafe, R., Gavrović-Jankulović, M., Fischer, R.,& Prodanović, R.. (2014). Cloning, Heterologous Expression, Purification and Characterization of M12 Mutant of Aspergillus niger Glucose Oxidase in Yeast Pichia pastoris KM71H. in Molecular Biotechnology
Humana Press Inc, Totowa., 56(4), 305-311.
https://doi.org/10.1007/s12033-013-9709-x
Kovačević G, Blažić M, Draganić B, Ostafe R, Gavrović-Jankulović M, Fischer R, Prodanović R. Cloning, Heterologous Expression, Purification and Characterization of M12 Mutant of Aspergillus niger Glucose Oxidase in Yeast Pichia pastoris KM71H. in Molecular Biotechnology. 2014;56(4):305-311.
doi:10.1007/s12033-013-9709-x .
Kovačević, Gordana, Blažić, Marija, Draganić, Bojana, Ostafe, Raluca, Gavrović-Jankulović, Marija, Fischer, Rainer, Prodanović, Radivoje, "Cloning, Heterologous Expression, Purification and Characterization of M12 Mutant of Aspergillus niger Glucose Oxidase in Yeast Pichia pastoris KM71H" in Molecular Biotechnology, 56, no. 4 (2014):305-311,
https://doi.org/10.1007/s12033-013-9709-x . .
22
18
23
21

Supplementary data for article: Blažić, M.; Kovačević, G.; Prodanović, O.; Ostafe, R.; Gavrović-Jankulović, M.; Fischer, R.; Prodanović, R. Yeast Surface Display for the Expression, Purification and Characterization of Wild-Type and B11 Mutant Glucose Oxidases. Protein Expression and Purification 2013, 89 (2), 175–180. https://doi.org/10.1016/j.pep.2013.03.014

Blažić, Marija; Kovačević, Gordana; Prodanović, Olivera; Ostafe, Raluca; Gavrović-Jankulović, Marija; Fischer, Rainer; Prodanović, Radivoje

(Academic Press Inc Elsevier Science, San Diego, 2013)

TY  - DATA
AU  - Blažić, Marija
AU  - Kovačević, Gordana
AU  - Prodanović, Olivera
AU  - Ostafe, Raluca
AU  - Gavrović-Jankulović, Marija
AU  - Fischer, Rainer
AU  - Prodanović, Radivoje
PY  - 2013
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3568
PB  - Academic Press Inc Elsevier Science, San Diego
T2  - Protein Expression and Purification
T1  - Supplementary data for article: Blažić, M.; Kovačević, G.; Prodanović, O.; Ostafe, R.; Gavrović-Jankulović, M.; Fischer, R.; Prodanović, R. Yeast Surface Display for the Expression, Purification and Characterization of Wild-Type and B11 Mutant Glucose Oxidases. Protein Expression and Purification 2013, 89 (2), 175–180. https://doi.org/10.1016/j.pep.2013.03.014
UR  - https://hdl.handle.net/21.15107/rcub_cherry_3568
ER  - 
@misc{
author = "Blažić, Marija and Kovačević, Gordana and Prodanović, Olivera and Ostafe, Raluca and Gavrović-Jankulović, Marija and Fischer, Rainer and Prodanović, Radivoje",
year = "2013",
publisher = "Academic Press Inc Elsevier Science, San Diego",
journal = "Protein Expression and Purification",
title = "Supplementary data for article: Blažić, M.; Kovačević, G.; Prodanović, O.; Ostafe, R.; Gavrović-Jankulović, M.; Fischer, R.; Prodanović, R. Yeast Surface Display for the Expression, Purification and Characterization of Wild-Type and B11 Mutant Glucose Oxidases. Protein Expression and Purification 2013, 89 (2), 175–180. https://doi.org/10.1016/j.pep.2013.03.014",
url = "https://hdl.handle.net/21.15107/rcub_cherry_3568"
}
Blažić, M., Kovačević, G., Prodanović, O., Ostafe, R., Gavrović-Jankulović, M., Fischer, R.,& Prodanović, R.. (2013). Supplementary data for article: Blažić, M.; Kovačević, G.; Prodanović, O.; Ostafe, R.; Gavrović-Jankulović, M.; Fischer, R.; Prodanović, R. Yeast Surface Display for the Expression, Purification and Characterization of Wild-Type and B11 Mutant Glucose Oxidases. Protein Expression and Purification 2013, 89 (2), 175–180. https://doi.org/10.1016/j.pep.2013.03.014. in Protein Expression and Purification
Academic Press Inc Elsevier Science, San Diego..
https://hdl.handle.net/21.15107/rcub_cherry_3568
Blažić M, Kovačević G, Prodanović O, Ostafe R, Gavrović-Jankulović M, Fischer R, Prodanović R. Supplementary data for article: Blažić, M.; Kovačević, G.; Prodanović, O.; Ostafe, R.; Gavrović-Jankulović, M.; Fischer, R.; Prodanović, R. Yeast Surface Display for the Expression, Purification and Characterization of Wild-Type and B11 Mutant Glucose Oxidases. Protein Expression and Purification 2013, 89 (2), 175–180. https://doi.org/10.1016/j.pep.2013.03.014. in Protein Expression and Purification. 2013;.
https://hdl.handle.net/21.15107/rcub_cherry_3568 .
Blažić, Marija, Kovačević, Gordana, Prodanović, Olivera, Ostafe, Raluca, Gavrović-Jankulović, Marija, Fischer, Rainer, Prodanović, Radivoje, "Supplementary data for article: Blažić, M.; Kovačević, G.; Prodanović, O.; Ostafe, R.; Gavrović-Jankulović, M.; Fischer, R.; Prodanović, R. Yeast Surface Display for the Expression, Purification and Characterization of Wild-Type and B11 Mutant Glucose Oxidases. Protein Expression and Purification 2013, 89 (2), 175–180. https://doi.org/10.1016/j.pep.2013.03.014" in Protein Expression and Purification (2013),
https://hdl.handle.net/21.15107/rcub_cherry_3568 .

Yeast surface display for the expression, purification and characterization of wild-type and B11 mutant glucose oxidases

Blažić, Marija; Kovačević, Gordana; Prodanović, Olivera; Ostafe, Raluca; Gavrović-Jankulović, Marija; Fischer, Rainer; Prodanović, Radivoje

(Academic Press Inc Elsevier Science, San Diego, 2013)

TY  - JOUR
AU  - Blažić, Marija
AU  - Kovačević, Gordana
AU  - Prodanović, Olivera
AU  - Ostafe, Raluca
AU  - Gavrović-Jankulović, Marija
AU  - Fischer, Rainer
AU  - Prodanović, Radivoje
PY  - 2013
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/1357
AB  - Glucose oxidase (GOx) catalyzes the oxidation of glucose to form gluconic acid and hydrogen peroxide, a reaction with important applications in food preservation, the manufacture of cosmetics and pharmaceuticals, and the development of glucose monitoring devices and biofuel cells. We expressed Aspergillus niger wild type GOx and the B11 mutant, which has twice the activity of the wild type enzyme at pH 5.5, as C-terminal fusions with the Saccharomyces cerevisiae Aga2 protein, allowing the fusion proteins to be displayed on the surface of yeast EBY100 cells. After expression, we extracted the proteins from the yeast cell wall and purified them by ion-exchange chromatography and ultrafiltration. This produced a broad 100-140 kDa band by denaturing SDS-PAGE and a high-molecular-weight band by native PAGE corresponding to the activity band revealed by zymography. The wild type and B11 fusion proteins had k(cat) values of 33.3 and 61.3 s(-1) and K-m values for glucose of 33.4 and 27.9 mM, respectively. The pH optimum for both enzymes was 5.0. The kinetic properties of the fusion proteins displayed the same ratio as their native counterparts, confirming that yeast surface display is suitable for the high-throughput directed evolution of GOx using flow cytometry for selection. Aga2-GOx fusion proteins in the yeast cell wall could also be used as immobilized catalysts for the production of gluconic acid.
PB  - Academic Press Inc Elsevier Science, San Diego
T2  - Protein Expression and Purification
T1  - Yeast surface display for the expression, purification and characterization of wild-type and B11 mutant glucose oxidases
VL  - 89
IS  - 2
SP  - 175
EP  - 180
DO  - 10.1016/j.pep.2013.03.014
ER  - 
@article{
author = "Blažić, Marija and Kovačević, Gordana and Prodanović, Olivera and Ostafe, Raluca and Gavrović-Jankulović, Marija and Fischer, Rainer and Prodanović, Radivoje",
year = "2013",
abstract = "Glucose oxidase (GOx) catalyzes the oxidation of glucose to form gluconic acid and hydrogen peroxide, a reaction with important applications in food preservation, the manufacture of cosmetics and pharmaceuticals, and the development of glucose monitoring devices and biofuel cells. We expressed Aspergillus niger wild type GOx and the B11 mutant, which has twice the activity of the wild type enzyme at pH 5.5, as C-terminal fusions with the Saccharomyces cerevisiae Aga2 protein, allowing the fusion proteins to be displayed on the surface of yeast EBY100 cells. After expression, we extracted the proteins from the yeast cell wall and purified them by ion-exchange chromatography and ultrafiltration. This produced a broad 100-140 kDa band by denaturing SDS-PAGE and a high-molecular-weight band by native PAGE corresponding to the activity band revealed by zymography. The wild type and B11 fusion proteins had k(cat) values of 33.3 and 61.3 s(-1) and K-m values for glucose of 33.4 and 27.9 mM, respectively. The pH optimum for both enzymes was 5.0. The kinetic properties of the fusion proteins displayed the same ratio as their native counterparts, confirming that yeast surface display is suitable for the high-throughput directed evolution of GOx using flow cytometry for selection. Aga2-GOx fusion proteins in the yeast cell wall could also be used as immobilized catalysts for the production of gluconic acid.",
publisher = "Academic Press Inc Elsevier Science, San Diego",
journal = "Protein Expression and Purification",
title = "Yeast surface display for the expression, purification and characterization of wild-type and B11 mutant glucose oxidases",
volume = "89",
number = "2",
pages = "175-180",
doi = "10.1016/j.pep.2013.03.014"
}
Blažić, M., Kovačević, G., Prodanović, O., Ostafe, R., Gavrović-Jankulović, M., Fischer, R.,& Prodanović, R.. (2013). Yeast surface display for the expression, purification and characterization of wild-type and B11 mutant glucose oxidases. in Protein Expression and Purification
Academic Press Inc Elsevier Science, San Diego., 89(2), 175-180.
https://doi.org/10.1016/j.pep.2013.03.014
Blažić M, Kovačević G, Prodanović O, Ostafe R, Gavrović-Jankulović M, Fischer R, Prodanović R. Yeast surface display for the expression, purification and characterization of wild-type and B11 mutant glucose oxidases. in Protein Expression and Purification. 2013;89(2):175-180.
doi:10.1016/j.pep.2013.03.014 .
Blažić, Marija, Kovačević, Gordana, Prodanović, Olivera, Ostafe, Raluca, Gavrović-Jankulović, Marija, Fischer, Rainer, Prodanović, Radivoje, "Yeast surface display for the expression, purification and characterization of wild-type and B11 mutant glucose oxidases" in Protein Expression and Purification, 89, no. 2 (2013):175-180,
https://doi.org/10.1016/j.pep.2013.03.014 . .
3
27
25
31
25

Nanobiocatalysts for biofuel cells and biosensor systems

Prodanović, Radivoje; Gavrović-Jankulović, Marija; Kovačević, Gordana; Blažić, Marija; Prodanović, Olivera; Ostafe, Raluca

(2011)

TY  - JOUR
AU  - Prodanović, Radivoje
AU  - Gavrović-Jankulović, Marija
AU  - Kovačević, Gordana
AU  - Blažić, Marija
AU  - Prodanović, Olivera
AU  - Ostafe, Raluca
PY  - 2011
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/135
AB  - This overview summarizes the application of enzymes in the manufacture and design of biofuel cells and biosensors. The emphasis will be put on the protein engineering techniques used for improving the properties of enzymes such as nanobiocatalysts, e.g. immobilization orientation, stability, activity and efficiency of electron transfer between immobilized enzymes and electrodes. Some possible applications in the military and some future designs of these electric devices will be discussed as well.
AB  - U ovom preglednom članku je sumirana primena enzima u proizvodnji i dizajnu biogorivnih ćelija i biosenzora. Naglasak u pregledu literature je stavljen na tehnike proteinskog inžinjeringa, koje se koriste za poboljšanje osobina enzima u nanobiokatalizatorima kao što su orijentacija kod imobilizacije, stabilnost, aktivnost i efikasnost transfera elektrona između imobilizovanog enzima i elektrode. Na kraju pregleda je dato nekoliko primera moguće primene u vojsci. Nanobiokatalizatori su biokatalizatori u obliku enzima ili ćelija imobilizovani na nanomaterijalima. Koriste se kao sastavni elementi gorivnih ćelija u vidu imobilizovanih oksidoreduktaza na elektrodama. Na anodi se uz pomoć enzima oksiduju hemijska jedinjenja i elektroni predaju elektrodi, dok se na katodi elektroni uz pomoć druge oksidoreduktaze prebacuju sa elektrode na vodu ili kiseonik. Enzimi koji se koriste na anodi su glukoza oksidaza, formaldehid dehidrogenaza, alkohol dehidrogenaza i druge oksidaze šećera. Na katodi se uglavnom koriste lakaze, bilirubin oksidaza, peroksidaze i citohrom c oksidaza. Zahvaljujući razvoju nanotehnologije razvijaju se i minijaturne biogorivne ćelije koje proizvode električnu energiju za implantirane medicinske uređaje (insulinske pumpe, pejsmejkere, biosenzore) koristeći glukozu i kiseonik iz ljudske krvi. Biosenzori predstavljaju uređaje koji se sastoje iz biološke komponente, transducera i električne komponente. Oni pretvaraju koncen traciju hemijske supstance u električni signal i koriste se za analitiku. Kao biološka komponenta se mogu koristiti enzimi, monoklonska antitela, nukleinske kiseline i lipidi. Enzimska logička kola predstavljaju kombinaciju različitih biosenzora (enzimskih reakcija) koji mere nekoliko ulaznih parametara i na osnovu njih daju odgovarajući izlazni signal. Koristeći znanja kompjuterske tehnologije enzimskim logičkim kolima mogu se simulirati AND, OR, XOR, NOR, NAND, INHIB i XNOR logička kola. Za poboljšanje osobina biokatalizatora u cilju efikasnije primene u bioelektrokatalizi koriste se tehnike proteinskog inžinjeringa kao što su racionalni dizajn i dirigovana evolucija. Dirigovana evolucija koristi iterativne korake mutiranja i selekcije, kako bi biokatalizator evoluirao u pravcu koji nam je potreban. Najsporiji stupanj u ovoj tehnologiji predstavlja 'skrining', te se u novije vreme pomoću protočne citometrije i mikrofluidike pokušavaju razviti nove metode visoko propusnog skrininga. U literaturi opisani primeri dirigovane evolucije glukoza oksidaze, glukoza dehidrogenaze, formaldehid dehidrogenaze, laktat dehidrogenaze, peroksidaze i lakaze. Kombinacijom enzimskih logičkih kola i mikrofluidne tehnologije se pokušavaju napraviti laboratorije na čipu koje bi omogućile kontinuirano praćenje zdravstvenog stanja vojnika na bojnom polju i u slučaju šoka (ranjavanja) primenu odgovarajuće terapije u toku prvih 30 minuta od povrede. To bi obezbedilo veći stepen preživljavanja vojnika u ratu. Takođe upotrebom enzimskih logičkih kola i antitela moguće je postići uskladištenje i šifrovanje informacija, kao i zaštitu lozinkom, odgovarajućih elektronskih uređaja kao što su biogorivne ćelije Razvoj nanotehnologije, proteinskog inžinjeringa i molekularnog računarstva otvara vrata novim mogućnostima u proizvodnji i dizajnu biogorivnih ćelija i bisenzorskih sistema, kao i u skladištenju i zaštiti informacija.
T2  - Vojnotehnički glasnik
T1  - Nanobiocatalysts for biofuel cells and biosensor systems
T1  - Nanobiokatalizatori za biogorivne ćelije i biosenzorne sisteme
VL  - 59
IS  - 4
SP  - 79
EP  - 92
DO  - 10.5937/vojtehg1104079P
ER  - 
@article{
author = "Prodanović, Radivoje and Gavrović-Jankulović, Marija and Kovačević, Gordana and Blažić, Marija and Prodanović, Olivera and Ostafe, Raluca",
year = "2011",
abstract = "This overview summarizes the application of enzymes in the manufacture and design of biofuel cells and biosensors. The emphasis will be put on the protein engineering techniques used for improving the properties of enzymes such as nanobiocatalysts, e.g. immobilization orientation, stability, activity and efficiency of electron transfer between immobilized enzymes and electrodes. Some possible applications in the military and some future designs of these electric devices will be discussed as well., U ovom preglednom članku je sumirana primena enzima u proizvodnji i dizajnu biogorivnih ćelija i biosenzora. Naglasak u pregledu literature je stavljen na tehnike proteinskog inžinjeringa, koje se koriste za poboljšanje osobina enzima u nanobiokatalizatorima kao što su orijentacija kod imobilizacije, stabilnost, aktivnost i efikasnost transfera elektrona između imobilizovanog enzima i elektrode. Na kraju pregleda je dato nekoliko primera moguće primene u vojsci. Nanobiokatalizatori su biokatalizatori u obliku enzima ili ćelija imobilizovani na nanomaterijalima. Koriste se kao sastavni elementi gorivnih ćelija u vidu imobilizovanih oksidoreduktaza na elektrodama. Na anodi se uz pomoć enzima oksiduju hemijska jedinjenja i elektroni predaju elektrodi, dok se na katodi elektroni uz pomoć druge oksidoreduktaze prebacuju sa elektrode na vodu ili kiseonik. Enzimi koji se koriste na anodi su glukoza oksidaza, formaldehid dehidrogenaza, alkohol dehidrogenaza i druge oksidaze šećera. Na katodi se uglavnom koriste lakaze, bilirubin oksidaza, peroksidaze i citohrom c oksidaza. Zahvaljujući razvoju nanotehnologije razvijaju se i minijaturne biogorivne ćelije koje proizvode električnu energiju za implantirane medicinske uređaje (insulinske pumpe, pejsmejkere, biosenzore) koristeći glukozu i kiseonik iz ljudske krvi. Biosenzori predstavljaju uređaje koji se sastoje iz biološke komponente, transducera i električne komponente. Oni pretvaraju koncen traciju hemijske supstance u električni signal i koriste se za analitiku. Kao biološka komponenta se mogu koristiti enzimi, monoklonska antitela, nukleinske kiseline i lipidi. Enzimska logička kola predstavljaju kombinaciju različitih biosenzora (enzimskih reakcija) koji mere nekoliko ulaznih parametara i na osnovu njih daju odgovarajući izlazni signal. Koristeći znanja kompjuterske tehnologije enzimskim logičkim kolima mogu se simulirati AND, OR, XOR, NOR, NAND, INHIB i XNOR logička kola. Za poboljšanje osobina biokatalizatora u cilju efikasnije primene u bioelektrokatalizi koriste se tehnike proteinskog inžinjeringa kao što su racionalni dizajn i dirigovana evolucija. Dirigovana evolucija koristi iterativne korake mutiranja i selekcije, kako bi biokatalizator evoluirao u pravcu koji nam je potreban. Najsporiji stupanj u ovoj tehnologiji predstavlja 'skrining', te se u novije vreme pomoću protočne citometrije i mikrofluidike pokušavaju razviti nove metode visoko propusnog skrininga. U literaturi opisani primeri dirigovane evolucije glukoza oksidaze, glukoza dehidrogenaze, formaldehid dehidrogenaze, laktat dehidrogenaze, peroksidaze i lakaze. Kombinacijom enzimskih logičkih kola i mikrofluidne tehnologije se pokušavaju napraviti laboratorije na čipu koje bi omogućile kontinuirano praćenje zdravstvenog stanja vojnika na bojnom polju i u slučaju šoka (ranjavanja) primenu odgovarajuće terapije u toku prvih 30 minuta od povrede. To bi obezbedilo veći stepen preživljavanja vojnika u ratu. Takođe upotrebom enzimskih logičkih kola i antitela moguće je postići uskladištenje i šifrovanje informacija, kao i zaštitu lozinkom, odgovarajućih elektronskih uređaja kao što su biogorivne ćelije Razvoj nanotehnologije, proteinskog inžinjeringa i molekularnog računarstva otvara vrata novim mogućnostima u proizvodnji i dizajnu biogorivnih ćelija i bisenzorskih sistema, kao i u skladištenju i zaštiti informacija.",
journal = "Vojnotehnički glasnik",
title = "Nanobiocatalysts for biofuel cells and biosensor systems, Nanobiokatalizatori za biogorivne ćelije i biosenzorne sisteme",
volume = "59",
number = "4",
pages = "79-92",
doi = "10.5937/vojtehg1104079P"
}
Prodanović, R., Gavrović-Jankulović, M., Kovačević, G., Blažić, M., Prodanović, O.,& Ostafe, R.. (2011). Nanobiocatalysts for biofuel cells and biosensor systems. in Vojnotehnički glasnik, 59(4), 79-92.
https://doi.org/10.5937/vojtehg1104079P
Prodanović R, Gavrović-Jankulović M, Kovačević G, Blažić M, Prodanović O, Ostafe R. Nanobiocatalysts for biofuel cells and biosensor systems. in Vojnotehnički glasnik. 2011;59(4):79-92.
doi:10.5937/vojtehg1104079P .
Prodanović, Radivoje, Gavrović-Jankulović, Marija, Kovačević, Gordana, Blažić, Marija, Prodanović, Olivera, Ostafe, Raluca, "Nanobiocatalysts for biofuel cells and biosensor systems" in Vojnotehnički glasnik, 59, no. 4 (2011):79-92,
https://doi.org/10.5937/vojtehg1104079P . .
1
1