Vujčić, Zoran

Link to this page

Authority KeyName Variants
orcid::0000-0002-8963-2439
  • Vujčić, Zoran (130)
Projects
Production, purification and characterization of enzymes and small molecules and their application as soluble or immobilized in food biotechnology, biofuels production and environmental protection Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200168 (University of Belgrade, Faculty of Chemistry)
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200026 (University of Belgrade, Institute of Chemistry, Technology and Metallurgy - IChTM) Interakcije prirodnih proizvoda i njihovih analoga sa proteinima i nukleinskim kiselinama
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200288 (Innovation Center of the Faculty of Chemistry) Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200017 (University of Belgrade, Institute of Nuclear Sciences 'Vinča', Belgrade-Vinča)
Spanish MICINN [CTQ2011-28398-CO2-01] FEBS Collaborative Experimental Scholarship, Oslo, Norway
Mechanistic studies of the reactions of transition metal ion complexes with biologically relevant molecules Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200177 (Immunology Research Centre 'Branislav Janković' Torlak, Belgrade)
project ApliMetaFarma [RC.2.2.08-0046] STSM Grant from COST Action [BM1403]
ICGEB [CRP/YUG11-02] ICGEB research project [CRP/YUG11-02]
Reinforcement of the Faculty of Chemistry, University of Belgrade, towards becoming a Center of Excellence in the region of WB for Molecular Biotechnology and Food research HTP-GLYCOMET - Methods for high-throughput glycoproteomic analysis
The synthesis of aminoquinoline-based antimalarials and botulinum neurotoxin A inhibitors Development of molecules with antiinflammatory and cardioprotective activity: structural modifications, modelling, physicochemical characterization and formulation investigations
Biotechnology in vitro - crop, medicinal and endangered plant species Microbial diversity study and characterization of beneficial environmental microorganisms
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200042 (University of Belgrade, Institute of Molecular Genetics and Genetic Engineering) Nanostructured Functional and Composite Materials in Catalytic and Sorption Processes
Unapređenje tehnologije konvencionalnog sušenja drveta sa aspekta kvaliteta i utroška energije The Impact of Mining Wastes from RTB Bor on the Pollution of Surrounding Water Systems with the Proposal of Measures and Procedures for Reduction the Harmful Effects on the Environment
International Centre for Genetic Engineering and Biotechnology (ICGEB) [CRP/YUG11-02] Joint Serbian-Spanish Action
Joint Serbian-Spanish Action [A IB2010 SE-00122] Spanish MICINN [CTQ2008-00578]
Austrian Science Fund (FWF) Project Number P 25613 B20 to ISD Deutscher Akademischer Austausch Dienst (DAAD)

Author's Bibliography

Electrophoretic assessment of recombinant λ- exonuclease production in different E. coli strains

Stefanović, Marija; Savić, Aleksa; Božić, Nataša; Vujčić, Zoran; Radosavljević, Jelena

(Prirodno-matematički fakultet, Univerzitet u Kragujevcu, 2023)

TY  - CONF
AU  - Stefanović, Marija
AU  - Savić, Aleksa
AU  - Božić, Nataša
AU  - Vujčić, Zoran
AU  - Radosavljević, Jelena
PY  - 2023
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/6206
AB  - Viral exonucleases play role in many processes essential for genome ma intenance,including DNA repair and recombination. Lambda exonuclease (λ -exo), isolated fromlambda bacteriophage, hydrolases double-stranded DNA (dsDNA) in the highly processivemanner in 5’→3’ direction, yielding mononucleotides and single -stranded DNA (ssDNA).This unique enzymatic properties offer several promising biotechnological applications,such as highly sensitive quantification of DNA modifications and single -moleculesequencing. Hence, optimization of the expression conditions is a prerequisite to achievehigh-level production of λ-exo. Here we have tested λ -exo expression in five different E.coli strains under various temperature regimes in order to establish the optimal conditionsfor efficient production of recombinant λ -exo. The N-terminally His -tagged λ-exo wassuccessfully expressed in E.coli BL21(AI), SHuffle T7, C41(DE3) and C43(DE3) strains inLB broth. Collected aliquots were analysed by SDS-PAGE, followed by CBB staining.Relative yield of target protein bands was determined by densitometry in total cell lysate, aswell as in soluble and insoluble cytoplasmatic fractions. We identified E.coli BL21(AI),SHuffle T7 and C41(DE3) as good producers of recombinant λ -exo, and upon scaling up, λ-exo was purified from crude cell lysates by metal affinity chromatography in satisfactoryyield. Our data suggest that densitometric analysis could serve as a powerful low-costscreening platform for improving recombinant protein expression strategies.
PB  - Prirodno-matematički fakultet, Univerzitet u Kragujevcu
C3  - Zbornik apstrakata, VI Simpozijum Srpskog udruženja za proteomiku (SePA) “Razvoj i primena novih metoda proteomike”, 2. jun 2023. godine, Kragujevac
T1  - Electrophoretic assessment of recombinant λ- exonuclease production in different E. coli strains
UR  - https://hdl.handle.net/21.15107/rcub_cherry_6206
ER  - 
@conference{
author = "Stefanović, Marija and Savić, Aleksa and Božić, Nataša and Vujčić, Zoran and Radosavljević, Jelena",
year = "2023",
abstract = "Viral exonucleases play role in many processes essential for genome ma intenance,including DNA repair and recombination. Lambda exonuclease (λ -exo), isolated fromlambda bacteriophage, hydrolases double-stranded DNA (dsDNA) in the highly processivemanner in 5’→3’ direction, yielding mononucleotides and single -stranded DNA (ssDNA).This unique enzymatic properties offer several promising biotechnological applications,such as highly sensitive quantification of DNA modifications and single -moleculesequencing. Hence, optimization of the expression conditions is a prerequisite to achievehigh-level production of λ-exo. Here we have tested λ -exo expression in five different E.coli strains under various temperature regimes in order to establish the optimal conditionsfor efficient production of recombinant λ -exo. The N-terminally His -tagged λ-exo wassuccessfully expressed in E.coli BL21(AI), SHuffle T7, C41(DE3) and C43(DE3) strains inLB broth. Collected aliquots were analysed by SDS-PAGE, followed by CBB staining.Relative yield of target protein bands was determined by densitometry in total cell lysate, aswell as in soluble and insoluble cytoplasmatic fractions. We identified E.coli BL21(AI),SHuffle T7 and C41(DE3) as good producers of recombinant λ -exo, and upon scaling up, λ-exo was purified from crude cell lysates by metal affinity chromatography in satisfactoryyield. Our data suggest that densitometric analysis could serve as a powerful low-costscreening platform for improving recombinant protein expression strategies.",
publisher = "Prirodno-matematički fakultet, Univerzitet u Kragujevcu",
journal = "Zbornik apstrakata, VI Simpozijum Srpskog udruženja za proteomiku (SePA) “Razvoj i primena novih metoda proteomike”, 2. jun 2023. godine, Kragujevac",
title = "Electrophoretic assessment of recombinant λ- exonuclease production in different E. coli strains",
url = "https://hdl.handle.net/21.15107/rcub_cherry_6206"
}
Stefanović, M., Savić, A., Božić, N., Vujčić, Z.,& Radosavljević, J.. (2023). Electrophoretic assessment of recombinant λ- exonuclease production in different E. coli strains. in Zbornik apstrakata, VI Simpozijum Srpskog udruženja za proteomiku (SePA) “Razvoj i primena novih metoda proteomike”, 2. jun 2023. godine, Kragujevac
Prirodno-matematički fakultet, Univerzitet u Kragujevcu..
https://hdl.handle.net/21.15107/rcub_cherry_6206
Stefanović M, Savić A, Božić N, Vujčić Z, Radosavljević J. Electrophoretic assessment of recombinant λ- exonuclease production in different E. coli strains. in Zbornik apstrakata, VI Simpozijum Srpskog udruženja za proteomiku (SePA) “Razvoj i primena novih metoda proteomike”, 2. jun 2023. godine, Kragujevac. 2023;.
https://hdl.handle.net/21.15107/rcub_cherry_6206 .
Stefanović, Marija, Savić, Aleksa, Božić, Nataša, Vujčić, Zoran, Radosavljević, Jelena, "Electrophoretic assessment of recombinant λ- exonuclease production in different E. coli strains" in Zbornik apstrakata, VI Simpozijum Srpskog udruženja za proteomiku (SePA) “Razvoj i primena novih metoda proteomike”, 2. jun 2023. godine, Kragujevac (2023),
https://hdl.handle.net/21.15107/rcub_cherry_6206 .

Electrophoretic assessment of recombinant λ- exonuclease production in different E. coli strains

Stefanović, Marija; Savić, Aleksa; Božić, Nataša; Vujčić, Zoran; Radosavljević, Jelena

(Prirodno-matematički fakultet, Univerzitet u Kragujevcu, 2023)

TY  - CONF
AU  - Stefanović, Marija
AU  - Savić, Aleksa
AU  - Božić, Nataša
AU  - Vujčić, Zoran
AU  - Radosavljević, Jelena
PY  - 2023
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/6205
AB  - Viral exonucleases play role in many processes essential for genome ma intenance,
including DNA repair and recombination. Lambda exonuclease (λ -exo), isolated from
lambda bacteriophage, hydrolases double-stranded DNA (dsDNA) in the highly processive
manner in 5’→3’ direction, yielding mononucleotides and single -stranded DNA (ssDNA).
This unique enzymatic properties offer several promising biotechnological applications,
such as highly sensitive quantification of DNA modifications and single -molecule
sequencing. Hence, optimization of the expression conditions is a prerequisite to achieve
high-level production of λ-exo. Here we have tested λ -exo expression in five different E.
coli strains under various temperature regimes in order to establish the optimal conditions
for efficient production of recombinant λ -exo. The N-terminally His -tagged λ-exo was
successfully expressed in E.coli BL21(AI), SHuffle T7, C41(DE3) and C43(DE3) strains in
LB broth. Collected aliquots were analysed by SDS-PAGE, followed by CBB staining.
Relative yield of target protein bands was determined by densitometry in total cell lysate, as
well as in soluble and insoluble cytoplasmatic fractions. We identified E.coli BL21(AI),
SHuffle T7 and C41(DE3) as good producers of recombinant λ -exo, and upon scaling up, λ
-exo was purified from crude cell lysates by metal affinity chromatography in satisfactory
yield. Our data suggest that densitometric analysis could serve as a powerful low-cost
screening platform for improving recombinant protein expression strategies.
PB  - Prirodno-matematički fakultet, Univerzitet u Kragujevcu
C3  - Zbornik apstrakata, VI Simpozijum Srpskog udruženja za proteomiku (SePA) “Razvoj i primena novih metoda proteomike”, 2. jun 2023. godine, Kragujevac
T1  - Electrophoretic assessment of recombinant λ- exonuclease production in different E. coli strains
SP  - 23
EP  - 23
UR  - https://hdl.handle.net/21.15107/rcub_cherry_6205
ER  - 
@conference{
author = "Stefanović, Marija and Savić, Aleksa and Božić, Nataša and Vujčić, Zoran and Radosavljević, Jelena",
year = "2023",
abstract = "Viral exonucleases play role in many processes essential for genome ma intenance,
including DNA repair and recombination. Lambda exonuclease (λ -exo), isolated from
lambda bacteriophage, hydrolases double-stranded DNA (dsDNA) in the highly processive
manner in 5’→3’ direction, yielding mononucleotides and single -stranded DNA (ssDNA).
This unique enzymatic properties offer several promising biotechnological applications,
such as highly sensitive quantification of DNA modifications and single -molecule
sequencing. Hence, optimization of the expression conditions is a prerequisite to achieve
high-level production of λ-exo. Here we have tested λ -exo expression in five different E.
coli strains under various temperature regimes in order to establish the optimal conditions
for efficient production of recombinant λ -exo. The N-terminally His -tagged λ-exo was
successfully expressed in E.coli BL21(AI), SHuffle T7, C41(DE3) and C43(DE3) strains in
LB broth. Collected aliquots were analysed by SDS-PAGE, followed by CBB staining.
Relative yield of target protein bands was determined by densitometry in total cell lysate, as
well as in soluble and insoluble cytoplasmatic fractions. We identified E.coli BL21(AI),
SHuffle T7 and C41(DE3) as good producers of recombinant λ -exo, and upon scaling up, λ
-exo was purified from crude cell lysates by metal affinity chromatography in satisfactory
yield. Our data suggest that densitometric analysis could serve as a powerful low-cost
screening platform for improving recombinant protein expression strategies.",
publisher = "Prirodno-matematički fakultet, Univerzitet u Kragujevcu",
journal = "Zbornik apstrakata, VI Simpozijum Srpskog udruženja za proteomiku (SePA) “Razvoj i primena novih metoda proteomike”, 2. jun 2023. godine, Kragujevac",
title = "Electrophoretic assessment of recombinant λ- exonuclease production in different E. coli strains",
pages = "23-23",
url = "https://hdl.handle.net/21.15107/rcub_cherry_6205"
}
Stefanović, M., Savić, A., Božić, N., Vujčić, Z.,& Radosavljević, J.. (2023). Electrophoretic assessment of recombinant λ- exonuclease production in different E. coli strains. in Zbornik apstrakata, VI Simpozijum Srpskog udruženja za proteomiku (SePA) “Razvoj i primena novih metoda proteomike”, 2. jun 2023. godine, Kragujevac
Prirodno-matematički fakultet, Univerzitet u Kragujevcu., 23-23.
https://hdl.handle.net/21.15107/rcub_cherry_6205
Stefanović M, Savić A, Božić N, Vujčić Z, Radosavljević J. Electrophoretic assessment of recombinant λ- exonuclease production in different E. coli strains. in Zbornik apstrakata, VI Simpozijum Srpskog udruženja za proteomiku (SePA) “Razvoj i primena novih metoda proteomike”, 2. jun 2023. godine, Kragujevac. 2023;:23-23.
https://hdl.handle.net/21.15107/rcub_cherry_6205 .
Stefanović, Marija, Savić, Aleksa, Božić, Nataša, Vujčić, Zoran, Radosavljević, Jelena, "Electrophoretic assessment of recombinant λ- exonuclease production in different E. coli strains" in Zbornik apstrakata, VI Simpozijum Srpskog udruženja za proteomiku (SePA) “Razvoj i primena novih metoda proteomike”, 2. jun 2023. godine, Kragujevac (2023):23-23,
https://hdl.handle.net/21.15107/rcub_cherry_6205 .

Highly stable and versatile α-amylase from Anoxybacillus vranjensis ST4 suitable for various applications

Slavić, Marinela Šokarda; Kojić, Milan; Margetić, Aleksandra; Stanisavljević, Nemanja S.; Gardijan, Lazar; Božić, Nataša; Vujčić, Zoran

(Elsevier, 2023)

TY  - JOUR
AU  - Slavić, Marinela Šokarda
AU  - Kojić, Milan
AU  - Margetić, Aleksandra
AU  - Stanisavljević, Nemanja S.
AU  - Gardijan, Lazar
AU  - Božić, Nataša
AU  - Vujčić, Zoran
PY  - 2023
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/6351
AB  - α-Amylase from the thermophilic bacterial strain Anoxybacillus vranjensis ST4 (AVA) was cloned into the pMALc5HisEk expression vector and successfully expressed and purified from the Escherichia coli ER2523 host strain. AVA belongs to the GH13_5 subfamily of glycoside hydrolases and has 7 conserved sequence regions (CSRs) distributed in three distinct domains (A, B, C). In addition, there is a starch binding domain (SBD) from the CBM20 family of carbohydrate binding modules (CBMs). AVA is a monomer of 66 kDa that achieves maximum activity at 60–80 °C and is active and stable over a wide pH range (4.0–9.0). AVA retained 50 % of its activity after 31 h of incubation at 60 °C and was resistant to a large number of denaturing agents. It hydrolyzed starch granules very efficiently, releasing maltose, maltotriose and maltopentaose as the main products. The hydrolysis rates of raw corn, wheat, horseradish, and potato starch, at a concentration of 10 %, were 87.8, 85.9, 93.0, and 58 %, respectively, at pH 8.5 over a 3 h period. This study showed that the high level of expression as well as the properties of this highly stable and versatile enzyme show all the prerequisites for successful application in industry.
PB  - Elsevier
T2  - International Journal of Biological Macromolecules
T1  - Highly stable and versatile α-amylase from Anoxybacillus vranjensis ST4 suitable for various applications
VL  - 249
SP  - 126055
DO  - 10.1016/j.ijbiomac.2023.126055
ER  - 
@article{
author = "Slavić, Marinela Šokarda and Kojić, Milan and Margetić, Aleksandra and Stanisavljević, Nemanja S. and Gardijan, Lazar and Božić, Nataša and Vujčić, Zoran",
year = "2023",
abstract = "α-Amylase from the thermophilic bacterial strain Anoxybacillus vranjensis ST4 (AVA) was cloned into the pMALc5HisEk expression vector and successfully expressed and purified from the Escherichia coli ER2523 host strain. AVA belongs to the GH13_5 subfamily of glycoside hydrolases and has 7 conserved sequence regions (CSRs) distributed in three distinct domains (A, B, C). In addition, there is a starch binding domain (SBD) from the CBM20 family of carbohydrate binding modules (CBMs). AVA is a monomer of 66 kDa that achieves maximum activity at 60–80 °C and is active and stable over a wide pH range (4.0–9.0). AVA retained 50 % of its activity after 31 h of incubation at 60 °C and was resistant to a large number of denaturing agents. It hydrolyzed starch granules very efficiently, releasing maltose, maltotriose and maltopentaose as the main products. The hydrolysis rates of raw corn, wheat, horseradish, and potato starch, at a concentration of 10 %, were 87.8, 85.9, 93.0, and 58 %, respectively, at pH 8.5 over a 3 h period. This study showed that the high level of expression as well as the properties of this highly stable and versatile enzyme show all the prerequisites for successful application in industry.",
publisher = "Elsevier",
journal = "International Journal of Biological Macromolecules",
title = "Highly stable and versatile α-amylase from Anoxybacillus vranjensis ST4 suitable for various applications",
volume = "249",
pages = "126055",
doi = "10.1016/j.ijbiomac.2023.126055"
}
Slavić, M. Š., Kojić, M., Margetić, A., Stanisavljević, N. S., Gardijan, L., Božić, N.,& Vujčić, Z.. (2023). Highly stable and versatile α-amylase from Anoxybacillus vranjensis ST4 suitable for various applications. in International Journal of Biological Macromolecules
Elsevier., 249, 126055.
https://doi.org/10.1016/j.ijbiomac.2023.126055
Slavić MŠ, Kojić M, Margetić A, Stanisavljević NS, Gardijan L, Božić N, Vujčić Z. Highly stable and versatile α-amylase from Anoxybacillus vranjensis ST4 suitable for various applications. in International Journal of Biological Macromolecules. 2023;249:126055.
doi:10.1016/j.ijbiomac.2023.126055 .
Slavić, Marinela Šokarda, Kojić, Milan, Margetić, Aleksandra, Stanisavljević, Nemanja S., Gardijan, Lazar, Božić, Nataša, Vujčić, Zoran, "Highly stable and versatile α-amylase from Anoxybacillus vranjensis ST4 suitable for various applications" in International Journal of Biological Macromolecules, 249 (2023):126055,
https://doi.org/10.1016/j.ijbiomac.2023.126055 . .
1
1

Optimization of solid-state fermentation for enhanced production of pectinolytic complex by Aspergillus tubingensis FAT43 and its application in fruit juice processing

Pavlović, Marija; Šokarda Slavić, Marinela; Ristović, Marina; Stojanović, Sanja; Margetić, Aleksandra; Momčilović, Miloš; Vujčić, Zoran

(Oxford University Press, 2023)

TY  - JOUR
AU  - Pavlović, Marija
AU  - Šokarda Slavić, Marinela
AU  - Ristović, Marina
AU  - Stojanović, Sanja
AU  - Margetić, Aleksandra
AU  - Momčilović, Miloš
AU  - Vujčić, Zoran
PY  - 2023
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/6321
AB  - The main goal of this study was to examine the efficiency of a newly isolated fungus from quince, Aspergillus tubingensis FAT43, to produce the pectinolytic complex using agricultural and industrial waste as the substrate for solid state fermentation. Sugar beet pulp was the most effective substrate inducer of pectinolytic complex synthesis out of all the waste residues examined. For endo-pectinolytic and total pectinolytic activity, respectively, statistical optimization using Placked-Burman Design and Optimal (Custom) Design increased production by 2.22 and 2.15-fold, respectively. Liquification, clarification, and an increase in the amount of reducing sugar in fruit juices (apple, banana, apricot, orange, and quince) processed with pectinolytic complex were identified. Enzymatic pre-treatment considerably increases yield (14%–22%) and clarification (90%). After enzymatic treatment, the best liquefaction was observed in orange juice, whereas the best clarification was obtained in apricot juice. Additionally, the pectinolytic treatment of apricot juice resulted in the highest increase in reducing sugar concentration (11%) compared to all other enzymatically treated juices. Optimizing the production of a highly active pectinolytic complex and its efficient utilization in the processing of fruit juices, including the generation of an increasing amount of waste, are the significant outcomes of this research.
PB  - Oxford University Press
T2  - Letters in Applied Microbiology
T1  - Optimization of solid-state fermentation for enhanced production of pectinolytic complex by Aspergillus tubingensis FAT43 and its application in fruit juice processing
VL  - 76
IS  - 8
SP  - ovad083
DO  - 10.1093/lambio/ovad083
ER  - 
@article{
author = "Pavlović, Marija and Šokarda Slavić, Marinela and Ristović, Marina and Stojanović, Sanja and Margetić, Aleksandra and Momčilović, Miloš and Vujčić, Zoran",
year = "2023",
abstract = "The main goal of this study was to examine the efficiency of a newly isolated fungus from quince, Aspergillus tubingensis FAT43, to produce the pectinolytic complex using agricultural and industrial waste as the substrate for solid state fermentation. Sugar beet pulp was the most effective substrate inducer of pectinolytic complex synthesis out of all the waste residues examined. For endo-pectinolytic and total pectinolytic activity, respectively, statistical optimization using Placked-Burman Design and Optimal (Custom) Design increased production by 2.22 and 2.15-fold, respectively. Liquification, clarification, and an increase in the amount of reducing sugar in fruit juices (apple, banana, apricot, orange, and quince) processed with pectinolytic complex were identified. Enzymatic pre-treatment considerably increases yield (14%–22%) and clarification (90%). After enzymatic treatment, the best liquefaction was observed in orange juice, whereas the best clarification was obtained in apricot juice. Additionally, the pectinolytic treatment of apricot juice resulted in the highest increase in reducing sugar concentration (11%) compared to all other enzymatically treated juices. Optimizing the production of a highly active pectinolytic complex and its efficient utilization in the processing of fruit juices, including the generation of an increasing amount of waste, are the significant outcomes of this research.",
publisher = "Oxford University Press",
journal = "Letters in Applied Microbiology",
title = "Optimization of solid-state fermentation for enhanced production of pectinolytic complex by Aspergillus tubingensis FAT43 and its application in fruit juice processing",
volume = "76",
number = "8",
pages = "ovad083",
doi = "10.1093/lambio/ovad083"
}
Pavlović, M., Šokarda Slavić, M., Ristović, M., Stojanović, S., Margetić, A., Momčilović, M.,& Vujčić, Z.. (2023). Optimization of solid-state fermentation for enhanced production of pectinolytic complex by Aspergillus tubingensis FAT43 and its application in fruit juice processing. in Letters in Applied Microbiology
Oxford University Press., 76(8), ovad083.
https://doi.org/10.1093/lambio/ovad083
Pavlović M, Šokarda Slavić M, Ristović M, Stojanović S, Margetić A, Momčilović M, Vujčić Z. Optimization of solid-state fermentation for enhanced production of pectinolytic complex by Aspergillus tubingensis FAT43 and its application in fruit juice processing. in Letters in Applied Microbiology. 2023;76(8):ovad083.
doi:10.1093/lambio/ovad083 .
Pavlović, Marija, Šokarda Slavić, Marinela, Ristović, Marina, Stojanović, Sanja, Margetić, Aleksandra, Momčilović, Miloš, Vujčić, Zoran, "Optimization of solid-state fermentation for enhanced production of pectinolytic complex by Aspergillus tubingensis FAT43 and its application in fruit juice processing" in Letters in Applied Microbiology, 76, no. 8 (2023):ovad083,
https://doi.org/10.1093/lambio/ovad083 . .
2
1
1

A novel PGA/TiO2 nanocomposite prepared with poly(γ-glutamic acid) from the newly isolated Bacillus subtilis 17B strain

Šokarda Slavić, Marinela; Ralić, Vanja; Nastasijević, Branislav; Matijević, Milica; Vujčić, Zoran; Margetić, Aleksandra

(Serbian Chemical Society, 2023)

TY  - JOUR
AU  - Šokarda Slavić, Marinela
AU  - Ralić, Vanja
AU  - Nastasijević, Branislav
AU  - Matijević, Milica
AU  - Vujčić, Zoran
AU  - Margetić, Aleksandra
PY  - 2023
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/6388
AB  - Poly(γ-glutamic acid) (PGA), naturally produced by Bacillus species, is a biodegradable, non-toxic, biocompatible, and non-immunogenic negatively charged polymer. Due to its properties, it has found various applications in the food, cosmetic and pharmaceutical industries. In this work, Bacillus subtilis 17B was selected as the best PGA producer among fifty wild-types Bacillus strains tested and characterized as a glutamate-independent producer. The production of PGA by the newly identified strain was optimized and increased tenfold using the Box-Behnken experimental design. The purity of PGA after recovery and purification from the fermentation broth was confirmed by SDS-PAGE followed by Methylene Blue staining. PGA was characterized by ESI MS and used for the preparation of a new nanocomposite with TiO2. The synthesis of PGA/TiO2 nanocomposite, its structural analysis, and cytotoxic effect on the cervical cancer cell line (HeLa cell) was investigated to determine the potential anti-cancer usage of this newly prepared material. Encouraging, PGA/TiO2 nanocomposite showed an increased cytotoxic effect compared to TiO2 alone.
AB  - Поли(γ-глутаминска киселина) (ПГK), коју производе бактерије рода Bacillus, је биоразградив, нетоксичан, биокомпатибилан и неимуноген негативно наелектрисани полимер. Због својих својстава нашао је разноврсну примену у прехрамбеној, козметичкој и фармацеутској индустрији. У овом раду, Bacillus ѕubtilis 17Б је изабран као најбољи ПГК продуцер међу педесетак тестираних природних изолата бактерија из овог рода и окарактерисан као глутамат независтан продуцер. Производња ПГК овим новоидентификованим сојем је оптимизована и десетоструко увећана коришћењем Box-Behnken експерименталног дизајна. Чистоћа ПГК након изоловања и пречишћавања из ферметационе течности је потврђена електрофорезом (SDS-PAGE) након бојења метиленским плавим. ПГК је окарактерисана масеном спекроскопијом (ESI MS) и коришћена за добијање новог нанокомпозита са ТiО2. Синтеза ПГК/ТiО2 нанокомпозита, његова структурна анализа и цитотоксични ефекат на ћелијску линију рака грлића материце (HeLa ћелије) је испитан да би се утврдила потенцијална употреба овог новодобијеног материјала у борби против ћелија рака. Нанокомпозит ПГК/ТiО2показао је повећан цитотоксични ефекат на поменуте ћелије рака у поређењу са самим ТiО2.
PB  - Serbian Chemical Society
T2  - Journal of the Serbian Chemical Society
T1  - A novel PGA/TiO2 nanocomposite prepared with poly(γ-glutamic acid) from the newly isolated Bacillus subtilis 17B strain
T1  - Нови ПГК/TiO2 нанокомпозит добијен од поли(γ -глутаминске киселине) из новоизолованог соја bacillus subtilis 17B
DO  - 10.2298/JSC221116011S
ER  - 
@article{
author = "Šokarda Slavić, Marinela and Ralić, Vanja and Nastasijević, Branislav and Matijević, Milica and Vujčić, Zoran and Margetić, Aleksandra",
year = "2023",
abstract = "Poly(γ-glutamic acid) (PGA), naturally produced by Bacillus species, is a biodegradable, non-toxic, biocompatible, and non-immunogenic negatively charged polymer. Due to its properties, it has found various applications in the food, cosmetic and pharmaceutical industries. In this work, Bacillus subtilis 17B was selected as the best PGA producer among fifty wild-types Bacillus strains tested and characterized as a glutamate-independent producer. The production of PGA by the newly identified strain was optimized and increased tenfold using the Box-Behnken experimental design. The purity of PGA after recovery and purification from the fermentation broth was confirmed by SDS-PAGE followed by Methylene Blue staining. PGA was characterized by ESI MS and used for the preparation of a new nanocomposite with TiO2. The synthesis of PGA/TiO2 nanocomposite, its structural analysis, and cytotoxic effect on the cervical cancer cell line (HeLa cell) was investigated to determine the potential anti-cancer usage of this newly prepared material. Encouraging, PGA/TiO2 nanocomposite showed an increased cytotoxic effect compared to TiO2 alone., Поли(γ-глутаминска киселина) (ПГK), коју производе бактерије рода Bacillus, је биоразградив, нетоксичан, биокомпатибилан и неимуноген негативно наелектрисани полимер. Због својих својстава нашао је разноврсну примену у прехрамбеној, козметичкој и фармацеутској индустрији. У овом раду, Bacillus ѕubtilis 17Б је изабран као најбољи ПГК продуцер међу педесетак тестираних природних изолата бактерија из овог рода и окарактерисан као глутамат независтан продуцер. Производња ПГК овим новоидентификованим сојем је оптимизована и десетоструко увећана коришћењем Box-Behnken експерименталног дизајна. Чистоћа ПГК након изоловања и пречишћавања из ферметационе течности је потврђена електрофорезом (SDS-PAGE) након бојења метиленским плавим. ПГК је окарактерисана масеном спекроскопијом (ESI MS) и коришћена за добијање новог нанокомпозита са ТiО2. Синтеза ПГК/ТiО2 нанокомпозита, његова структурна анализа и цитотоксични ефекат на ћелијску линију рака грлића материце (HeLa ћелије) је испитан да би се утврдила потенцијална употреба овог новодобијеног материјала у борби против ћелија рака. Нанокомпозит ПГК/ТiО2показао је повећан цитотоксични ефекат на поменуте ћелије рака у поређењу са самим ТiО2.",
publisher = "Serbian Chemical Society",
journal = "Journal of the Serbian Chemical Society",
title = "A novel PGA/TiO2 nanocomposite prepared with poly(γ-glutamic acid) from the newly isolated Bacillus subtilis 17B strain, Нови ПГК/TiO2 нанокомпозит добијен од поли(γ -глутаминске киселине) из новоизолованог соја bacillus subtilis 17B",
doi = "10.2298/JSC221116011S"
}
Šokarda Slavić, M., Ralić, V., Nastasijević, B., Matijević, M., Vujčić, Z.,& Margetić, A.. (2023). A novel PGA/TiO2 nanocomposite prepared with poly(γ-glutamic acid) from the newly isolated Bacillus subtilis 17B strain. in Journal of the Serbian Chemical Society
Serbian Chemical Society..
https://doi.org/10.2298/JSC221116011S
Šokarda Slavić M, Ralić V, Nastasijević B, Matijević M, Vujčić Z, Margetić A. A novel PGA/TiO2 nanocomposite prepared with poly(γ-glutamic acid) from the newly isolated Bacillus subtilis 17B strain. in Journal of the Serbian Chemical Society. 2023;.
doi:10.2298/JSC221116011S .
Šokarda Slavić, Marinela, Ralić, Vanja, Nastasijević, Branislav, Matijević, Milica, Vujčić, Zoran, Margetić, Aleksandra, "A novel PGA/TiO2 nanocomposite prepared with poly(γ-glutamic acid) from the newly isolated Bacillus subtilis 17B strain" in Journal of the Serbian Chemical Society (2023),
https://doi.org/10.2298/JSC221116011S . .

Modified simultaneous saccharification and fermentation for the production of bioethanol from highly concentrated raw corn starch

Šokarda Slavić, Marinela; Margetić, Aleksandra; Dojnov, Biljana; Vujčić, Miroslava; Mišić, Milan; Božić, Nataša; Vujčić, Zoran

(2023)

TY  - JOUR
AU  - Šokarda Slavić, Marinela
AU  - Margetić, Aleksandra
AU  - Dojnov, Biljana
AU  - Vujčić, Miroslava
AU  - Mišić, Milan
AU  - Božić, Nataša
AU  - Vujčić, Zoran
PY  - 2023
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5796
AB  - Bioethanol is one of the main bio-based molecules produced mainly from sugar cane, molasses and corn. Its environmental advantages allow it to be considered as safe and the cleanest fuel alternative. Starch is a widespread renewable carbohydrate conventionally used for bioethanol production via energy demanding liquefaction and saccharification processes. Raw starch hydrolysis using enzymes capable of degrading it below the gelatinization temperature significantly simplifies the process and reduces the cost of starch processing. In this study, an innovative modified simultaneous saccharification and fermentation process is proposed for the production of bioethanol from highly concentrated raw corn starch (30 % w/v). A two-step synergistic hydrolysis and fermentation was carried out in a single bioreactor vessel. To ensure high process efficiency, factors influencing the hydrolysis of concentrated raw corn starch by raw starch degrading α-amylase from Bacillus paralicheniformis ATCC 9945a (BliAmy) and commercial glucoamylase were investigated. Box–Behnken experimental design was used to predict the effects of different ratios of added enzymes, glucoamylase addition time, incubation time, and pH on hydrolysis yield. Optimal conditions for the highest yield of hydrolysis of raw corn starch (90 %) were obtained after 8 h using 5.0 IU BliAmy per mg of starch and 0.5 % (v/v) glucoamylase at pH 4.5 and 60 °C. Obtained glucose was further fermented with Saccharomyces cerevisiae at 30 °C in the same vessel for bioethanol production. Bioethanol concentration at 129.2 g/L, with productivity of 2.94 g/L/h and ethanol yield (YP/S) at 0.50 g EtOH/g total sugar, equivalent to 87.8 % theoretical yield, was obtained by modified simultaneous saccharification and fermentation. This work enriches the information of bioethanol production and offers a novel strategy for raw starch hydrolysis under industrial conditions.
T2  - Fuel
T1  - Modified simultaneous saccharification and fermentation for the production of bioethanol from highly concentrated raw corn starch
VL  - 338
SP  - 127363
DO  - 10.1016/j.fuel.2022.127363
ER  - 
@article{
author = "Šokarda Slavić, Marinela and Margetić, Aleksandra and Dojnov, Biljana and Vujčić, Miroslava and Mišić, Milan and Božić, Nataša and Vujčić, Zoran",
year = "2023",
abstract = "Bioethanol is one of the main bio-based molecules produced mainly from sugar cane, molasses and corn. Its environmental advantages allow it to be considered as safe and the cleanest fuel alternative. Starch is a widespread renewable carbohydrate conventionally used for bioethanol production via energy demanding liquefaction and saccharification processes. Raw starch hydrolysis using enzymes capable of degrading it below the gelatinization temperature significantly simplifies the process and reduces the cost of starch processing. In this study, an innovative modified simultaneous saccharification and fermentation process is proposed for the production of bioethanol from highly concentrated raw corn starch (30 % w/v). A two-step synergistic hydrolysis and fermentation was carried out in a single bioreactor vessel. To ensure high process efficiency, factors influencing the hydrolysis of concentrated raw corn starch by raw starch degrading α-amylase from Bacillus paralicheniformis ATCC 9945a (BliAmy) and commercial glucoamylase were investigated. Box–Behnken experimental design was used to predict the effects of different ratios of added enzymes, glucoamylase addition time, incubation time, and pH on hydrolysis yield. Optimal conditions for the highest yield of hydrolysis of raw corn starch (90 %) were obtained after 8 h using 5.0 IU BliAmy per mg of starch and 0.5 % (v/v) glucoamylase at pH 4.5 and 60 °C. Obtained glucose was further fermented with Saccharomyces cerevisiae at 30 °C in the same vessel for bioethanol production. Bioethanol concentration at 129.2 g/L, with productivity of 2.94 g/L/h and ethanol yield (YP/S) at 0.50 g EtOH/g total sugar, equivalent to 87.8 % theoretical yield, was obtained by modified simultaneous saccharification and fermentation. This work enriches the information of bioethanol production and offers a novel strategy for raw starch hydrolysis under industrial conditions.",
journal = "Fuel",
title = "Modified simultaneous saccharification and fermentation for the production of bioethanol from highly concentrated raw corn starch",
volume = "338",
pages = "127363",
doi = "10.1016/j.fuel.2022.127363"
}
Šokarda Slavić, M., Margetić, A., Dojnov, B., Vujčić, M., Mišić, M., Božić, N.,& Vujčić, Z.. (2023). Modified simultaneous saccharification and fermentation for the production of bioethanol from highly concentrated raw corn starch. in Fuel, 338, 127363.
https://doi.org/10.1016/j.fuel.2022.127363
Šokarda Slavić M, Margetić A, Dojnov B, Vujčić M, Mišić M, Božić N, Vujčić Z. Modified simultaneous saccharification and fermentation for the production of bioethanol from highly concentrated raw corn starch. in Fuel. 2023;338:127363.
doi:10.1016/j.fuel.2022.127363 .
Šokarda Slavić, Marinela, Margetić, Aleksandra, Dojnov, Biljana, Vujčić, Miroslava, Mišić, Milan, Božić, Nataša, Vujčić, Zoran, "Modified simultaneous saccharification and fermentation for the production of bioethanol from highly concentrated raw corn starch" in Fuel, 338 (2023):127363,
https://doi.org/10.1016/j.fuel.2022.127363 . .
3
3
1

Supplementary material for: Šokarda Slavić, M., Margetić, A., Dojnov, B., Vujčić, M., Mišić, M., Božić, N.,& Vujčić, Z.. (2023). Modified simultaneous saccharification and fermentation for the production of bioethanol from highly concentrated raw corn starch. in Fuel, 338, 127363. https://doi.org/10.1016/j.fuel.2022.127363

Šokarda Slavić, Marinela; Margetić, Aleksandra; Dojnov, Biljana; Vujčić, Miroslava; Mišić, Milan; Božić, Nataša; Vujčić, Zoran

(2023)

TY  - DATA
AU  - Šokarda Slavić, Marinela
AU  - Margetić, Aleksandra
AU  - Dojnov, Biljana
AU  - Vujčić, Miroslava
AU  - Mišić, Milan
AU  - Božić, Nataša
AU  - Vujčić, Zoran
PY  - 2023
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5836
AB  - Bioethanol is one of the main bio-based molecules produced mainly from sugar cane, molasses and corn. Its environmental advantages allow it to be considered as safe and the cleanest fuel alternative. Starch is a widespread renewable carbohydrate conventionally used for bioethanol production via energy demanding liquefaction and saccharification processes. Raw starch hydrolysis using enzymes capable of degrading it below the gelatinization temperature significantly simplifies the process and reduces the cost of starch processing. In this study, an innovative modified simultaneous saccharification and fermentation process is proposed for the production of bioethanol from highly concentrated raw corn starch (30 % w/v). A two-step synergistic hydrolysis and fermentation was carried out in a single bioreactor vessel. To ensure high process efficiency, factors influencing the hydrolysis of concentrated raw corn starch by raw starch degrading α-amylase from Bacillus paralicheniformis ATCC 9945a (BliAmy) and commercial glucoamylase were investigated. Box–Behnken experimental design was used to predict the effects of different ratios of added enzymes, glucoamylase addition time, incubation time, and pH on hydrolysis yield. Optimal conditions for the highest yield of hydrolysis of raw corn starch (90 %) were obtained after 8 h using 5.0 IU BliAmy per mg of starch and 0.5 % (v/v) glucoamylase at pH 4.5 and 60 °C. Obtained glucose was further fermented with Saccharomyces cerevisiae at 30 °C in the same vessel for bioethanol production. Bioethanol concentration at 129.2 g/L, with productivity of 2.94 g/L/h and ethanol yield (YP/S) at 0.50 g EtOH/g total sugar, equivalent to 87.8 % theoretical yield, was obtained by modified simultaneous saccharification and fermentation. This work enriches the information of bioethanol production and offers a novel strategy for raw starch hydrolysis under industrial conditions.
T2  - Fuel
T1  - Supplementary material for: Šokarda Slavić, M., Margetić, A., Dojnov, B., Vujčić, M., Mišić, M., Božić, N.,& Vujčić, Z.. (2023). Modified simultaneous saccharification and fermentation for the production of bioethanol from highly concentrated raw corn starch. in Fuel, 338, 127363. https://doi.org/10.1016/j.fuel.2022.127363
VL  - 338
UR  - https://hdl.handle.net/21.15107/rcub_cherry_5836
ER  - 
@misc{
author = "Šokarda Slavić, Marinela and Margetić, Aleksandra and Dojnov, Biljana and Vujčić, Miroslava and Mišić, Milan and Božić, Nataša and Vujčić, Zoran",
year = "2023",
abstract = "Bioethanol is one of the main bio-based molecules produced mainly from sugar cane, molasses and corn. Its environmental advantages allow it to be considered as safe and the cleanest fuel alternative. Starch is a widespread renewable carbohydrate conventionally used for bioethanol production via energy demanding liquefaction and saccharification processes. Raw starch hydrolysis using enzymes capable of degrading it below the gelatinization temperature significantly simplifies the process and reduces the cost of starch processing. In this study, an innovative modified simultaneous saccharification and fermentation process is proposed for the production of bioethanol from highly concentrated raw corn starch (30 % w/v). A two-step synergistic hydrolysis and fermentation was carried out in a single bioreactor vessel. To ensure high process efficiency, factors influencing the hydrolysis of concentrated raw corn starch by raw starch degrading α-amylase from Bacillus paralicheniformis ATCC 9945a (BliAmy) and commercial glucoamylase were investigated. Box–Behnken experimental design was used to predict the effects of different ratios of added enzymes, glucoamylase addition time, incubation time, and pH on hydrolysis yield. Optimal conditions for the highest yield of hydrolysis of raw corn starch (90 %) were obtained after 8 h using 5.0 IU BliAmy per mg of starch and 0.5 % (v/v) glucoamylase at pH 4.5 and 60 °C. Obtained glucose was further fermented with Saccharomyces cerevisiae at 30 °C in the same vessel for bioethanol production. Bioethanol concentration at 129.2 g/L, with productivity of 2.94 g/L/h and ethanol yield (YP/S) at 0.50 g EtOH/g total sugar, equivalent to 87.8 % theoretical yield, was obtained by modified simultaneous saccharification and fermentation. This work enriches the information of bioethanol production and offers a novel strategy for raw starch hydrolysis under industrial conditions.",
journal = "Fuel",
title = "Supplementary material for: Šokarda Slavić, M., Margetić, A., Dojnov, B., Vujčić, M., Mišić, M., Božić, N.,& Vujčić, Z.. (2023). Modified simultaneous saccharification and fermentation for the production of bioethanol from highly concentrated raw corn starch. in Fuel, 338, 127363. https://doi.org/10.1016/j.fuel.2022.127363",
volume = "338",
url = "https://hdl.handle.net/21.15107/rcub_cherry_5836"
}
Šokarda Slavić, M., Margetić, A., Dojnov, B., Vujčić, M., Mišić, M., Božić, N.,& Vujčić, Z.. (2023). Supplementary material for: Šokarda Slavić, M., Margetić, A., Dojnov, B., Vujčić, M., Mišić, M., Božić, N.,& Vujčić, Z.. (2023). Modified simultaneous saccharification and fermentation for the production of bioethanol from highly concentrated raw corn starch. in Fuel, 338, 127363. https://doi.org/10.1016/j.fuel.2022.127363. in Fuel, 338.
https://hdl.handle.net/21.15107/rcub_cherry_5836
Šokarda Slavić M, Margetić A, Dojnov B, Vujčić M, Mišić M, Božić N, Vujčić Z. Supplementary material for: Šokarda Slavić, M., Margetić, A., Dojnov, B., Vujčić, M., Mišić, M., Božić, N.,& Vujčić, Z.. (2023). Modified simultaneous saccharification and fermentation for the production of bioethanol from highly concentrated raw corn starch. in Fuel, 338, 127363. https://doi.org/10.1016/j.fuel.2022.127363. in Fuel. 2023;338.
https://hdl.handle.net/21.15107/rcub_cherry_5836 .
Šokarda Slavić, Marinela, Margetić, Aleksandra, Dojnov, Biljana, Vujčić, Miroslava, Mišić, Milan, Božić, Nataša, Vujčić, Zoran, "Supplementary material for: Šokarda Slavić, M., Margetić, A., Dojnov, B., Vujčić, M., Mišić, M., Božić, N.,& Vujčić, Z.. (2023). Modified simultaneous saccharification and fermentation for the production of bioethanol from highly concentrated raw corn starch. in Fuel, 338, 127363. https://doi.org/10.1016/j.fuel.2022.127363" in Fuel, 338 (2023),
https://hdl.handle.net/21.15107/rcub_cherry_5836 .

Recombinant production of native λ-exonuclease in different E. coli strains

Stefanović, Marija; Savić, Aleksa; Božić, Nataša; Vujčić, Zoran; Radosavljević, Jelena

(Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, 2023)

TY  - CONF
AU  - Stefanović, Marija
AU  - Savić, Aleksa
AU  - Božić, Nataša
AU  - Vujčić, Zoran
AU  - Radosavljević, Jelena
PY  - 2023
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/6207
AB  - Introduction: Lambda exonuclease (λ-exo), isolated from lambda bacteriophage, plays a crucial role in
DNA replication, repair and recombination. The enzyme specifically hydrolases double-stranded DNA
(dsDNA) in a highly processive manner in 5’�����3’ direction, yielding mononucleotides and single-stranded
DNA (ssDNA). This efficient unidirectional degradation makes it an invaluable tool in various molecular
biology techniques, including novel sequencing technologies. Hence, optimization of the expression
conditions is a prerequisite to achieving high-level production of λ-exo.
Methods: The N-terminally His-tagged λ-exo fusion construct with thrombin cleavage site (AddGene
#104531) was successfully transformed into five different E. coli strains (BL21(AI), Shuffle T7, C41(DE3),
C43(DE3), and BL21(DE3)). Expression was tested under three temperature regimes (20 ˚C, 30 ˚C, and 37
˚C) over time for enhanced soluble production. Crude extracts were analysed by SDS-PAGE for total protein
expression, soluble and insoluble cytoplasmatic fractions. The exonuclease activity of the extracts
was monitored via in-house developed fluorescence-based screening assay. Optimal conditions for highyield
production were determined by densitometric analysis using NIH ImageJ software. The soluble and
active enzyme was produced on the large scale in a shaking flask culture under optimal conditions, and
purified to homogeneity from the soluble lysate via metal affinity chromatography.
Results:We identified E. coli BL21(AI), SHuffle T7, and C41(DE3) as good producers of recombinant λ-exo
and determined optimal conditions (30 ˚C, 6 h post-induction) for high-yield expression. The enzyme was
eluted from Ni2+-IDA-Sepharose 6B column in 300 mM imidazole and maintained its activity upon purification
assessed by an in-house developed fluorescence-based screening assay.
Conclusion: This study provides a scalable cost-effective approach for soluble λ-exo production in selected
E. coli strains. This expression system would be a helpful platform for development of high-yield
production of λ-exo, easing its exploitation in biotechnology and other scientific frontiers. Additionally,
we provided a valuable low-cost screening assay for monitoring exonuclease activity during each purification
step.
PB  - Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade
C3  - CoMBoS2 – the Second Congress of Molecular Biologists of Serbia, Abstract Book – Trends in Molecular Biology, Special issue
T1  - Recombinant production of native λ-exonuclease in different E. coli strains
SP  - 172
EP  - 172
UR  - https://hdl.handle.net/21.15107/rcub_cherry_6207
ER  - 
@conference{
author = "Stefanović, Marija and Savić, Aleksa and Božić, Nataša and Vujčić, Zoran and Radosavljević, Jelena",
year = "2023",
abstract = "Introduction: Lambda exonuclease (λ-exo), isolated from lambda bacteriophage, plays a crucial role in
DNA replication, repair and recombination. The enzyme specifically hydrolases double-stranded DNA
(dsDNA) in a highly processive manner in 5’�����3’ direction, yielding mononucleotides and single-stranded
DNA (ssDNA). This efficient unidirectional degradation makes it an invaluable tool in various molecular
biology techniques, including novel sequencing technologies. Hence, optimization of the expression
conditions is a prerequisite to achieving high-level production of λ-exo.
Methods: The N-terminally His-tagged λ-exo fusion construct with thrombin cleavage site (AddGene
#104531) was successfully transformed into five different E. coli strains (BL21(AI), Shuffle T7, C41(DE3),
C43(DE3), and BL21(DE3)). Expression was tested under three temperature regimes (20 ˚C, 30 ˚C, and 37
˚C) over time for enhanced soluble production. Crude extracts were analysed by SDS-PAGE for total protein
expression, soluble and insoluble cytoplasmatic fractions. The exonuclease activity of the extracts
was monitored via in-house developed fluorescence-based screening assay. Optimal conditions for highyield
production were determined by densitometric analysis using NIH ImageJ software. The soluble and
active enzyme was produced on the large scale in a shaking flask culture under optimal conditions, and
purified to homogeneity from the soluble lysate via metal affinity chromatography.
Results:We identified E. coli BL21(AI), SHuffle T7, and C41(DE3) as good producers of recombinant λ-exo
and determined optimal conditions (30 ˚C, 6 h post-induction) for high-yield expression. The enzyme was
eluted from Ni2+-IDA-Sepharose 6B column in 300 mM imidazole and maintained its activity upon purification
assessed by an in-house developed fluorescence-based screening assay.
Conclusion: This study provides a scalable cost-effective approach for soluble λ-exo production in selected
E. coli strains. This expression system would be a helpful platform for development of high-yield
production of λ-exo, easing its exploitation in biotechnology and other scientific frontiers. Additionally,
we provided a valuable low-cost screening assay for monitoring exonuclease activity during each purification
step.",
publisher = "Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade",
journal = "CoMBoS2 – the Second Congress of Molecular Biologists of Serbia, Abstract Book – Trends in Molecular Biology, Special issue",
title = "Recombinant production of native λ-exonuclease in different E. coli strains",
pages = "172-172",
url = "https://hdl.handle.net/21.15107/rcub_cherry_6207"
}
Stefanović, M., Savić, A., Božić, N., Vujčić, Z.,& Radosavljević, J.. (2023). Recombinant production of native λ-exonuclease in different E. coli strains. in CoMBoS2 – the Second Congress of Molecular Biologists of Serbia, Abstract Book – Trends in Molecular Biology, Special issue
Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade., 172-172.
https://hdl.handle.net/21.15107/rcub_cherry_6207
Stefanović M, Savić A, Božić N, Vujčić Z, Radosavljević J. Recombinant production of native λ-exonuclease in different E. coli strains. in CoMBoS2 – the Second Congress of Molecular Biologists of Serbia, Abstract Book – Trends in Molecular Biology, Special issue. 2023;:172-172.
https://hdl.handle.net/21.15107/rcub_cherry_6207 .
Stefanović, Marija, Savić, Aleksa, Božić, Nataša, Vujčić, Zoran, Radosavljević, Jelena, "Recombinant production of native λ-exonuclease in different E. coli strains" in CoMBoS2 – the Second Congress of Molecular Biologists of Serbia, Abstract Book – Trends in Molecular Biology, Special issue (2023):172-172,
https://hdl.handle.net/21.15107/rcub_cherry_6207 .

Recombinant production of native λ-exonuclease in different E. coli strains

Stefanović, Marija; Savić, Aleksa; Božić, Nataša; Vujčić, Zoran; Radosavljević, Jelena

(Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, 2023)

TY  - CONF
AU  - Stefanović, Marija
AU  - Savić, Aleksa
AU  - Božić, Nataša
AU  - Vujčić, Zoran
AU  - Radosavljević, Jelena
PY  - 2023
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/6208
AB  - Introduction: Lambda exonuclease (λ-exo), isolated from lambda bacteriophage, plays a crucial role inDNA replication, repair and recombination. The enzyme specifically hydrolases double-stranded DNA(dsDNA) in a highly processive manner in 5’�����3’ direction, yielding mononucleotides and single-strandedDNA (ssDNA). This efficient unidirectional degradation makes it an invaluable tool in various molecularbiology techniques, including novel sequencing technologies. Hence, optimization of the expressionconditions is a prerequisite to achieving high-level production of λ-exo.Methods: The N-terminally His-tagged λ-exo fusion construct with thrombin cleavage site (AddGene#104531) was successfully transformed into five different E. coli strains (BL21(AI), Shuffle T7, C41(DE3),C43(DE3), and BL21(DE3)). Expression was tested under three temperature regimes (20 ˚C, 30 ˚C, and 37˚C) over time for enhanced soluble production. Crude extracts were analysed by SDS-PAGE for total proteinexpression, soluble and insoluble cytoplasmatic fractions. The exonuclease activity of the extractswas monitored via in-house developed fluorescence-based screening assay. Optimal conditions for highyieldproduction were determined by densitometric analysis using NIH ImageJ software. The soluble andactive enzyme was produced on the large scale in a shaking flask culture under optimal conditions, andpurified to homogeneity from the soluble lysate via metal affinity chromatography.Results:We identified E. coli BL21(AI), SHuffle T7, and C41(DE3) as good producers of recombinant λ-exoand determined optimal conditions (30 ˚C, 6 h post-induction) for high-yield expression. The enzyme waseluted from Ni2+-IDA-Sepharose 6B column in 300 mM imidazole and maintained its activity upon purificationassessed by an in-house developed fluorescence-based screening assay.Conclusion: This study provides a scalable cost-effective approach for soluble λ-exo production in selectedE. coli strains. This expression system would be a helpful platform for development of high-yieldproduction of λ-exo, easing its exploitation in biotechnology and other scientific frontiers. Additionally,we provided a valuable low-cost screening assay for monitoring exonuclease activity during each purificationstep.
PB  - Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade
C3  - CoMBoS2 – the Second Congress of Molecular Biologists of Serbia, Abstract Book – Trends in Molecular Biology, Special issue
T1  - Recombinant production of native λ-exonuclease in different E. coli strains
UR  - https://hdl.handle.net/21.15107/rcub_cherry_6208
ER  - 
@conference{
author = "Stefanović, Marija and Savić, Aleksa and Božić, Nataša and Vujčić, Zoran and Radosavljević, Jelena",
year = "2023",
abstract = "Introduction: Lambda exonuclease (λ-exo), isolated from lambda bacteriophage, plays a crucial role inDNA replication, repair and recombination. The enzyme specifically hydrolases double-stranded DNA(dsDNA) in a highly processive manner in 5’�����3’ direction, yielding mononucleotides and single-strandedDNA (ssDNA). This efficient unidirectional degradation makes it an invaluable tool in various molecularbiology techniques, including novel sequencing technologies. Hence, optimization of the expressionconditions is a prerequisite to achieving high-level production of λ-exo.Methods: The N-terminally His-tagged λ-exo fusion construct with thrombin cleavage site (AddGene#104531) was successfully transformed into five different E. coli strains (BL21(AI), Shuffle T7, C41(DE3),C43(DE3), and BL21(DE3)). Expression was tested under three temperature regimes (20 ˚C, 30 ˚C, and 37˚C) over time for enhanced soluble production. Crude extracts were analysed by SDS-PAGE for total proteinexpression, soluble and insoluble cytoplasmatic fractions. The exonuclease activity of the extractswas monitored via in-house developed fluorescence-based screening assay. Optimal conditions for highyieldproduction were determined by densitometric analysis using NIH ImageJ software. The soluble andactive enzyme was produced on the large scale in a shaking flask culture under optimal conditions, andpurified to homogeneity from the soluble lysate via metal affinity chromatography.Results:We identified E. coli BL21(AI), SHuffle T7, and C41(DE3) as good producers of recombinant λ-exoand determined optimal conditions (30 ˚C, 6 h post-induction) for high-yield expression. The enzyme waseluted from Ni2+-IDA-Sepharose 6B column in 300 mM imidazole and maintained its activity upon purificationassessed by an in-house developed fluorescence-based screening assay.Conclusion: This study provides a scalable cost-effective approach for soluble λ-exo production in selectedE. coli strains. This expression system would be a helpful platform for development of high-yieldproduction of λ-exo, easing its exploitation in biotechnology and other scientific frontiers. Additionally,we provided a valuable low-cost screening assay for monitoring exonuclease activity during each purificationstep.",
publisher = "Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade",
journal = "CoMBoS2 – the Second Congress of Molecular Biologists of Serbia, Abstract Book – Trends in Molecular Biology, Special issue",
title = "Recombinant production of native λ-exonuclease in different E. coli strains",
url = "https://hdl.handle.net/21.15107/rcub_cherry_6208"
}
Stefanović, M., Savić, A., Božić, N., Vujčić, Z.,& Radosavljević, J.. (2023). Recombinant production of native λ-exonuclease in different E. coli strains. in CoMBoS2 – the Second Congress of Molecular Biologists of Serbia, Abstract Book – Trends in Molecular Biology, Special issue
Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade..
https://hdl.handle.net/21.15107/rcub_cherry_6208
Stefanović M, Savić A, Božić N, Vujčić Z, Radosavljević J. Recombinant production of native λ-exonuclease in different E. coli strains. in CoMBoS2 – the Second Congress of Molecular Biologists of Serbia, Abstract Book – Trends in Molecular Biology, Special issue. 2023;.
https://hdl.handle.net/21.15107/rcub_cherry_6208 .
Stefanović, Marija, Savić, Aleksa, Božić, Nataša, Vujčić, Zoran, Radosavljević, Jelena, "Recombinant production of native λ-exonuclease in different E. coli strains" in CoMBoS2 – the Second Congress of Molecular Biologists of Serbia, Abstract Book – Trends in Molecular Biology, Special issue (2023),
https://hdl.handle.net/21.15107/rcub_cherry_6208 .

In pursuit of the ultimate pollen substitute (insect larvae) for honey bee (Apis mellifera) feed

Pavlović, Ratko; Dojnov, Biljana; Šokarda Slavić, Marinela; Pavlović, Marija; Slomo, Katarina; Ristović, Marina; Vujčić, Zoran

(Informa UK Limited, 2023)

TY  - JOUR
AU  - Pavlović, Ratko
AU  - Dojnov, Biljana
AU  - Šokarda Slavić, Marinela
AU  - Pavlović, Marija
AU  - Slomo, Katarina
AU  - Ristović, Marina
AU  - Vujčić, Zoran
PY  - 2023
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5980
AB  - Finding a pollen substitute for honey bees that is nutritionally adequate and affordable is a scientific and practical challenge. We attempted a new rational approach and tried to exploit honey bees’ natural cannibalistic behavior. We tested processed insect larvae as a food source that is nutritionally similar to bee brood, and which can easily be produced on a large scale. In cage experiments, monitoring bee mortality, food consumption and changes in bee body parts’ weights showed that flour obtained by grinding dried yellow mealworm larvae has the potential to become an excellent component for pollen substitution. Bees from the cage group fed Tenebrio molitor patties (TG) demonstrated overall best results in comparison to sugar patties fed bee group (CG), yeast patties fed bee group (YG) and pollen patties fed bee group (PG). They did not lose weight as rapidly as the CG, did not defecate inside cages as the YG, nor show increased mortality as the PG. At the same time, TG consumed less food (mean 13.7 g/cage) than CG (16.8 g/cage), YG (20.4 g/cage) and PG (23.9 g/cage) within the period of 28 days. Bees’ gut increase in weight was lowest in the CG, followed by TG and PG and was the highest in the YG which resulted in diarrhea after 14 days. Bees from TG did not lag behind other bees in head, thorax and abdomen weight after 28 days. We demonstrated that processed yellow mealworm larvae (T. molitor) can be used as an ingredient for honey bee feed.
PB  - Informa UK Limited
T2  - Journal of Apicultural Research
T1  - In pursuit of the ultimate pollen substitute (insect larvae) for honey bee (Apis mellifera) feed
VL  - 62
IS  - 5
SP  - 1007
EP  - 1016
DO  - 10.1080/00218839.2022.2080950
ER  - 
@article{
author = "Pavlović, Ratko and Dojnov, Biljana and Šokarda Slavić, Marinela and Pavlović, Marija and Slomo, Katarina and Ristović, Marina and Vujčić, Zoran",
year = "2023",
abstract = "Finding a pollen substitute for honey bees that is nutritionally adequate and affordable is a scientific and practical challenge. We attempted a new rational approach and tried to exploit honey bees’ natural cannibalistic behavior. We tested processed insect larvae as a food source that is nutritionally similar to bee brood, and which can easily be produced on a large scale. In cage experiments, monitoring bee mortality, food consumption and changes in bee body parts’ weights showed that flour obtained by grinding dried yellow mealworm larvae has the potential to become an excellent component for pollen substitution. Bees from the cage group fed Tenebrio molitor patties (TG) demonstrated overall best results in comparison to sugar patties fed bee group (CG), yeast patties fed bee group (YG) and pollen patties fed bee group (PG). They did not lose weight as rapidly as the CG, did not defecate inside cages as the YG, nor show increased mortality as the PG. At the same time, TG consumed less food (mean 13.7 g/cage) than CG (16.8 g/cage), YG (20.4 g/cage) and PG (23.9 g/cage) within the period of 28 days. Bees’ gut increase in weight was lowest in the CG, followed by TG and PG and was the highest in the YG which resulted in diarrhea after 14 days. Bees from TG did not lag behind other bees in head, thorax and abdomen weight after 28 days. We demonstrated that processed yellow mealworm larvae (T. molitor) can be used as an ingredient for honey bee feed.",
publisher = "Informa UK Limited",
journal = "Journal of Apicultural Research",
title = "In pursuit of the ultimate pollen substitute (insect larvae) for honey bee (Apis mellifera) feed",
volume = "62",
number = "5",
pages = "1007-1016",
doi = "10.1080/00218839.2022.2080950"
}
Pavlović, R., Dojnov, B., Šokarda Slavić, M., Pavlović, M., Slomo, K., Ristović, M.,& Vujčić, Z.. (2023). In pursuit of the ultimate pollen substitute (insect larvae) for honey bee (Apis mellifera) feed. in Journal of Apicultural Research
Informa UK Limited., 62(5), 1007-1016.
https://doi.org/10.1080/00218839.2022.2080950
Pavlović R, Dojnov B, Šokarda Slavić M, Pavlović M, Slomo K, Ristović M, Vujčić Z. In pursuit of the ultimate pollen substitute (insect larvae) for honey bee (Apis mellifera) feed. in Journal of Apicultural Research. 2023;62(5):1007-1016.
doi:10.1080/00218839.2022.2080950 .
Pavlović, Ratko, Dojnov, Biljana, Šokarda Slavić, Marinela, Pavlović, Marija, Slomo, Katarina, Ristović, Marina, Vujčić, Zoran, "In pursuit of the ultimate pollen substitute (insect larvae) for honey bee (Apis mellifera) feed" in Journal of Apicultural Research, 62, no. 5 (2023):1007-1016,
https://doi.org/10.1080/00218839.2022.2080950 . .
2
2
2

Improvement of nutritional and bioactive properties of barleyb-glucan-based food products usingBacillus subtilis168endo-b-1,3-1,4-glucanase

Šokarda Slavić, Marinela; Kojić, Milan; Margetić, Aleksandra; Ristović, Marina; Pavlović, Marija; Nikolić, Stefan; Vujčić, Zoran

(Wiley, 2023)

TY  - JOUR
AU  - Šokarda Slavić, Marinela
AU  - Kojić, Milan
AU  - Margetić, Aleksandra
AU  - Ristović, Marina
AU  - Pavlović, Marija
AU  - Nikolić, Stefan
AU  - Vujčić, Zoran
PY  - 2023
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5992
AB  - The combination ofb-oligosaccharides from enzymatically hydrolysed barleyb-glucan has attracted inter-est recently due to its positive effects on human health. This study aimed to assess the impact of theendo-b-1,3-1,4-glucanase enzyme fromBacillus  subtilis168 on improving the nutritional and bioactiveproperties of barleyb-glucan. A new procedure for the isolation ofb-glucan was developed, at a lowertemperature (45°C), enabling purity from starch contamination, without affecting the yield (6 gb-glucanfrom 100 g of barley flour). The endo-b-1,3-1,4-glucanase is cloned intoE. colipQE_Ek enables the highproduction and purification (82% yield, 1.8 mg mL 1and 440 U mg 1) of an enzyme identical to thenatural one (25.5 kDa). The enzymatic reaction showed high efficiency ofb-glucan degradation by recom-binant enzyme, giving a mixture of products (of which 3-O-b-cellobiosyl-D-glucose and 3-O-b-cellotriosyl-D-glucose are the most abundant), the reduction of viscosity (17%) and increase in antioxidant capacitiesby 15.2%, 30.9% and 44.0% assessed by ABTS, DPPH and ORAC, respectively. These results indicatethe possible application of endo-b-1,3-1,4-glucanase enzyme in improving the properties of barleyb-glucan used as functional foods.
PB  - Wiley
T2  - International Journal of Food Science and Technology
T1  - Improvement of nutritional and bioactive properties of barleyb-glucan-based food products usingBacillus subtilis168endo-b-1,3-1,4-glucanase
VL  - 58
IS  - 12
SP  - 6825
EP  - 6835
DO  - 10.1111/ijfs.16647
ER  - 
@article{
author = "Šokarda Slavić, Marinela and Kojić, Milan and Margetić, Aleksandra and Ristović, Marina and Pavlović, Marija and Nikolić, Stefan and Vujčić, Zoran",
year = "2023",
abstract = "The combination ofb-oligosaccharides from enzymatically hydrolysed barleyb-glucan has attracted inter-est recently due to its positive effects on human health. This study aimed to assess the impact of theendo-b-1,3-1,4-glucanase enzyme fromBacillus  subtilis168 on improving the nutritional and bioactiveproperties of barleyb-glucan. A new procedure for the isolation ofb-glucan was developed, at a lowertemperature (45°C), enabling purity from starch contamination, without affecting the yield (6 gb-glucanfrom 100 g of barley flour). The endo-b-1,3-1,4-glucanase is cloned intoE. colipQE_Ek enables the highproduction and purification (82% yield, 1.8 mg mL 1and 440 U mg 1) of an enzyme identical to thenatural one (25.5 kDa). The enzymatic reaction showed high efficiency ofb-glucan degradation by recom-binant enzyme, giving a mixture of products (of which 3-O-b-cellobiosyl-D-glucose and 3-O-b-cellotriosyl-D-glucose are the most abundant), the reduction of viscosity (17%) and increase in antioxidant capacitiesby 15.2%, 30.9% and 44.0% assessed by ABTS, DPPH and ORAC, respectively. These results indicatethe possible application of endo-b-1,3-1,4-glucanase enzyme in improving the properties of barleyb-glucan used as functional foods.",
publisher = "Wiley",
journal = "International Journal of Food Science and Technology",
title = "Improvement of nutritional and bioactive properties of barleyb-glucan-based food products usingBacillus subtilis168endo-b-1,3-1,4-glucanase",
volume = "58",
number = "12",
pages = "6825-6835",
doi = "10.1111/ijfs.16647"
}
Šokarda Slavić, M., Kojić, M., Margetić, A., Ristović, M., Pavlović, M., Nikolić, S.,& Vujčić, Z.. (2023). Improvement of nutritional and bioactive properties of barleyb-glucan-based food products usingBacillus subtilis168endo-b-1,3-1,4-glucanase. in International Journal of Food Science and Technology
Wiley., 58(12), 6825-6835.
https://doi.org/10.1111/ijfs.16647
Šokarda Slavić M, Kojić M, Margetić A, Ristović M, Pavlović M, Nikolić S, Vujčić Z. Improvement of nutritional and bioactive properties of barleyb-glucan-based food products usingBacillus subtilis168endo-b-1,3-1,4-glucanase. in International Journal of Food Science and Technology. 2023;58(12):6825-6835.
doi:10.1111/ijfs.16647 .
Šokarda Slavić, Marinela, Kojić, Milan, Margetić, Aleksandra, Ristović, Marina, Pavlović, Marija, Nikolić, Stefan, Vujčić, Zoran, "Improvement of nutritional and bioactive properties of barleyb-glucan-based food products usingBacillus subtilis168endo-b-1,3-1,4-glucanase" in International Journal of Food Science and Technology, 58, no. 12 (2023):6825-6835,
https://doi.org/10.1111/ijfs.16647 . .
1
1

Improvement of nutritional and bioactive properties of barleyb-glucan-based food products usingBacillus subtilis168endo-b-1,3-1,4-glucanase

Šokarda Slavić, Marinela; Kojić, Milan; Margetić, Aleksandra; Ristović, Marina; Pavlović, Marija; Nikolić, Stefan; Vujčić, Zoran

(Wiley, 2023)

TY  - JOUR
AU  - Šokarda Slavić, Marinela
AU  - Kojić, Milan
AU  - Margetić, Aleksandra
AU  - Ristović, Marina
AU  - Pavlović, Marija
AU  - Nikolić, Stefan
AU  - Vujčić, Zoran
PY  - 2023
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/6008
AB  - The combination ofb-oligosaccharides from enzymatically hydrolysed barleyb-glucan has attracted inter-est recently due to its positive effects on human health. This study aimed to assess the impact of theendo-b-1,3-1,4-glucanase enzyme fromBacillus  subtilis168 on improving the nutritional and bioactiveproperties of barleyb-glucan. A new procedure for the isolation ofb-glucan was developed, at a lowertemperature (45°C), enabling purity from starch contamination, without affecting the yield (6 gb-glucanfrom 100 g of barley flour). The endo-b-1,3-1,4-glucanase is cloned intoE. colipQE_Ek enables the highproduction and purification (82% yield, 1.8 mg mL 1and 440 U mg 1) of an enzyme identical to thenatural one (25.5 kDa). The enzymatic reaction showed high efficiency ofb-glucan degradation by recom-binant enzyme, giving a mixture of products (of which 3-O-b-cellobiosyl-D-glucose and 3-O-b-cellotriosyl-D-glucose are the most abundant), the reduction of viscosity (17%) and increase in antioxidant capacitiesby 15.2%, 30.9% and 44.0% assessed by ABTS, DPPH and ORAC, respectively. These results indicatethe possible application of endo-b-1,3-1,4-glucanase enzyme in improving the properties of barleyb-glucan used as functional foods.
PB  - Wiley
T2  - International Journal of Food Science and Technology
T1  - Improvement of nutritional and bioactive properties of barleyb-glucan-based food products usingBacillus subtilis168endo-b-1,3-1,4-glucanase
VL  - 58
IS  - 12
SP  - 6825
EP  - 6835
DO  - 10.1111/ijfs.16647
ER  - 
@article{
author = "Šokarda Slavić, Marinela and Kojić, Milan and Margetić, Aleksandra and Ristović, Marina and Pavlović, Marija and Nikolić, Stefan and Vujčić, Zoran",
year = "2023",
abstract = "The combination ofb-oligosaccharides from enzymatically hydrolysed barleyb-glucan has attracted inter-est recently due to its positive effects on human health. This study aimed to assess the impact of theendo-b-1,3-1,4-glucanase enzyme fromBacillus  subtilis168 on improving the nutritional and bioactiveproperties of barleyb-glucan. A new procedure for the isolation ofb-glucan was developed, at a lowertemperature (45°C), enabling purity from starch contamination, without affecting the yield (6 gb-glucanfrom 100 g of barley flour). The endo-b-1,3-1,4-glucanase is cloned intoE. colipQE_Ek enables the highproduction and purification (82% yield, 1.8 mg mL 1and 440 U mg 1) of an enzyme identical to thenatural one (25.5 kDa). The enzymatic reaction showed high efficiency ofb-glucan degradation by recom-binant enzyme, giving a mixture of products (of which 3-O-b-cellobiosyl-D-glucose and 3-O-b-cellotriosyl-D-glucose are the most abundant), the reduction of viscosity (17%) and increase in antioxidant capacitiesby 15.2%, 30.9% and 44.0% assessed by ABTS, DPPH and ORAC, respectively. These results indicatethe possible application of endo-b-1,3-1,4-glucanase enzyme in improving the properties of barleyb-glucan used as functional foods.",
publisher = "Wiley",
journal = "International Journal of Food Science and Technology",
title = "Improvement of nutritional and bioactive properties of barleyb-glucan-based food products usingBacillus subtilis168endo-b-1,3-1,4-glucanase",
volume = "58",
number = "12",
pages = "6825-6835",
doi = "10.1111/ijfs.16647"
}
Šokarda Slavić, M., Kojić, M., Margetić, A., Ristović, M., Pavlović, M., Nikolić, S.,& Vujčić, Z.. (2023). Improvement of nutritional and bioactive properties of barleyb-glucan-based food products usingBacillus subtilis168endo-b-1,3-1,4-glucanase. in International Journal of Food Science and Technology
Wiley., 58(12), 6825-6835.
https://doi.org/10.1111/ijfs.16647
Šokarda Slavić M, Kojić M, Margetić A, Ristović M, Pavlović M, Nikolić S, Vujčić Z. Improvement of nutritional and bioactive properties of barleyb-glucan-based food products usingBacillus subtilis168endo-b-1,3-1,4-glucanase. in International Journal of Food Science and Technology. 2023;58(12):6825-6835.
doi:10.1111/ijfs.16647 .
Šokarda Slavić, Marinela, Kojić, Milan, Margetić, Aleksandra, Ristović, Marina, Pavlović, Marija, Nikolić, Stefan, Vujčić, Zoran, "Improvement of nutritional and bioactive properties of barleyb-glucan-based food products usingBacillus subtilis168endo-b-1,3-1,4-glucanase" in International Journal of Food Science and Technology, 58, no. 12 (2023):6825-6835,
https://doi.org/10.1111/ijfs.16647 . .
1

Cloning and characterization of new raw starch digestion α-amylase from thermophilic Anoxybacillus sp.

Tomić, Katarina; Šokarda Slavić, Marinela; Kojić, Milan; Stanisavljević, Nemanja S.; Nikolić, Stefan; Vujčić, Zoran

(University of Belgrade - Faculty of Chemistry, 2022)

TY  - CONF
AU  - Tomić, Katarina
AU  - Šokarda Slavić, Marinela
AU  - Kojić, Milan
AU  - Stanisavljević, Nemanja S.
AU  - Nikolić, Stefan
AU  - Vujčić, Zoran
PY  - 2022
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5863
AB  - One of the most abundant natural polymers with multidimensional and multifaceted application is starch. Due to energy fuel sustainability concern, the world is focusing on renewable energy including energy from renewable biological materials like starch1. The importance of the enzymatic hydrolysis of granular starch below the temperature of gelatinization has been well recognized, mainly due to energy savings and the effective utilization of biomass, which reduces the overall cost of starch processing2. A new α-amylase gene (Amy35) was cloned from newly isolated thermophilic Anoxybacillus sp. ST4 and expressed in Escherichia coli. The purified recombinant α-amylase had an wide pH optimum range from 4.5 to 8.5 and optimum temperature of 75°C. The enzyme retained 95% of its activity after 3h of incubation at 50 and 60°C. Hydrolysis rates of potato, horseradish and corn starches, at 1% concentration were 20, 70 and 65%, respectively, in a period of 16 h. Analysis of the enzyme properties proved its high efficacy for the digestion of diverse raw starches below gelatinization temperature and, therefore, its potential commercial value for use as an industrial enzyme.
PB  - University of Belgrade - Faculty of Chemistry
PB  - Belgrade : Serbian Biochemical Society
C3  - Serbian Biochemical Society Eleventh Conference: Scientific meeting of an international character “Amazing Biochemistry”, September 22nd and 23rd, 2022, Novi Sad, Serbia
T1  - Cloning and characterization of new raw starch digestion α-amylase from thermophilic Anoxybacillus sp.
SP  - 147
EP  - 147
UR  - https://hdl.handle.net/21.15107/rcub_cer_5917
ER  - 
@conference{
author = "Tomić, Katarina and Šokarda Slavić, Marinela and Kojić, Milan and Stanisavljević, Nemanja S. and Nikolić, Stefan and Vujčić, Zoran",
year = "2022",
abstract = "One of the most abundant natural polymers with multidimensional and multifaceted application is starch. Due to energy fuel sustainability concern, the world is focusing on renewable energy including energy from renewable biological materials like starch1. The importance of the enzymatic hydrolysis of granular starch below the temperature of gelatinization has been well recognized, mainly due to energy savings and the effective utilization of biomass, which reduces the overall cost of starch processing2. A new α-amylase gene (Amy35) was cloned from newly isolated thermophilic Anoxybacillus sp. ST4 and expressed in Escherichia coli. The purified recombinant α-amylase had an wide pH optimum range from 4.5 to 8.5 and optimum temperature of 75°C. The enzyme retained 95% of its activity after 3h of incubation at 50 and 60°C. Hydrolysis rates of potato, horseradish and corn starches, at 1% concentration were 20, 70 and 65%, respectively, in a period of 16 h. Analysis of the enzyme properties proved its high efficacy for the digestion of diverse raw starches below gelatinization temperature and, therefore, its potential commercial value for use as an industrial enzyme.",
publisher = "University of Belgrade - Faculty of Chemistry, Belgrade : Serbian Biochemical Society",
journal = "Serbian Biochemical Society Eleventh Conference: Scientific meeting of an international character “Amazing Biochemistry”, September 22nd and 23rd, 2022, Novi Sad, Serbia",
title = "Cloning and characterization of new raw starch digestion α-amylase from thermophilic Anoxybacillus sp.",
pages = "147-147",
url = "https://hdl.handle.net/21.15107/rcub_cer_5917"
}
Tomić, K., Šokarda Slavić, M., Kojić, M., Stanisavljević, N. S., Nikolić, S.,& Vujčić, Z.. (2022). Cloning and characterization of new raw starch digestion α-amylase from thermophilic Anoxybacillus sp.. in Serbian Biochemical Society Eleventh Conference: Scientific meeting of an international character “Amazing Biochemistry”, September 22nd and 23rd, 2022, Novi Sad, Serbia
University of Belgrade - Faculty of Chemistry., 147-147.
https://hdl.handle.net/21.15107/rcub_cer_5917
Tomić K, Šokarda Slavić M, Kojić M, Stanisavljević NS, Nikolić S, Vujčić Z. Cloning and characterization of new raw starch digestion α-amylase from thermophilic Anoxybacillus sp.. in Serbian Biochemical Society Eleventh Conference: Scientific meeting of an international character “Amazing Biochemistry”, September 22nd and 23rd, 2022, Novi Sad, Serbia. 2022;:147-147.
https://hdl.handle.net/21.15107/rcub_cer_5917 .
Tomić, Katarina, Šokarda Slavić, Marinela, Kojić, Milan, Stanisavljević, Nemanja S., Nikolić, Stefan, Vujčić, Zoran, "Cloning and characterization of new raw starch digestion α-amylase from thermophilic Anoxybacillus sp." in Serbian Biochemical Society Eleventh Conference: Scientific meeting of an international character “Amazing Biochemistry”, September 22nd and 23rd, 2022, Novi Sad, Serbia (2022):147-147,
https://hdl.handle.net/21.15107/rcub_cer_5917 .

Aspergillus welwitschiae inulinase enzyme cocktails obtained on agro-material inducers for the purpose of fructooligosaccharides production

Stojanović, Sanja; Ristović, Marina; Stepanović, Jelena; Margetić, Aleksandra; Duduk, Bojan; Vujčić, Zoran; Dojnov, Biljana

(Elsevier, 2022)

TY  - JOUR
AU  - Stojanović, Sanja
AU  - Ristović, Marina
AU  - Stepanović, Jelena
AU  - Margetić, Aleksandra
AU  - Duduk, Bojan
AU  - Vujčić, Zoran
AU  - Dojnov, Biljana
PY  - 2022
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5517
AB  - Production of fructooligosaccharides (FOS) is a trending topic due to their prebiotic effect becoming increasingly important for the modern human diet. The most suitable process for FOS production is the one using fungal inulinases. Introduction of new fungal inulinase producers and their implementation in production of inulinase enzymes is therefore gaining interest. This study provides a new approach to FOS synthesis by fungal enzyme complex without prior separation of any specific enzyme. Inulinase enzyme complexes could be used for the synthesis of FOS in two possible ways – hydrolysis of inulin (FOSh) and transfructosylation process of sucrose (FOSs), as demonstrated here. Depending on the fungal growth inducing substrate, a variety of inulinase enzyme complexes was obtained – one of which was most successful in production of FOSh and another one of FOSs. Substrates derived from crops: triticale, wheat bran, Jerusalem artichoke and Aspergillus welwitschiae isolate, previously proven as safe for use in food, were utilized for production of inulinase enzyme cocktails. The highest FOSs production was obtained by enzyme complex rich in β-fructofuranosidase, while the highest FOSh production was obtained by enzyme complex rich in endoinulinase. Both FOSh and FOSs showed antioxidant potential according to ABTS and ORAC, which classifies them as a suitable additive in functional food. Simultaneous zymographic detection of inulinase enzymes, which could contribute to expansion of the knowledge on fungal enzymes, was developed and applied here. It demonstrated the presence of different inulinase isoforms depending on fungal growth substrate. These findings, which rely on the innate ability of fungi to co-produce all inulinases from a cocktail, could be useful as a new, easy approach to FOS production by fungal enzymes without their separation and purification, contributing to cheaper and faster production processes.
PB  - Elsevier
T2  - Food Research International
T2  - Food Research International
T1  - Aspergillus welwitschiae inulinase enzyme cocktails obtained on agro-material inducers for the purpose of fructooligosaccharides production
VL  - 160
DO  - 10.1016/j.foodres.2022.111755
ER  - 
@article{
author = "Stojanović, Sanja and Ristović, Marina and Stepanović, Jelena and Margetić, Aleksandra and Duduk, Bojan and Vujčić, Zoran and Dojnov, Biljana",
year = "2022",
abstract = "Production of fructooligosaccharides (FOS) is a trending topic due to their prebiotic effect becoming increasingly important for the modern human diet. The most suitable process for FOS production is the one using fungal inulinases. Introduction of new fungal inulinase producers and their implementation in production of inulinase enzymes is therefore gaining interest. This study provides a new approach to FOS synthesis by fungal enzyme complex without prior separation of any specific enzyme. Inulinase enzyme complexes could be used for the synthesis of FOS in two possible ways – hydrolysis of inulin (FOSh) and transfructosylation process of sucrose (FOSs), as demonstrated here. Depending on the fungal growth inducing substrate, a variety of inulinase enzyme complexes was obtained – one of which was most successful in production of FOSh and another one of FOSs. Substrates derived from crops: triticale, wheat bran, Jerusalem artichoke and Aspergillus welwitschiae isolate, previously proven as safe for use in food, were utilized for production of inulinase enzyme cocktails. The highest FOSs production was obtained by enzyme complex rich in β-fructofuranosidase, while the highest FOSh production was obtained by enzyme complex rich in endoinulinase. Both FOSh and FOSs showed antioxidant potential according to ABTS and ORAC, which classifies them as a suitable additive in functional food. Simultaneous zymographic detection of inulinase enzymes, which could contribute to expansion of the knowledge on fungal enzymes, was developed and applied here. It demonstrated the presence of different inulinase isoforms depending on fungal growth substrate. These findings, which rely on the innate ability of fungi to co-produce all inulinases from a cocktail, could be useful as a new, easy approach to FOS production by fungal enzymes without their separation and purification, contributing to cheaper and faster production processes.",
publisher = "Elsevier",
journal = "Food Research International, Food Research International",
title = "Aspergillus welwitschiae inulinase enzyme cocktails obtained on agro-material inducers for the purpose of fructooligosaccharides production",
volume = "160",
doi = "10.1016/j.foodres.2022.111755"
}
Stojanović, S., Ristović, M., Stepanović, J., Margetić, A., Duduk, B., Vujčić, Z.,& Dojnov, B.. (2022). Aspergillus welwitschiae inulinase enzyme cocktails obtained on agro-material inducers for the purpose of fructooligosaccharides production. in Food Research International
Elsevier., 160.
https://doi.org/10.1016/j.foodres.2022.111755
Stojanović S, Ristović M, Stepanović J, Margetić A, Duduk B, Vujčić Z, Dojnov B. Aspergillus welwitschiae inulinase enzyme cocktails obtained on agro-material inducers for the purpose of fructooligosaccharides production. in Food Research International. 2022;160.
doi:10.1016/j.foodres.2022.111755 .
Stojanović, Sanja, Ristović, Marina, Stepanović, Jelena, Margetić, Aleksandra, Duduk, Bojan, Vujčić, Zoran, Dojnov, Biljana, "Aspergillus welwitschiae inulinase enzyme cocktails obtained on agro-material inducers for the purpose of fructooligosaccharides production" in Food Research International, 160 (2022),
https://doi.org/10.1016/j.foodres.2022.111755 . .
1
5
2
2

Production and application of pectinases in the liquefaction of apricot and blueberry juice

Pavlović, Marija; Margetić, Aleksandra; Šokarda Slavić, Marinela; Ristović, Marina; Pavlović, Ratko; Nikolić, Stefan; Vujčić, Zoran

(University of Belgrade - Faculty of Chemistry, 2022)

TY  - CONF
AU  - Pavlović, Marija
AU  - Margetić, Aleksandra
AU  - Šokarda Slavić, Marinela
AU  - Ristović, Marina
AU  - Pavlović, Ratko
AU  - Nikolić, Stefan
AU  - Vujčić, Zoran
PY  - 2022
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5862
AB  - Pectinases are widely used in the fruit juice industry for clarification, liquefaction and stabilization of juices1. One of the biggest problems in the production of fruit juices is the turbidity of the juice, which is mainly caused by the presence of pectin polysaccharides. Therefore, pectinase is used in juice clarification, which breaks down the pectin structure and reduces unwanted cloudiness and sediment2. In this work, the production of pectinases was optimized by solid state fermentation using Aspergillus tubingensis strain, which proved to be an efficient producer of these enzymes. Statistical method Design of Experiment was used to optimize the medium and conditions for enzyme production. The total pectinase activity obtained was determined by the DNS method (47 U/mL). Endo-pectinases activity is determined by reduction of viscosity of pectin solutions. The resulting complex of pectinase enzymes was used for the liquefaction of apricot and blueberry pulp, with a juice yield of 72% and 81%, respectively. Also, apricot juice treated with enzymes was clarified by 77% compared to juice that was not treated with enzymes. Blueberry juice obtained after treatment with pectinase enzymes has a higher antioxidant activity than the untreated juice, as determined by the DPPH assay.
PB  - University of Belgrade - Faculty of Chemistry
PB  - Belgrade : Serbian Biochemical Society
C3  - Serbian Biochemical Society Eleventh Conference: Scientific meeting of an international character  “Amazing Biochemistry”, September 22nd and 23rd, 2022, Novi Sad, Serbia
T1  - Production and application of pectinases in the liquefaction of apricot and blueberry juice
UR  - https://hdl.handle.net/21.15107/rcub_cherry_5862
ER  - 
@conference{
author = "Pavlović, Marija and Margetić, Aleksandra and Šokarda Slavić, Marinela and Ristović, Marina and Pavlović, Ratko and Nikolić, Stefan and Vujčić, Zoran",
year = "2022",
abstract = "Pectinases are widely used in the fruit juice industry for clarification, liquefaction and stabilization of juices1. One of the biggest problems in the production of fruit juices is the turbidity of the juice, which is mainly caused by the presence of pectin polysaccharides. Therefore, pectinase is used in juice clarification, which breaks down the pectin structure and reduces unwanted cloudiness and sediment2. In this work, the production of pectinases was optimized by solid state fermentation using Aspergillus tubingensis strain, which proved to be an efficient producer of these enzymes. Statistical method Design of Experiment was used to optimize the medium and conditions for enzyme production. The total pectinase activity obtained was determined by the DNS method (47 U/mL). Endo-pectinases activity is determined by reduction of viscosity of pectin solutions. The resulting complex of pectinase enzymes was used for the liquefaction of apricot and blueberry pulp, with a juice yield of 72% and 81%, respectively. Also, apricot juice treated with enzymes was clarified by 77% compared to juice that was not treated with enzymes. Blueberry juice obtained after treatment with pectinase enzymes has a higher antioxidant activity than the untreated juice, as determined by the DPPH assay.",
publisher = "University of Belgrade - Faculty of Chemistry, Belgrade : Serbian Biochemical Society",
journal = "Serbian Biochemical Society Eleventh Conference: Scientific meeting of an international character  “Amazing Biochemistry”, September 22nd and 23rd, 2022, Novi Sad, Serbia",
title = "Production and application of pectinases in the liquefaction of apricot and blueberry juice",
url = "https://hdl.handle.net/21.15107/rcub_cherry_5862"
}
Pavlović, M., Margetić, A., Šokarda Slavić, M., Ristović, M., Pavlović, R., Nikolić, S.,& Vujčić, Z.. (2022). Production and application of pectinases in the liquefaction of apricot and blueberry juice. in Serbian Biochemical Society Eleventh Conference: Scientific meeting of an international character  “Amazing Biochemistry”, September 22nd and 23rd, 2022, Novi Sad, Serbia
University of Belgrade - Faculty of Chemistry..
https://hdl.handle.net/21.15107/rcub_cherry_5862
Pavlović M, Margetić A, Šokarda Slavić M, Ristović M, Pavlović R, Nikolić S, Vujčić Z. Production and application of pectinases in the liquefaction of apricot and blueberry juice. in Serbian Biochemical Society Eleventh Conference: Scientific meeting of an international character  “Amazing Biochemistry”, September 22nd and 23rd, 2022, Novi Sad, Serbia. 2022;.
https://hdl.handle.net/21.15107/rcub_cherry_5862 .
Pavlović, Marija, Margetić, Aleksandra, Šokarda Slavić, Marinela, Ristović, Marina, Pavlović, Ratko, Nikolić, Stefan, Vujčić, Zoran, "Production and application of pectinases in the liquefaction of apricot and blueberry juice" in Serbian Biochemical Society Eleventh Conference: Scientific meeting of an international character  “Amazing Biochemistry”, September 22nd and 23rd, 2022, Novi Sad, Serbia (2022),
https://hdl.handle.net/21.15107/rcub_cherry_5862 .

Antioxidative Responses of Duckweed (Lemna minor L.) to Phenol and Rhizosphere-Associated Bacterial Strain Hafnia paralvei C32-106/3

Radulović, Olga; Stanković, Slaviša; Stanojević, Olja; Vujčić, Zoran; Dojnov, Biljana; Trifunović-Momčilov, Milana; Marković, Marija

(MDPI, 2021)

TY  - JOUR
AU  - Radulović, Olga
AU  - Stanković, Slaviša
AU  - Stanojević, Olja
AU  - Vujčić, Zoran
AU  - Dojnov, Biljana
AU  - Trifunović-Momčilov, Milana
AU  - Marković, Marija
PY  - 2021
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/4763
AB  - Duckweed (L. minor) is a cosmopolitan aquatic plant of simplified morphology and rapid vegetative reproduction. In this study, an H. paralvei bacterial strain and its influence on the antioxidative response of the duckweeds to phenol, a recalcitrant environmental pollutant, were investigated. Sterile duckweed cultures were inoculated with H. paralvei in vitro and cultivated in the presence or absence of phenol (500 mg L−1), in order to investigate bacterial effects on plant oxidative stress during 5 days. Total soluble proteins, guaiacol peroxidase expression, concentration of hydrogen peroxide and malondialdehyde as well as the total ascorbic acid of the plants were monitored. Moreover, bacterial production of indole-3-acetic acid (IAA) was measured in order to investigate H. paralvei’s influence on plant growth. In general, the addition of phenol elevated all biochemical parameters in L. minor except AsA and total soluble proteins. Phenol as well as bacteria influenced the expression of guaiacol peroxidase. Different isoforms were associated with phenol compared to isoforms expressed in phenol-free medium. Considering that duckweeds showed increased antioxidative parameters in the presence of phenol, it can be assumed that the measured parameters might be involved in the plant’s defense system. H. paralvei is an IAA producer and its presence in the rhizosphere of duckweeds decreased the oxidative stress of the plants, which can be taken as evidence that this bacterial strain acts protectively on the plants during phenol exposure.
PB  - MDPI
T2  - Antioxidants
T1  - Antioxidative Responses of Duckweed (Lemna minor L.) to Phenol and Rhizosphere-Associated Bacterial Strain Hafnia paralvei C32-106/3
VL  - 10
IS  - 11
SP  - 1719
DO  - 10.3390/antiox10111719
ER  - 
@article{
author = "Radulović, Olga and Stanković, Slaviša and Stanojević, Olja and Vujčić, Zoran and Dojnov, Biljana and Trifunović-Momčilov, Milana and Marković, Marija",
year = "2021",
abstract = "Duckweed (L. minor) is a cosmopolitan aquatic plant of simplified morphology and rapid vegetative reproduction. In this study, an H. paralvei bacterial strain and its influence on the antioxidative response of the duckweeds to phenol, a recalcitrant environmental pollutant, were investigated. Sterile duckweed cultures were inoculated with H. paralvei in vitro and cultivated in the presence or absence of phenol (500 mg L−1), in order to investigate bacterial effects on plant oxidative stress during 5 days. Total soluble proteins, guaiacol peroxidase expression, concentration of hydrogen peroxide and malondialdehyde as well as the total ascorbic acid of the plants were monitored. Moreover, bacterial production of indole-3-acetic acid (IAA) was measured in order to investigate H. paralvei’s influence on plant growth. In general, the addition of phenol elevated all biochemical parameters in L. minor except AsA and total soluble proteins. Phenol as well as bacteria influenced the expression of guaiacol peroxidase. Different isoforms were associated with phenol compared to isoforms expressed in phenol-free medium. Considering that duckweeds showed increased antioxidative parameters in the presence of phenol, it can be assumed that the measured parameters might be involved in the plant’s defense system. H. paralvei is an IAA producer and its presence in the rhizosphere of duckweeds decreased the oxidative stress of the plants, which can be taken as evidence that this bacterial strain acts protectively on the plants during phenol exposure.",
publisher = "MDPI",
journal = "Antioxidants",
title = "Antioxidative Responses of Duckweed (Lemna minor L.) to Phenol and Rhizosphere-Associated Bacterial Strain Hafnia paralvei C32-106/3",
volume = "10",
number = "11",
pages = "1719",
doi = "10.3390/antiox10111719"
}
Radulović, O., Stanković, S., Stanojević, O., Vujčić, Z., Dojnov, B., Trifunović-Momčilov, M.,& Marković, M.. (2021). Antioxidative Responses of Duckweed (Lemna minor L.) to Phenol and Rhizosphere-Associated Bacterial Strain Hafnia paralvei C32-106/3. in Antioxidants
MDPI., 10(11), 1719.
https://doi.org/10.3390/antiox10111719
Radulović O, Stanković S, Stanojević O, Vujčić Z, Dojnov B, Trifunović-Momčilov M, Marković M. Antioxidative Responses of Duckweed (Lemna minor L.) to Phenol and Rhizosphere-Associated Bacterial Strain Hafnia paralvei C32-106/3. in Antioxidants. 2021;10(11):1719.
doi:10.3390/antiox10111719 .
Radulović, Olga, Stanković, Slaviša, Stanojević, Olja, Vujčić, Zoran, Dojnov, Biljana, Trifunović-Momčilov, Milana, Marković, Marija, "Antioxidative Responses of Duckweed (Lemna minor L.) to Phenol and Rhizosphere-Associated Bacterial Strain Hafnia paralvei C32-106/3" in Antioxidants, 10, no. 11 (2021):1719,
https://doi.org/10.3390/antiox10111719 . .
3
5
6
3

Fungal oxidative and hydrolyzing enzymes as designers in the biological production of dietary fibers from triticale

Margetić, Aleksandra; Stojanović, Sanja; Ristović, Marina; Vujčić, Zoran; Dojnov, Biljana

(Elsevier, 2021)

TY  - JOUR
AU  - Margetić, Aleksandra
AU  - Stojanović, Sanja
AU  - Ristović, Marina
AU  - Vujčić, Zoran
AU  - Dojnov, Biljana
PY  - 2021
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/4801
AB  - There is an urgent need to increase the daily intake of insoluble dietary fiber, and at the same time to find new sources and new production technologies. We hypothesized that fungal enzymes directly involved in lignocellulosic material hydrolysis (Aspergillus and Trichoderma enzyme cocktails) will change the fiber structure particularly efficiently after the action of laccase (Trametes versicolor enzyme cocktail). Enzymes production on an inducing substrate (same as starting material for obtainment of insoluble dietary fibers) and their usage resulted in obtainment of novel insoluble dietary fibers with better characteristics, 24% higher swelling, 43% higher WRC and 57% higher ORC compared to insoluble dietary fibers from triticale (already proven to be a good food additive). Changes in structure were analyzed by FTIR and microscopic analysis. Antioxidative performance of the obtained products, new insoluble and released soluble dietary fibers, was analyzed in detail. Newly obtained soluble dietary fibers demonstrated up to 20 times higher antioxidant activity compared to untreated fibers (ABTS and DPPH tests). These results suggest their good performance as a future food additive. At the same time, they prove the hypothesis that the use of enzyme cocktails rich in laccase is a good choice for biological pretreatment in this process.
PB  - Elsevier
T2  - LWT - Food Science and Technology
T1  - Fungal oxidative and hydrolyzing enzymes as designers in the biological production of dietary fibers from triticale
VL  - 145
SP  - 111291
DO  - 10.1016/j.lwt.2021.111291
ER  - 
@article{
author = "Margetić, Aleksandra and Stojanović, Sanja and Ristović, Marina and Vujčić, Zoran and Dojnov, Biljana",
year = "2021",
abstract = "There is an urgent need to increase the daily intake of insoluble dietary fiber, and at the same time to find new sources and new production technologies. We hypothesized that fungal enzymes directly involved in lignocellulosic material hydrolysis (Aspergillus and Trichoderma enzyme cocktails) will change the fiber structure particularly efficiently after the action of laccase (Trametes versicolor enzyme cocktail). Enzymes production on an inducing substrate (same as starting material for obtainment of insoluble dietary fibers) and their usage resulted in obtainment of novel insoluble dietary fibers with better characteristics, 24% higher swelling, 43% higher WRC and 57% higher ORC compared to insoluble dietary fibers from triticale (already proven to be a good food additive). Changes in structure were analyzed by FTIR and microscopic analysis. Antioxidative performance of the obtained products, new insoluble and released soluble dietary fibers, was analyzed in detail. Newly obtained soluble dietary fibers demonstrated up to 20 times higher antioxidant activity compared to untreated fibers (ABTS and DPPH tests). These results suggest their good performance as a future food additive. At the same time, they prove the hypothesis that the use of enzyme cocktails rich in laccase is a good choice for biological pretreatment in this process.",
publisher = "Elsevier",
journal = "LWT - Food Science and Technology",
title = "Fungal oxidative and hydrolyzing enzymes as designers in the biological production of dietary fibers from triticale",
volume = "145",
pages = "111291",
doi = "10.1016/j.lwt.2021.111291"
}
Margetić, A., Stojanović, S., Ristović, M., Vujčić, Z.,& Dojnov, B.. (2021). Fungal oxidative and hydrolyzing enzymes as designers in the biological production of dietary fibers from triticale. in LWT - Food Science and Technology
Elsevier., 145, 111291.
https://doi.org/10.1016/j.lwt.2021.111291
Margetić A, Stojanović S, Ristović M, Vujčić Z, Dojnov B. Fungal oxidative and hydrolyzing enzymes as designers in the biological production of dietary fibers from triticale. in LWT - Food Science and Technology. 2021;145:111291.
doi:10.1016/j.lwt.2021.111291 .
Margetić, Aleksandra, Stojanović, Sanja, Ristović, Marina, Vujčić, Zoran, Dojnov, Biljana, "Fungal oxidative and hydrolyzing enzymes as designers in the biological production of dietary fibers from triticale" in LWT - Food Science and Technology, 145 (2021):111291,
https://doi.org/10.1016/j.lwt.2021.111291 . .
4
4
4

Supplementary data for the article: Margetić, A.; Stojanović, S.; Ristović, M.; Vujčić, Z.; Dojnov, B. Fungal Oxidative and Hydrolyzing Enzymes as Designers in the Biological Production of Dietary Fibers from Triticale. LWT 2021, 145, 111291. https://doi.org/10.1016/j.lwt.2021.111291.

Margetić, Aleksandra; Stojanović, Sanja; Ristović, Marina; Vujčić, Zoran; Dojnov, Biljana

(Elsevier, 2021)

TY  - DATA
AU  - Margetić, Aleksandra
AU  - Stojanović, Sanja
AU  - Ristović, Marina
AU  - Vujčić, Zoran
AU  - Dojnov, Biljana
PY  - 2021
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/4802
PB  - Elsevier
T2  - LWT - Food Science and Technology
T1  - Supplementary data for the article: Margetić, A.; Stojanović, S.; Ristović, M.; Vujčić, Z.; Dojnov, B. Fungal Oxidative and Hydrolyzing Enzymes as Designers in the Biological Production of Dietary Fibers from Triticale. LWT 2021, 145, 111291. https://doi.org/10.1016/j.lwt.2021.111291.
UR  - https://hdl.handle.net/21.15107/rcub_cherry_4802
ER  - 
@misc{
author = "Margetić, Aleksandra and Stojanović, Sanja and Ristović, Marina and Vujčić, Zoran and Dojnov, Biljana",
year = "2021",
publisher = "Elsevier",
journal = "LWT - Food Science and Technology",
title = "Supplementary data for the article: Margetić, A.; Stojanović, S.; Ristović, M.; Vujčić, Z.; Dojnov, B. Fungal Oxidative and Hydrolyzing Enzymes as Designers in the Biological Production of Dietary Fibers from Triticale. LWT 2021, 145, 111291. https://doi.org/10.1016/j.lwt.2021.111291.",
url = "https://hdl.handle.net/21.15107/rcub_cherry_4802"
}
Margetić, A., Stojanović, S., Ristović, M., Vujčić, Z.,& Dojnov, B.. (2021). Supplementary data for the article: Margetić, A.; Stojanović, S.; Ristović, M.; Vujčić, Z.; Dojnov, B. Fungal Oxidative and Hydrolyzing Enzymes as Designers in the Biological Production of Dietary Fibers from Triticale. LWT 2021, 145, 111291. https://doi.org/10.1016/j.lwt.2021.111291.. in LWT - Food Science and Technology
Elsevier..
https://hdl.handle.net/21.15107/rcub_cherry_4802
Margetić A, Stojanović S, Ristović M, Vujčić Z, Dojnov B. Supplementary data for the article: Margetić, A.; Stojanović, S.; Ristović, M.; Vujčić, Z.; Dojnov, B. Fungal Oxidative and Hydrolyzing Enzymes as Designers in the Biological Production of Dietary Fibers from Triticale. LWT 2021, 145, 111291. https://doi.org/10.1016/j.lwt.2021.111291.. in LWT - Food Science and Technology. 2021;.
https://hdl.handle.net/21.15107/rcub_cherry_4802 .
Margetić, Aleksandra, Stojanović, Sanja, Ristović, Marina, Vujčić, Zoran, Dojnov, Biljana, "Supplementary data for the article: Margetić, A.; Stojanović, S.; Ristović, M.; Vujčić, Z.; Dojnov, B. Fungal Oxidative and Hydrolyzing Enzymes as Designers in the Biological Production of Dietary Fibers from Triticale. LWT 2021, 145, 111291. https://doi.org/10.1016/j.lwt.2021.111291." in LWT - Food Science and Technology (2021),
https://hdl.handle.net/21.15107/rcub_cherry_4802 .

Increased yield of enzymatic synthesis by chromatographic selection of different N-glycoforms of yeast invertase

Anđelković, Uroš; Gudelj, Ivan; Klarić, Thomas; Hinneburg, Hannes; Vinković, Marijana; Wittine, Karlo; Dovezenski, Nebojša; Vikić-Topić, Dražen; Lauc, Gordan; Vujčić, Zoran; Josić, Đuro

(Wiley, 2021)

TY  - JOUR
AU  - Anđelković, Uroš
AU  - Gudelj, Ivan
AU  - Klarić, Thomas
AU  - Hinneburg, Hannes
AU  - Vinković, Marijana
AU  - Wittine, Karlo
AU  - Dovezenski, Nebojša
AU  - Vikić-Topić, Dražen
AU  - Lauc, Gordan
AU  - Vujčić, Zoran
AU  - Josić, Đuro
PY  - 2021
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/4976
AB  - Invertases are glycosidases applied for synthesis of alkyl glycosides that are important and effective surfactants. Stability of invertases in the environment with increased content of organic solvent is crucial for increase of productivity of glycosidases. Their stabilityis significantly influenced by N-glycosylation. However, yeast N-glycosylation pathways may synthesize plethora of N-glycan structures. A total natural crude mixture of invertase glycoforms (EINV) extracted from Saccharomyces cerevisiae was subfractionatedby anion-exchange chromatography on industrial monolithic supports to obtain different glycoforms (EINV1–EINV3). Separated glycoforms exhibited different stabilities in wateralcohol solutions that are in direct correlation with the amount of phosphate bound to N-glycans. Observed differences in stability of different invertase glycoforms were used to improve productivity of methyl β-d-fructofuranoside (MF) synthesis. The efficiency and yield of MF synthesis were improved more than 50% when the most stabile glycoform bearing the lowest amount of phosphorylated N-glycans is selected and utilized. These data underline the importance of analysis of glycan structures attached to glycoproteins, demonstrate different impact of N-glycans on the surface charge and enzyme stability inregard to particular reaction environment, and provide a platform for improvement of yield of industrial enzymatic synthesis by chromatographic selection of glycoforms on monolithic supports.
PB  - Wiley
T2  - Electrophoresis
T1  - Increased yield of enzymatic synthesis by chromatographic selection of different N-glycoforms of yeast invertase
VL  - 42
SP  - 2626
EP  - 2636
DO  - 10.1002/elps.202000092
ER  - 
@article{
author = "Anđelković, Uroš and Gudelj, Ivan and Klarić, Thomas and Hinneburg, Hannes and Vinković, Marijana and Wittine, Karlo and Dovezenski, Nebojša and Vikić-Topić, Dražen and Lauc, Gordan and Vujčić, Zoran and Josić, Đuro",
year = "2021",
abstract = "Invertases are glycosidases applied for synthesis of alkyl glycosides that are important and effective surfactants. Stability of invertases in the environment with increased content of organic solvent is crucial for increase of productivity of glycosidases. Their stabilityis significantly influenced by N-glycosylation. However, yeast N-glycosylation pathways may synthesize plethora of N-glycan structures. A total natural crude mixture of invertase glycoforms (EINV) extracted from Saccharomyces cerevisiae was subfractionatedby anion-exchange chromatography on industrial monolithic supports to obtain different glycoforms (EINV1–EINV3). Separated glycoforms exhibited different stabilities in wateralcohol solutions that are in direct correlation with the amount of phosphate bound to N-glycans. Observed differences in stability of different invertase glycoforms were used to improve productivity of methyl β-d-fructofuranoside (MF) synthesis. The efficiency and yield of MF synthesis were improved more than 50% when the most stabile glycoform bearing the lowest amount of phosphorylated N-glycans is selected and utilized. These data underline the importance of analysis of glycan structures attached to glycoproteins, demonstrate different impact of N-glycans on the surface charge and enzyme stability inregard to particular reaction environment, and provide a platform for improvement of yield of industrial enzymatic synthesis by chromatographic selection of glycoforms on monolithic supports.",
publisher = "Wiley",
journal = "Electrophoresis",
title = "Increased yield of enzymatic synthesis by chromatographic selection of different N-glycoforms of yeast invertase",
volume = "42",
pages = "2626-2636",
doi = "10.1002/elps.202000092"
}
Anđelković, U., Gudelj, I., Klarić, T., Hinneburg, H., Vinković, M., Wittine, K., Dovezenski, N., Vikić-Topić, D., Lauc, G., Vujčić, Z.,& Josić, Đ.. (2021). Increased yield of enzymatic synthesis by chromatographic selection of different N-glycoforms of yeast invertase. in Electrophoresis
Wiley., 42, 2626-2636.
https://doi.org/10.1002/elps.202000092
Anđelković U, Gudelj I, Klarić T, Hinneburg H, Vinković M, Wittine K, Dovezenski N, Vikić-Topić D, Lauc G, Vujčić Z, Josić Đ. Increased yield of enzymatic synthesis by chromatographic selection of different N-glycoforms of yeast invertase. in Electrophoresis. 2021;42:2626-2636.
doi:10.1002/elps.202000092 .
Anđelković, Uroš, Gudelj, Ivan, Klarić, Thomas, Hinneburg, Hannes, Vinković, Marijana, Wittine, Karlo, Dovezenski, Nebojša, Vikić-Topić, Dražen, Lauc, Gordan, Vujčić, Zoran, Josić, Đuro, "Increased yield of enzymatic synthesis by chromatographic selection of different N-glycoforms of yeast invertase" in Electrophoresis, 42 (2021):2626-2636,
https://doi.org/10.1002/elps.202000092 . .
3
3
1
3
3

Increased yield of enzymatic synthesis by chromatographic selection of different N-glycoforms of yeast invertase

Anđelković, Uroš; Gudelj, Ivan; Klarić, Thomas; Hinneburg, Hannes; Vinković, Marijana; Wittine, Karlo; Dovezenski, Nebojša; Vikić-Topić, Dražen; Lauc, Gordan; Vujčić, Zoran; Josić, Đuro

(Wiley, 2021)

TY  - JOUR
AU  - Anđelković, Uroš
AU  - Gudelj, Ivan
AU  - Klarić, Thomas
AU  - Hinneburg, Hannes
AU  - Vinković, Marijana
AU  - Wittine, Karlo
AU  - Dovezenski, Nebojša
AU  - Vikić-Topić, Dražen
AU  - Lauc, Gordan
AU  - Vujčić, Zoran
AU  - Josić, Đuro
PY  - 2021
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/4977
AB  - Invertases are glycosidases applied for synthesis of alkyl glycosides that are important and effective surfactants. Stability of invertases in the environment with increased content of organic solvent is crucial for increase of productivity of glycosidases. Their stabilityis significantly influenced by N-glycosylation. However, yeast N-glycosylation pathways may synthesize plethora of N-glycan structures. A total natural crude mixture of invertase glycoforms (EINV) extracted from Saccharomyces cerevisiae was subfractionatedby anion-exchange chromatography on industrial monolithic supports to obtain different glycoforms (EINV1–EINV3). Separated glycoforms exhibited different stabilities in wateralcohol solutions that are in direct correlation with the amount of phosphate bound to N-glycans. Observed differences in stability of different invertase glycoforms were used to improve productivity of methyl β-d-fructofuranoside (MF) synthesis. The efficiency and yield of MF synthesis were improved more than 50% when the most stabile glycoform bearing the lowest amount of phosphorylated N-glycans is selected and utilized. These data underline the importance of analysis of glycan structures attached to glycoproteins, demonstrate different impact of N-glycans on the surface charge and enzyme stability inregard to particular reaction environment, and provide a platform for improvement of yield of industrial enzymatic synthesis by chromatographic selection of glycoforms on monolithic supports.
PB  - Wiley
T2  - Electrophoresis
T1  - Increased yield of enzymatic synthesis by chromatographic selection of different N-glycoforms of yeast invertase
VL  - 42
IS  - 24
SP  - 2626
EP  - 2636
DO  - 10.1002/elps.202000092
ER  - 
@article{
author = "Anđelković, Uroš and Gudelj, Ivan and Klarić, Thomas and Hinneburg, Hannes and Vinković, Marijana and Wittine, Karlo and Dovezenski, Nebojša and Vikić-Topić, Dražen and Lauc, Gordan and Vujčić, Zoran and Josić, Đuro",
year = "2021",
abstract = "Invertases are glycosidases applied for synthesis of alkyl glycosides that are important and effective surfactants. Stability of invertases in the environment with increased content of organic solvent is crucial for increase of productivity of glycosidases. Their stabilityis significantly influenced by N-glycosylation. However, yeast N-glycosylation pathways may synthesize plethora of N-glycan structures. A total natural crude mixture of invertase glycoforms (EINV) extracted from Saccharomyces cerevisiae was subfractionatedby anion-exchange chromatography on industrial monolithic supports to obtain different glycoforms (EINV1–EINV3). Separated glycoforms exhibited different stabilities in wateralcohol solutions that are in direct correlation with the amount of phosphate bound to N-glycans. Observed differences in stability of different invertase glycoforms were used to improve productivity of methyl β-d-fructofuranoside (MF) synthesis. The efficiency and yield of MF synthesis were improved more than 50% when the most stabile glycoform bearing the lowest amount of phosphorylated N-glycans is selected and utilized. These data underline the importance of analysis of glycan structures attached to glycoproteins, demonstrate different impact of N-glycans on the surface charge and enzyme stability inregard to particular reaction environment, and provide a platform for improvement of yield of industrial enzymatic synthesis by chromatographic selection of glycoforms on monolithic supports.",
publisher = "Wiley",
journal = "Electrophoresis",
title = "Increased yield of enzymatic synthesis by chromatographic selection of different N-glycoforms of yeast invertase",
volume = "42",
number = "24",
pages = "2626-2636",
doi = "10.1002/elps.202000092"
}
Anđelković, U., Gudelj, I., Klarić, T., Hinneburg, H., Vinković, M., Wittine, K., Dovezenski, N., Vikić-Topić, D., Lauc, G., Vujčić, Z.,& Josić, Đ.. (2021). Increased yield of enzymatic synthesis by chromatographic selection of different N-glycoforms of yeast invertase. in Electrophoresis
Wiley., 42(24), 2626-2636.
https://doi.org/10.1002/elps.202000092
Anđelković U, Gudelj I, Klarić T, Hinneburg H, Vinković M, Wittine K, Dovezenski N, Vikić-Topić D, Lauc G, Vujčić Z, Josić Đ. Increased yield of enzymatic synthesis by chromatographic selection of different N-glycoforms of yeast invertase. in Electrophoresis. 2021;42(24):2626-2636.
doi:10.1002/elps.202000092 .
Anđelković, Uroš, Gudelj, Ivan, Klarić, Thomas, Hinneburg, Hannes, Vinković, Marijana, Wittine, Karlo, Dovezenski, Nebojša, Vikić-Topić, Dražen, Lauc, Gordan, Vujčić, Zoran, Josić, Đuro, "Increased yield of enzymatic synthesis by chromatographic selection of different N-glycoforms of yeast invertase" in Electrophoresis, 42, no. 24 (2021):2626-2636,
https://doi.org/10.1002/elps.202000092 . .
3
3
1
3
3

Supplementary data for article: Simić, S.; Jeremic, S.; Djokic, L.; Božić, N.; Vujčić, Z.; Lončar, N.; Senthamaraikannan, R.; Babu, R.; Opsenica, I. M.; Nikodinovic-Runic, J. Development of an Efficient Biocatalytic System Based on Bacterial Laccase for the Oxidation of Selected 1,4-Dihydropyridines. Enzyme and Microbial Technology 2020, 132. https://doi.org/10.1016/j.enzmictec.2019.109411

Simić, Stefan; Jeremić, Sanja; Đokić, Lidija; Božić, Nataša; Vujčić, Zoran; Lončar, Nikola L.; Senthamaraikannan, Ramsankar; Babu, Ramesh P.; Opsenica, Igor; Nikodinović-Runić, Jasmina

(2020)

TY  - DATA
AU  - Simić, Stefan
AU  - Jeremić, Sanja
AU  - Đokić, Lidija
AU  - Božić, Nataša
AU  - Vujčić, Zoran
AU  - Lončar, Nikola L.
AU  - Senthamaraikannan, Ramsankar
AU  - Babu, Ramesh P.
AU  - Opsenica, Igor
AU  - Nikodinović-Runić, Jasmina
PY  - 2020
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3357
T2  - Enzyme and Microbial Technology
T1  - Supplementary data for article: Simić, S.; Jeremic, S.; Djokic, L.; Božić, N.; Vujčić, Z.; Lončar, N.; Senthamaraikannan, R.; Babu, R.; Opsenica, I. M.; Nikodinovic-Runic, J. Development of an Efficient Biocatalytic System Based on Bacterial Laccase for the Oxidation of Selected 1,4-Dihydropyridines. Enzyme and Microbial Technology 2020, 132. https://doi.org/10.1016/j.enzmictec.2019.109411
UR  - https://hdl.handle.net/21.15107/rcub_cherry_3357
ER  - 
@misc{
author = "Simić, Stefan and Jeremić, Sanja and Đokić, Lidija and Božić, Nataša and Vujčić, Zoran and Lončar, Nikola L. and Senthamaraikannan, Ramsankar and Babu, Ramesh P. and Opsenica, Igor and Nikodinović-Runić, Jasmina",
year = "2020",
journal = "Enzyme and Microbial Technology",
title = "Supplementary data for article: Simić, S.; Jeremic, S.; Djokic, L.; Božić, N.; Vujčić, Z.; Lončar, N.; Senthamaraikannan, R.; Babu, R.; Opsenica, I. M.; Nikodinovic-Runic, J. Development of an Efficient Biocatalytic System Based on Bacterial Laccase for the Oxidation of Selected 1,4-Dihydropyridines. Enzyme and Microbial Technology 2020, 132. https://doi.org/10.1016/j.enzmictec.2019.109411",
url = "https://hdl.handle.net/21.15107/rcub_cherry_3357"
}
Simić, S., Jeremić, S., Đokić, L., Božić, N., Vujčić, Z., Lončar, N. L., Senthamaraikannan, R., Babu, R. P., Opsenica, I.,& Nikodinović-Runić, J.. (2020). Supplementary data for article: Simić, S.; Jeremic, S.; Djokic, L.; Božić, N.; Vujčić, Z.; Lončar, N.; Senthamaraikannan, R.; Babu, R.; Opsenica, I. M.; Nikodinovic-Runic, J. Development of an Efficient Biocatalytic System Based on Bacterial Laccase for the Oxidation of Selected 1,4-Dihydropyridines. Enzyme and Microbial Technology 2020, 132. https://doi.org/10.1016/j.enzmictec.2019.109411. in Enzyme and Microbial Technology.
https://hdl.handle.net/21.15107/rcub_cherry_3357
Simić S, Jeremić S, Đokić L, Božić N, Vujčić Z, Lončar NL, Senthamaraikannan R, Babu RP, Opsenica I, Nikodinović-Runić J. Supplementary data for article: Simić, S.; Jeremic, S.; Djokic, L.; Božić, N.; Vujčić, Z.; Lončar, N.; Senthamaraikannan, R.; Babu, R.; Opsenica, I. M.; Nikodinovic-Runic, J. Development of an Efficient Biocatalytic System Based on Bacterial Laccase for the Oxidation of Selected 1,4-Dihydropyridines. Enzyme and Microbial Technology 2020, 132. https://doi.org/10.1016/j.enzmictec.2019.109411. in Enzyme and Microbial Technology. 2020;.
https://hdl.handle.net/21.15107/rcub_cherry_3357 .
Simić, Stefan, Jeremić, Sanja, Đokić, Lidija, Božić, Nataša, Vujčić, Zoran, Lončar, Nikola L., Senthamaraikannan, Ramsankar, Babu, Ramesh P., Opsenica, Igor, Nikodinović-Runić, Jasmina, "Supplementary data for article: Simić, S.; Jeremic, S.; Djokic, L.; Božić, N.; Vujčić, Z.; Lončar, N.; Senthamaraikannan, R.; Babu, R.; Opsenica, I. M.; Nikodinovic-Runic, J. Development of an Efficient Biocatalytic System Based on Bacterial Laccase for the Oxidation of Selected 1,4-Dihydropyridines. Enzyme and Microbial Technology 2020, 132. https://doi.org/10.1016/j.enzmictec.2019.109411" in Enzyme and Microbial Technology (2020),
https://hdl.handle.net/21.15107/rcub_cherry_3357 .

Development of an efficient biocatalytic system based on bacterial laccase for the oxidation of selected 1,4-dihydropyridines

Simić, Stefan; Jeremić, Sanja; Đokić, Lidija; Božić, Nataša; Vujčić, Zoran; Lončar, Nikola L.; Senthamaraikannan, Ramsankar; Babu, Ramesh P.; Opsenica, Igor; Nikodinović-Runić, Jasmina

(2020)

TY  - JOUR
AU  - Simić, Stefan
AU  - Jeremić, Sanja
AU  - Đokić, Lidija
AU  - Božić, Nataša
AU  - Vujčić, Zoran
AU  - Lončar, Nikola L.
AU  - Senthamaraikannan, Ramsankar
AU  - Babu, Ramesh P.
AU  - Opsenica, Igor
AU  - Nikodinović-Runić, Jasmina
PY  - 2020
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3356
AB  - Biocatalytic oxidations mediated by laccases are gaining importance due to their versatility and beneficial environmental effects. In this study, the oxidation of 1,4-dihydropyridines has been performed using three different types of bacterial laccase-based catalysts: purified laccase from Bacillus licheniformis ATCC 9945a (BliLacc), Escherichia coli whole cells expressing this laccase, and bacterial nanocellulose (BNC) supported BliLacc catalysts. The catalysts based on bacterial laccase were compared to the commercially available Trametes versicolor laccase (TvLacc). The oxidation product of 2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate was obtained within 7–24 h with good yields (70–99%) with all three biocatalysts. The substrate scope was examined with five additional 1,4-dihydropyridines, one of which was oxidized in high yield. Whole-cell biocatalyst was stable when stored for up to 1-month at 4 °C. In addition, evidence has been provided that multicopper oxidase CueO from the E. coli expression host contributed to the oxidation efficiency of the whole-cell biocatalyst. The immobilized whole-cell biocatalyst showed satisfactory activity and retained 37% of its original activity after three biotransformation cycles.
T2  - Enzyme and Microbial Technology
T1  - Development of an efficient biocatalytic system based on bacterial laccase for the oxidation of selected 1,4-dihydropyridines
VL  - 132
DO  - 10.1016/j.enzmictec.2019.109411
ER  - 
@article{
author = "Simić, Stefan and Jeremić, Sanja and Đokić, Lidija and Božić, Nataša and Vujčić, Zoran and Lončar, Nikola L. and Senthamaraikannan, Ramsankar and Babu, Ramesh P. and Opsenica, Igor and Nikodinović-Runić, Jasmina",
year = "2020",
abstract = "Biocatalytic oxidations mediated by laccases are gaining importance due to their versatility and beneficial environmental effects. In this study, the oxidation of 1,4-dihydropyridines has been performed using three different types of bacterial laccase-based catalysts: purified laccase from Bacillus licheniformis ATCC 9945a (BliLacc), Escherichia coli whole cells expressing this laccase, and bacterial nanocellulose (BNC) supported BliLacc catalysts. The catalysts based on bacterial laccase were compared to the commercially available Trametes versicolor laccase (TvLacc). The oxidation product of 2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate was obtained within 7–24 h with good yields (70–99%) with all three biocatalysts. The substrate scope was examined with five additional 1,4-dihydropyridines, one of which was oxidized in high yield. Whole-cell biocatalyst was stable when stored for up to 1-month at 4 °C. In addition, evidence has been provided that multicopper oxidase CueO from the E. coli expression host contributed to the oxidation efficiency of the whole-cell biocatalyst. The immobilized whole-cell biocatalyst showed satisfactory activity and retained 37% of its original activity after three biotransformation cycles.",
journal = "Enzyme and Microbial Technology",
title = "Development of an efficient biocatalytic system based on bacterial laccase for the oxidation of selected 1,4-dihydropyridines",
volume = "132",
doi = "10.1016/j.enzmictec.2019.109411"
}
Simić, S., Jeremić, S., Đokić, L., Božić, N., Vujčić, Z., Lončar, N. L., Senthamaraikannan, R., Babu, R. P., Opsenica, I.,& Nikodinović-Runić, J.. (2020). Development of an efficient biocatalytic system based on bacterial laccase for the oxidation of selected 1,4-dihydropyridines. in Enzyme and Microbial Technology, 132.
https://doi.org/10.1016/j.enzmictec.2019.109411
Simić S, Jeremić S, Đokić L, Božić N, Vujčić Z, Lončar NL, Senthamaraikannan R, Babu RP, Opsenica I, Nikodinović-Runić J. Development of an efficient biocatalytic system based on bacterial laccase for the oxidation of selected 1,4-dihydropyridines. in Enzyme and Microbial Technology. 2020;132.
doi:10.1016/j.enzmictec.2019.109411 .
Simić, Stefan, Jeremić, Sanja, Đokić, Lidija, Božić, Nataša, Vujčić, Zoran, Lončar, Nikola L., Senthamaraikannan, Ramsankar, Babu, Ramesh P., Opsenica, Igor, Nikodinović-Runić, Jasmina, "Development of an efficient biocatalytic system based on bacterial laccase for the oxidation of selected 1,4-dihydropyridines" in Enzyme and Microbial Technology, 132 (2020),
https://doi.org/10.1016/j.enzmictec.2019.109411 . .
19
6
16
18

Characterization of the starch surface binding site on Bacillus paralicheniformis α-amylase

Božić, Nataša; Rozeboom, Henriëtte J.; Lončar, Nikola L.; Šokarda-Slavić, Marinela; Janssen, Dick B.; Vujčić, Zoran

(Elsevier, 2020)

TY  - JOUR
AU  - Božić, Nataša
AU  - Rozeboom, Henriëtte J.
AU  - Lončar, Nikola L.
AU  - Šokarda-Slavić, Marinela
AU  - Janssen, Dick B.
AU  - Vujčić, Zoran
PY  - 2020
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4261
AB  - α-Amylase from Bacillus paralicheniformis (BliAmy), belonging to GH13_5 subfamily of glycoside hydrolases, was proven to be a highly efficient raw starch digesting enzyme. The ability of some α-amylases to hydrolyze raw starch is related to the existence of surface binding sites (SBSs) for polysaccharides that can be distant from the active site. Crystallographic studies performed on BliAmy in the apo form and of enzyme bound with different oligosaccharides and oligosaccharide precursors revealed binding of these ligands to one SBS with two amino acids F257 and Y358 mainly involved in complex formation. The role of this SBS in starch binding and degradation was probed by designing enzyme variants mutated in this region (F257A and Y358A). Kinetic studies with different substrates show that starch binding through the SBS is disrupted in the mutants and that F257 and Y358 contributed cumulatively to binding and hydrolysis. Mutation of both sites (F257A/Y358A) resulted in a 5-fold lower efficacy with raw starch as substrate and at least 5.5-fold weaker binding compared to the wild type BliAmy, suggesting that the ability of BliAmy to hydrolyze raw starch with high efficiency is related to the level of its adsorption onto starch granules.
PB  - Elsevier
T2  - International Journal of Biological Macromolecules
T1  - Characterization of the starch surface binding site on Bacillus paralicheniformis α-amylase
VL  - 165
IS  - A
SP  - 1529
EP  - 1539
DO  - 10.1016/j.ijbiomac.2020.10.025
ER  - 
@article{
author = "Božić, Nataša and Rozeboom, Henriëtte J. and Lončar, Nikola L. and Šokarda-Slavić, Marinela and Janssen, Dick B. and Vujčić, Zoran",
year = "2020",
abstract = "α-Amylase from Bacillus paralicheniformis (BliAmy), belonging to GH13_5 subfamily of glycoside hydrolases, was proven to be a highly efficient raw starch digesting enzyme. The ability of some α-amylases to hydrolyze raw starch is related to the existence of surface binding sites (SBSs) for polysaccharides that can be distant from the active site. Crystallographic studies performed on BliAmy in the apo form and of enzyme bound with different oligosaccharides and oligosaccharide precursors revealed binding of these ligands to one SBS with two amino acids F257 and Y358 mainly involved in complex formation. The role of this SBS in starch binding and degradation was probed by designing enzyme variants mutated in this region (F257A and Y358A). Kinetic studies with different substrates show that starch binding through the SBS is disrupted in the mutants and that F257 and Y358 contributed cumulatively to binding and hydrolysis. Mutation of both sites (F257A/Y358A) resulted in a 5-fold lower efficacy with raw starch as substrate and at least 5.5-fold weaker binding compared to the wild type BliAmy, suggesting that the ability of BliAmy to hydrolyze raw starch with high efficiency is related to the level of its adsorption onto starch granules.",
publisher = "Elsevier",
journal = "International Journal of Biological Macromolecules",
title = "Characterization of the starch surface binding site on Bacillus paralicheniformis α-amylase",
volume = "165",
number = "A",
pages = "1529-1539",
doi = "10.1016/j.ijbiomac.2020.10.025"
}
Božić, N., Rozeboom, H. J., Lončar, N. L., Šokarda-Slavić, M., Janssen, D. B.,& Vujčić, Z.. (2020). Characterization of the starch surface binding site on Bacillus paralicheniformis α-amylase. in International Journal of Biological Macromolecules
Elsevier., 165(A), 1529-1539.
https://doi.org/10.1016/j.ijbiomac.2020.10.025
Božić N, Rozeboom HJ, Lončar NL, Šokarda-Slavić M, Janssen DB, Vujčić Z. Characterization of the starch surface binding site on Bacillus paralicheniformis α-amylase. in International Journal of Biological Macromolecules. 2020;165(A):1529-1539.
doi:10.1016/j.ijbiomac.2020.10.025 .
Božić, Nataša, Rozeboom, Henriëtte J., Lončar, Nikola L., Šokarda-Slavić, Marinela, Janssen, Dick B., Vujčić, Zoran, "Characterization of the starch surface binding site on Bacillus paralicheniformis α-amylase" in International Journal of Biological Macromolecules, 165, no. A (2020):1529-1539,
https://doi.org/10.1016/j.ijbiomac.2020.10.025 . .
3
19
4
19
16

Characterization of the starch surface binding site on Bacillus paralicheniformis α-amylase

Božić, Nataša; Rozeboom, Henriëtte J.; Lončar, Nikola L.; Šokarda-Slavić, Marinela; Janssen, Dick B.; Vujčić, Zoran

(Elsevier, 2020)

TY  - JOUR
AU  - Božić, Nataša
AU  - Rozeboom, Henriëtte J.
AU  - Lončar, Nikola L.
AU  - Šokarda-Slavić, Marinela
AU  - Janssen, Dick B.
AU  - Vujčić, Zoran
PY  - 2020
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4262
AB  - α-Amylase from Bacillus paralicheniformis (BliAmy), belonging to GH13_5 subfamily of glycoside hydrolases, was proven to be a highly efficient raw starch digesting enzyme. The ability of some α-amylases to hydrolyze raw starch is related to the existence of surface binding sites (SBSs) for polysaccharides that can be distant from the active site. Crystallographic studies performed on BliAmy in the apo form and of enzyme bound with different oligosaccharides and oligosaccharide precursors revealed binding of these ligands to one SBS with two amino acids F257 and Y358 mainly involved in complex formation. The role of this SBS in starch binding and degradation was probed by designing enzyme variants mutated in this region (F257A and Y358A). Kinetic studies with different substrates show that starch binding through the SBS is disrupted in the mutants and that F257 and Y358 contributed cumulatively to binding and hydrolysis. Mutation of both sites (F257A/Y358A) resulted in a 5-fold lower efficacy with raw starch as substrate and at least 5.5-fold weaker binding compared to the wild type BliAmy, suggesting that the ability of BliAmy to hydrolyze raw starch with high efficiency is related to the level of its adsorption onto starch granules.
PB  - Elsevier
T2  - International Journal of Biological Macromolecules
T1  - Characterization of the starch surface binding site on Bacillus paralicheniformis α-amylase
VL  - 165
IS  - A
SP  - 1529
EP  - 1539
DO  - 10.1016/j.ijbiomac.2020.10.025
ER  - 
@article{
author = "Božić, Nataša and Rozeboom, Henriëtte J. and Lončar, Nikola L. and Šokarda-Slavić, Marinela and Janssen, Dick B. and Vujčić, Zoran",
year = "2020",
abstract = "α-Amylase from Bacillus paralicheniformis (BliAmy), belonging to GH13_5 subfamily of glycoside hydrolases, was proven to be a highly efficient raw starch digesting enzyme. The ability of some α-amylases to hydrolyze raw starch is related to the existence of surface binding sites (SBSs) for polysaccharides that can be distant from the active site. Crystallographic studies performed on BliAmy in the apo form and of enzyme bound with different oligosaccharides and oligosaccharide precursors revealed binding of these ligands to one SBS with two amino acids F257 and Y358 mainly involved in complex formation. The role of this SBS in starch binding and degradation was probed by designing enzyme variants mutated in this region (F257A and Y358A). Kinetic studies with different substrates show that starch binding through the SBS is disrupted in the mutants and that F257 and Y358 contributed cumulatively to binding and hydrolysis. Mutation of both sites (F257A/Y358A) resulted in a 5-fold lower efficacy with raw starch as substrate and at least 5.5-fold weaker binding compared to the wild type BliAmy, suggesting that the ability of BliAmy to hydrolyze raw starch with high efficiency is related to the level of its adsorption onto starch granules.",
publisher = "Elsevier",
journal = "International Journal of Biological Macromolecules",
title = "Characterization of the starch surface binding site on Bacillus paralicheniformis α-amylase",
volume = "165",
number = "A",
pages = "1529-1539",
doi = "10.1016/j.ijbiomac.2020.10.025"
}
Božić, N., Rozeboom, H. J., Lončar, N. L., Šokarda-Slavić, M., Janssen, D. B.,& Vujčić, Z.. (2020). Characterization of the starch surface binding site on Bacillus paralicheniformis α-amylase. in International Journal of Biological Macromolecules
Elsevier., 165(A), 1529-1539.
https://doi.org/10.1016/j.ijbiomac.2020.10.025
Božić N, Rozeboom HJ, Lončar NL, Šokarda-Slavić M, Janssen DB, Vujčić Z. Characterization of the starch surface binding site on Bacillus paralicheniformis α-amylase. in International Journal of Biological Macromolecules. 2020;165(A):1529-1539.
doi:10.1016/j.ijbiomac.2020.10.025 .
Božić, Nataša, Rozeboom, Henriëtte J., Lončar, Nikola L., Šokarda-Slavić, Marinela, Janssen, Dick B., Vujčić, Zoran, "Characterization of the starch surface binding site on Bacillus paralicheniformis α-amylase" in International Journal of Biological Macromolecules, 165, no. A (2020):1529-1539,
https://doi.org/10.1016/j.ijbiomac.2020.10.025 . .
3
19
4
19
16

Expression and characterization of a dye-decolorizing peroxidase from pseudomonas fluorescens Pf0-1

Lončar, Nikola L.; Drašković, Natalija; Božić, Nataša; Romero, Elvira; Simić, Stefan; Opsenica, Igor; Vujčić, Zoran; Fraaije, Marco W.

(MDPI, 2019)

TY  - JOUR
AU  - Lončar, Nikola L.
AU  - Drašković, Natalija
AU  - Božić, Nataša
AU  - Romero, Elvira
AU  - Simić, Stefan
AU  - Opsenica, Igor
AU  - Vujčić, Zoran
AU  - Fraaije, Marco W.
PY  - 2019
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3709
AB  - The consumption of dyes is increasing worldwide in line with the increase of population and demand for clothes and other colored products. However, the efficiency of dyeing processes is still poor and results in large amounts of colored effluents. It is desired to develop a portfolio of enzymes which can be used for the treatment of colored wastewaters. Herein, we used genome sequence information to discover a dye-decolorizing peroxidase (DyP) from Pseudomonas fluorescens Pf-01. Two genes putatively encoding for DyPs were identified in the respective genome and cloned for expression in Escherichia coli, of which one (Pf DyP B2) could be overexpressed as a soluble protein. Pf DyP B2 shows some typical features known for DyPs which includes the ability to convert dyes at the expense of hydrogen peroxide. Interestingly, t-butyl hydroperoxide could be used as an alternative substrate to hydrogen peroxide. Immobilization of Pf DyP B2 in calcium-alginate beads resulted in a significant increase in stability: Pf DyP B2 retains 80% of its initial activity after 2 h incubation at 50◦ C, while the soluble enzyme is inactivated within minutes. Pf DyP B2 was also tested with aniline and ethyl diazoacetate as substrates. Based on GC-MS analyses, 30% conversion of the starting material was achieved after 65 h at 30◦ C. Importantly, this is the first report of a DyP-catalyzed insertion of a carbene into an N-H bond.
PB  - MDPI
T2  - Catalysts
T1  - Expression and characterization of a dye-decolorizing peroxidase from pseudomonas fluorescens Pf0-1
VL  - 9
IS  - 5
DO  - 10.3390/catal9050463
ER  - 
@article{
author = "Lončar, Nikola L. and Drašković, Natalija and Božić, Nataša and Romero, Elvira and Simić, Stefan and Opsenica, Igor and Vujčić, Zoran and Fraaije, Marco W.",
year = "2019",
abstract = "The consumption of dyes is increasing worldwide in line with the increase of population and demand for clothes and other colored products. However, the efficiency of dyeing processes is still poor and results in large amounts of colored effluents. It is desired to develop a portfolio of enzymes which can be used for the treatment of colored wastewaters. Herein, we used genome sequence information to discover a dye-decolorizing peroxidase (DyP) from Pseudomonas fluorescens Pf-01. Two genes putatively encoding for DyPs were identified in the respective genome and cloned for expression in Escherichia coli, of which one (Pf DyP B2) could be overexpressed as a soluble protein. Pf DyP B2 shows some typical features known for DyPs which includes the ability to convert dyes at the expense of hydrogen peroxide. Interestingly, t-butyl hydroperoxide could be used as an alternative substrate to hydrogen peroxide. Immobilization of Pf DyP B2 in calcium-alginate beads resulted in a significant increase in stability: Pf DyP B2 retains 80% of its initial activity after 2 h incubation at 50◦ C, while the soluble enzyme is inactivated within minutes. Pf DyP B2 was also tested with aniline and ethyl diazoacetate as substrates. Based on GC-MS analyses, 30% conversion of the starting material was achieved after 65 h at 30◦ C. Importantly, this is the first report of a DyP-catalyzed insertion of a carbene into an N-H bond.",
publisher = "MDPI",
journal = "Catalysts",
title = "Expression and characterization of a dye-decolorizing peroxidase from pseudomonas fluorescens Pf0-1",
volume = "9",
number = "5",
doi = "10.3390/catal9050463"
}
Lončar, N. L., Drašković, N., Božić, N., Romero, E., Simić, S., Opsenica, I., Vujčić, Z.,& Fraaije, M. W.. (2019). Expression and characterization of a dye-decolorizing peroxidase from pseudomonas fluorescens Pf0-1. in Catalysts
MDPI., 9(5).
https://doi.org/10.3390/catal9050463
Lončar NL, Drašković N, Božić N, Romero E, Simić S, Opsenica I, Vujčić Z, Fraaije MW. Expression and characterization of a dye-decolorizing peroxidase from pseudomonas fluorescens Pf0-1. in Catalysts. 2019;9(5).
doi:10.3390/catal9050463 .
Lončar, Nikola L., Drašković, Natalija, Božić, Nataša, Romero, Elvira, Simić, Stefan, Opsenica, Igor, Vujčić, Zoran, Fraaije, Marco W., "Expression and characterization of a dye-decolorizing peroxidase from pseudomonas fluorescens Pf0-1" in Catalysts, 9, no. 5 (2019),
https://doi.org/10.3390/catal9050463 . .
1
15
5
14
13