Đapović, Milica

Link to this page

Authority KeyName Variants
3c50da27-b93c-41b7-8bb5-45e7bbbfe335
  • Đapović, Milica (6)
Projects

Author's Bibliography

Research data no. 2 for: Djapovic, M., Apostolović, D., Postic, V., Lujić, T., Jovanović, V., Stanić-Vučinić, D., van Hage, M., Maslak, V.,& Ćirković-Veličković, T.. (2023). Characterization of Nanoprecipitated PET Nanoplastics by 1H NMR and Impact of Residual Ionic Surfactant on Viability of Human Primary Mononuclear Cells and Hemolysis of Erythrocytes. in Polymers MDPI., 15(24), 4703. https://doi.org/10.3390/polym15244703

Đapović, Milica; Apostolović, Danijela; Poštić, Vojislava; Lujić, Tamara; Jovanović, Vesna; Stanić-Vučinić, Dragana; van Hage, Marianne; Maslak, Veselin; Ćirković-Veličković, Tanja

(MDPI, 2023)

TY  - DATA
AU  - Đapović, Milica
AU  - Apostolović, Danijela
AU  - Poštić, Vojislava
AU  - Lujić, Tamara
AU  - Jovanović, Vesna
AU  - Stanić-Vučinić, Dragana
AU  - van Hage, Marianne
AU  - Maslak, Veselin
AU  - Ćirković-Veličković, Tanja
PY  - 2023
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/6464
AB  - Determination of hydrodynamic diameter of PET NPs washed and dispersed in water, BSA (0.05%), and SDS (0.1%), and NPs unwashed and dispersed in water.  Zeta potential, mobility, and conductivity determination in PET NPs at different stages of purification. Output from the Malvern zetasizer Nano-ZS ZEN 3600 (Malvern Panalytical, Malvern, UK).
PB  - MDPI
T2  - Polymers
T1  - Research data no. 2 for: Djapovic, M., Apostolović, D., Postic, V., Lujić, T., Jovanović, V., Stanić-Vučinić, D., van Hage, M., Maslak, V.,& Ćirković-Veličković, T.. (2023). Characterization of Nanoprecipitated PET Nanoplastics by 1H NMR and Impact of Residual Ionic Surfactant on Viability of Human Primary Mononuclear Cells and Hemolysis of Erythrocytes. in Polymers MDPI., 15(24), 4703. https://doi.org/10.3390/polym15244703
UR  - https://hdl.handle.net/21.15107/rcub_cherry_6464
ER  - 
@misc{
author = "Đapović, Milica and Apostolović, Danijela and Poštić, Vojislava and Lujić, Tamara and Jovanović, Vesna and Stanić-Vučinić, Dragana and van Hage, Marianne and Maslak, Veselin and Ćirković-Veličković, Tanja",
year = "2023",
abstract = "Determination of hydrodynamic diameter of PET NPs washed and dispersed in water, BSA (0.05%), and SDS (0.1%), and NPs unwashed and dispersed in water.  Zeta potential, mobility, and conductivity determination in PET NPs at different stages of purification. Output from the Malvern zetasizer Nano-ZS ZEN 3600 (Malvern Panalytical, Malvern, UK).",
publisher = "MDPI",
journal = "Polymers",
title = "Research data no. 2 for: Djapovic, M., Apostolović, D., Postic, V., Lujić, T., Jovanović, V., Stanić-Vučinić, D., van Hage, M., Maslak, V.,& Ćirković-Veličković, T.. (2023). Characterization of Nanoprecipitated PET Nanoplastics by 1H NMR and Impact of Residual Ionic Surfactant on Viability of Human Primary Mononuclear Cells and Hemolysis of Erythrocytes. in Polymers MDPI., 15(24), 4703. https://doi.org/10.3390/polym15244703",
url = "https://hdl.handle.net/21.15107/rcub_cherry_6464"
}
Đapović, M., Apostolović, D., Poštić, V., Lujić, T., Jovanović, V., Stanić-Vučinić, D., van Hage, M., Maslak, V.,& Ćirković-Veličković, T.. (2023). Research data no. 2 for: Djapovic, M., Apostolović, D., Postic, V., Lujić, T., Jovanović, V., Stanić-Vučinić, D., van Hage, M., Maslak, V.,& Ćirković-Veličković, T.. (2023). Characterization of Nanoprecipitated PET Nanoplastics by 1H NMR and Impact of Residual Ionic Surfactant on Viability of Human Primary Mononuclear Cells and Hemolysis of Erythrocytes. in Polymers MDPI., 15(24), 4703. https://doi.org/10.3390/polym15244703. in Polymers
MDPI..
https://hdl.handle.net/21.15107/rcub_cherry_6464
Đapović M, Apostolović D, Poštić V, Lujić T, Jovanović V, Stanić-Vučinić D, van Hage M, Maslak V, Ćirković-Veličković T. Research data no. 2 for: Djapovic, M., Apostolović, D., Postic, V., Lujić, T., Jovanović, V., Stanić-Vučinić, D., van Hage, M., Maslak, V.,& Ćirković-Veličković, T.. (2023). Characterization of Nanoprecipitated PET Nanoplastics by 1H NMR and Impact of Residual Ionic Surfactant on Viability of Human Primary Mononuclear Cells and Hemolysis of Erythrocytes. in Polymers MDPI., 15(24), 4703. https://doi.org/10.3390/polym15244703. in Polymers. 2023;.
https://hdl.handle.net/21.15107/rcub_cherry_6464 .
Đapović, Milica, Apostolović, Danijela, Poštić, Vojislava, Lujić, Tamara, Jovanović, Vesna, Stanić-Vučinić, Dragana, van Hage, Marianne, Maslak, Veselin, Ćirković-Veličković, Tanja, "Research data no. 2 for: Djapovic, M., Apostolović, D., Postic, V., Lujić, T., Jovanović, V., Stanić-Vučinić, D., van Hage, M., Maslak, V.,& Ćirković-Veličković, T.. (2023). Characterization of Nanoprecipitated PET Nanoplastics by 1H NMR and Impact of Residual Ionic Surfactant on Viability of Human Primary Mononuclear Cells and Hemolysis of Erythrocytes. in Polymers MDPI., 15(24), 4703. https://doi.org/10.3390/polym15244703" in Polymers (2023),
https://hdl.handle.net/21.15107/rcub_cherry_6464 .

Research data no. 3 for: Djapovic, M., Apostolović, D., Postic, V., Lujić, T., Jovanović, V., Stanić-Vučinić, D., van Hage, M., Maslak, V.,& Ćirković-Veličković, T.. (2023). Characterization of Nanoprecipitated PET Nanoplastics by 1H NMR and Impact of Residual Ionic Surfactant on Viability of Human Primary Mononuclear Cells and Hemolysis of Erythrocytes. in Polymers MDPI., 15(24), 4703. https://doi.org/10.3390/polym15244703

Đapović, Milica; Apostolović, Danijela; Poštić, Vojislava; Lujić, Tamara; Jovanović, Vesna; Stanić-Vučinić, Dragana; van Hage, Marianne; Maslak, Veselin; Ćirković-Veličković, Tanja

(MDPI, 2023)

TY  - DATA
AU  - Đapović, Milica
AU  - Apostolović, Danijela
AU  - Poštić, Vojislava
AU  - Lujić, Tamara
AU  - Jovanović, Vesna
AU  - Stanić-Vučinić, Dragana
AU  - van Hage, Marianne
AU  - Maslak, Veselin
AU  - Ćirković-Veličković, Tanja
PY  - 2023
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/6467
AB  - The presence of the ionic surfactant sodium dodecyl sulfate (SDS) was characterized by 1H NMR, where the relative ratio of NP/surfactant was monitored on the basis of the chemical shifts characteristic of PET and SDS. 1H NMR spectra of the NPs preparation before and during all the washing steps. Determination of SDS Level in Corona of PET NPs by 1H NMR. Output from the Varian/Agilent NMR 400 MHz. NMR spectra were processed in Mnova software.
PB  - MDPI
T2  - Polymers
T1  - Research data no. 3 for: Djapovic, M., Apostolović, D., Postic, V., Lujić, T., Jovanović, V., Stanić-Vučinić, D., van Hage, M., Maslak, V.,& Ćirković-Veličković, T.. (2023). Characterization of Nanoprecipitated PET Nanoplastics by 1H NMR and Impact of Residual Ionic Surfactant on Viability of Human Primary Mononuclear Cells and Hemolysis of Erythrocytes. in Polymers MDPI., 15(24), 4703. https://doi.org/10.3390/polym15244703
UR  - https://hdl.handle.net/21.15107/rcub_cherry_6467
ER  - 
@misc{
author = "Đapović, Milica and Apostolović, Danijela and Poštić, Vojislava and Lujić, Tamara and Jovanović, Vesna and Stanić-Vučinić, Dragana and van Hage, Marianne and Maslak, Veselin and Ćirković-Veličković, Tanja",
year = "2023",
abstract = "The presence of the ionic surfactant sodium dodecyl sulfate (SDS) was characterized by 1H NMR, where the relative ratio of NP/surfactant was monitored on the basis of the chemical shifts characteristic of PET and SDS. 1H NMR spectra of the NPs preparation before and during all the washing steps. Determination of SDS Level in Corona of PET NPs by 1H NMR. Output from the Varian/Agilent NMR 400 MHz. NMR spectra were processed in Mnova software.",
publisher = "MDPI",
journal = "Polymers",
title = "Research data no. 3 for: Djapovic, M., Apostolović, D., Postic, V., Lujić, T., Jovanović, V., Stanić-Vučinić, D., van Hage, M., Maslak, V.,& Ćirković-Veličković, T.. (2023). Characterization of Nanoprecipitated PET Nanoplastics by 1H NMR and Impact of Residual Ionic Surfactant on Viability of Human Primary Mononuclear Cells and Hemolysis of Erythrocytes. in Polymers MDPI., 15(24), 4703. https://doi.org/10.3390/polym15244703",
url = "https://hdl.handle.net/21.15107/rcub_cherry_6467"
}
Đapović, M., Apostolović, D., Poštić, V., Lujić, T., Jovanović, V., Stanić-Vučinić, D., van Hage, M., Maslak, V.,& Ćirković-Veličković, T.. (2023). Research data no. 3 for: Djapovic, M., Apostolović, D., Postic, V., Lujić, T., Jovanović, V., Stanić-Vučinić, D., van Hage, M., Maslak, V.,& Ćirković-Veličković, T.. (2023). Characterization of Nanoprecipitated PET Nanoplastics by 1H NMR and Impact of Residual Ionic Surfactant on Viability of Human Primary Mononuclear Cells and Hemolysis of Erythrocytes. in Polymers MDPI., 15(24), 4703. https://doi.org/10.3390/polym15244703. in Polymers
MDPI..
https://hdl.handle.net/21.15107/rcub_cherry_6467
Đapović M, Apostolović D, Poštić V, Lujić T, Jovanović V, Stanić-Vučinić D, van Hage M, Maslak V, Ćirković-Veličković T. Research data no. 3 for: Djapovic, M., Apostolović, D., Postic, V., Lujić, T., Jovanović, V., Stanić-Vučinić, D., van Hage, M., Maslak, V.,& Ćirković-Veličković, T.. (2023). Characterization of Nanoprecipitated PET Nanoplastics by 1H NMR and Impact of Residual Ionic Surfactant on Viability of Human Primary Mononuclear Cells and Hemolysis of Erythrocytes. in Polymers MDPI., 15(24), 4703. https://doi.org/10.3390/polym15244703. in Polymers. 2023;.
https://hdl.handle.net/21.15107/rcub_cherry_6467 .
Đapović, Milica, Apostolović, Danijela, Poštić, Vojislava, Lujić, Tamara, Jovanović, Vesna, Stanić-Vučinić, Dragana, van Hage, Marianne, Maslak, Veselin, Ćirković-Veličković, Tanja, "Research data no. 3 for: Djapovic, M., Apostolović, D., Postic, V., Lujić, T., Jovanović, V., Stanić-Vučinić, D., van Hage, M., Maslak, V.,& Ćirković-Veličković, T.. (2023). Characterization of Nanoprecipitated PET Nanoplastics by 1H NMR and Impact of Residual Ionic Surfactant on Viability of Human Primary Mononuclear Cells and Hemolysis of Erythrocytes. in Polymers MDPI., 15(24), 4703. https://doi.org/10.3390/polym15244703" in Polymers (2023),
https://hdl.handle.net/21.15107/rcub_cherry_6467 .

Research data no. 4 for: Djapovic, M., Apostolović, D., Postic, V., Lujić, T., Jovanović, V., Stanić-Vučinić, D., van Hage, M., Maslak, V.,& Ćirković-Veličković, T.. (2023). Characterization of Nanoprecipitated PET Nanoplastics by 1H NMR and Impact of Residual Ionic Surfactant on Viability of Human Primary Mononuclear Cells and Hemolysis of Erythrocytes. in Polymers MDPI., 15(24), 4703. https://doi.org/10.3390/polym15244703

Đapović, Milica; Apostolović, Danijela; Poštić, Vojislava; Lujić, Tamara; Jovanović, Vesna; Stanić-Vučinić, Dragana; van Hage, Marianne; Maslak, Veselin; Ćirković-Veličković, Tanja

(MDPI, 2023)

TY  - DATA
AU  - Đapović, Milica
AU  - Apostolović, Danijela
AU  - Poštić, Vojislava
AU  - Lujić, Tamara
AU  - Jovanović, Vesna
AU  - Stanić-Vučinić, Dragana
AU  - van Hage, Marianne
AU  - Maslak, Veselin
AU  - Ćirković-Veličković, Tanja
PY  - 2023
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/6468
AB  - Size distributions (by intensity percentage) of NPs washed suspended in different dispersants, water,BSA (0.05%),SDS (0.1 %). Distributions data from different combined fractions: from NP-10 to NP-30; from NP-40 to NP-60 and from NP-70 to NP-90. Output from the Malvern zetasizer Nano-ZS ZEN 3600 (Malvern Panalytical, Malvern, UK).
PB  - MDPI
T2  - Polymers
T1  - Research data no. 4 for: Djapovic, M., Apostolović, D., Postic, V., Lujić, T., Jovanović, V., Stanić-Vučinić, D., van Hage, M., Maslak, V.,& Ćirković-Veličković, T.. (2023). Characterization of Nanoprecipitated PET Nanoplastics by 1H NMR and Impact of Residual Ionic Surfactant on Viability of Human Primary Mononuclear Cells and Hemolysis of Erythrocytes. in Polymers MDPI., 15(24), 4703. https://doi.org/10.3390/polym15244703
UR  - https://hdl.handle.net/21.15107/rcub_cherry_6468
ER  - 
@misc{
author = "Đapović, Milica and Apostolović, Danijela and Poštić, Vojislava and Lujić, Tamara and Jovanović, Vesna and Stanić-Vučinić, Dragana and van Hage, Marianne and Maslak, Veselin and Ćirković-Veličković, Tanja",
year = "2023",
abstract = "Size distributions (by intensity percentage) of NPs washed suspended in different dispersants, water,BSA (0.05%),SDS (0.1 %). Distributions data from different combined fractions: from NP-10 to NP-30; from NP-40 to NP-60 and from NP-70 to NP-90. Output from the Malvern zetasizer Nano-ZS ZEN 3600 (Malvern Panalytical, Malvern, UK).",
publisher = "MDPI",
journal = "Polymers",
title = "Research data no. 4 for: Djapovic, M., Apostolović, D., Postic, V., Lujić, T., Jovanović, V., Stanić-Vučinić, D., van Hage, M., Maslak, V.,& Ćirković-Veličković, T.. (2023). Characterization of Nanoprecipitated PET Nanoplastics by 1H NMR and Impact of Residual Ionic Surfactant on Viability of Human Primary Mononuclear Cells and Hemolysis of Erythrocytes. in Polymers MDPI., 15(24), 4703. https://doi.org/10.3390/polym15244703",
url = "https://hdl.handle.net/21.15107/rcub_cherry_6468"
}
Đapović, M., Apostolović, D., Poštić, V., Lujić, T., Jovanović, V., Stanić-Vučinić, D., van Hage, M., Maslak, V.,& Ćirković-Veličković, T.. (2023). Research data no. 4 for: Djapovic, M., Apostolović, D., Postic, V., Lujić, T., Jovanović, V., Stanić-Vučinić, D., van Hage, M., Maslak, V.,& Ćirković-Veličković, T.. (2023). Characterization of Nanoprecipitated PET Nanoplastics by 1H NMR and Impact of Residual Ionic Surfactant on Viability of Human Primary Mononuclear Cells and Hemolysis of Erythrocytes. in Polymers MDPI., 15(24), 4703. https://doi.org/10.3390/polym15244703. in Polymers
MDPI..
https://hdl.handle.net/21.15107/rcub_cherry_6468
Đapović M, Apostolović D, Poštić V, Lujić T, Jovanović V, Stanić-Vučinić D, van Hage M, Maslak V, Ćirković-Veličković T. Research data no. 4 for: Djapovic, M., Apostolović, D., Postic, V., Lujić, T., Jovanović, V., Stanić-Vučinić, D., van Hage, M., Maslak, V.,& Ćirković-Veličković, T.. (2023). Characterization of Nanoprecipitated PET Nanoplastics by 1H NMR and Impact of Residual Ionic Surfactant on Viability of Human Primary Mononuclear Cells and Hemolysis of Erythrocytes. in Polymers MDPI., 15(24), 4703. https://doi.org/10.3390/polym15244703. in Polymers. 2023;.
https://hdl.handle.net/21.15107/rcub_cherry_6468 .
Đapović, Milica, Apostolović, Danijela, Poštić, Vojislava, Lujić, Tamara, Jovanović, Vesna, Stanić-Vučinić, Dragana, van Hage, Marianne, Maslak, Veselin, Ćirković-Veličković, Tanja, "Research data no. 4 for: Djapovic, M., Apostolović, D., Postic, V., Lujić, T., Jovanović, V., Stanić-Vučinić, D., van Hage, M., Maslak, V.,& Ćirković-Veličković, T.. (2023). Characterization of Nanoprecipitated PET Nanoplastics by 1H NMR and Impact of Residual Ionic Surfactant on Viability of Human Primary Mononuclear Cells and Hemolysis of Erythrocytes. in Polymers MDPI., 15(24), 4703. https://doi.org/10.3390/polym15244703" in Polymers (2023),
https://hdl.handle.net/21.15107/rcub_cherry_6468 .

Supplementary data for the article: Djapovic, M.; Milivojevic, D.; Ilic-Tomic, T.; Lješević, M.; Nikolaivits, E.; Topakas, E.; Maslak, V.; Nikodinovic-Runic, J. Synthesis and Characterization of Polyethylene Terephthalate (PET) Precursors and Potential Degradation Products: Toxicity Study and Application in Discovery of Novel PETases. Chemosphere 2021, 275, 130005. https://doi.org/10.1016/j.chemosphere.2021.130005.

Đapović, Milica; Milivojević, Dušan; Ilić-Tomić, Tatjana; Lješević, Marija; Nikolaivits, Efstratios; Topakas, Evangelos; Maslak, Veselin; Nikodinović-Runić, Jasmina

(Elsevier, 2021)

TY  - DATA
AU  - Đapović, Milica
AU  - Milivojević, Dušan
AU  - Ilić-Tomić, Tatjana
AU  - Lješević, Marija
AU  - Nikolaivits, Efstratios
AU  - Topakas, Evangelos
AU  - Maslak, Veselin
AU  - Nikodinović-Runić, Jasmina
PY  - 2021
UR  - https://www.sciencedirect.com/science/article/pii/S0045653521004744
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4410
PB  - Elsevier
T2  - Chemosphere
T1  - Supplementary data for the article: Djapovic, M.; Milivojevic, D.; Ilic-Tomic, T.; Lješević, M.; Nikolaivits, E.; Topakas, E.; Maslak, V.; Nikodinovic-Runic, J. Synthesis and Characterization of Polyethylene Terephthalate (PET) Precursors and Potential Degradation Products: Toxicity Study and Application in Discovery of Novel PETases. Chemosphere 2021, 275, 130005. https://doi.org/10.1016/j.chemosphere.2021.130005.
UR  - https://hdl.handle.net/21.15107/rcub_cherry_4410
ER  - 
@misc{
author = "Đapović, Milica and Milivojević, Dušan and Ilić-Tomić, Tatjana and Lješević, Marija and Nikolaivits, Efstratios and Topakas, Evangelos and Maslak, Veselin and Nikodinović-Runić, Jasmina",
year = "2021",
publisher = "Elsevier",
journal = "Chemosphere",
title = "Supplementary data for the article: Djapovic, M.; Milivojevic, D.; Ilic-Tomic, T.; Lješević, M.; Nikolaivits, E.; Topakas, E.; Maslak, V.; Nikodinovic-Runic, J. Synthesis and Characterization of Polyethylene Terephthalate (PET) Precursors and Potential Degradation Products: Toxicity Study and Application in Discovery of Novel PETases. Chemosphere 2021, 275, 130005. https://doi.org/10.1016/j.chemosphere.2021.130005.",
url = "https://hdl.handle.net/21.15107/rcub_cherry_4410"
}
Đapović, M., Milivojević, D., Ilić-Tomić, T., Lješević, M., Nikolaivits, E., Topakas, E., Maslak, V.,& Nikodinović-Runić, J.. (2021). Supplementary data for the article: Djapovic, M.; Milivojevic, D.; Ilic-Tomic, T.; Lješević, M.; Nikolaivits, E.; Topakas, E.; Maslak, V.; Nikodinovic-Runic, J. Synthesis and Characterization of Polyethylene Terephthalate (PET) Precursors and Potential Degradation Products: Toxicity Study and Application in Discovery of Novel PETases. Chemosphere 2021, 275, 130005. https://doi.org/10.1016/j.chemosphere.2021.130005.. in Chemosphere
Elsevier..
https://hdl.handle.net/21.15107/rcub_cherry_4410
Đapović M, Milivojević D, Ilić-Tomić T, Lješević M, Nikolaivits E, Topakas E, Maslak V, Nikodinović-Runić J. Supplementary data for the article: Djapovic, M.; Milivojevic, D.; Ilic-Tomic, T.; Lješević, M.; Nikolaivits, E.; Topakas, E.; Maslak, V.; Nikodinovic-Runic, J. Synthesis and Characterization of Polyethylene Terephthalate (PET) Precursors and Potential Degradation Products: Toxicity Study and Application in Discovery of Novel PETases. Chemosphere 2021, 275, 130005. https://doi.org/10.1016/j.chemosphere.2021.130005.. in Chemosphere. 2021;.
https://hdl.handle.net/21.15107/rcub_cherry_4410 .
Đapović, Milica, Milivojević, Dušan, Ilić-Tomić, Tatjana, Lješević, Marija, Nikolaivits, Efstratios, Topakas, Evangelos, Maslak, Veselin, Nikodinović-Runić, Jasmina, "Supplementary data for the article: Djapovic, M.; Milivojevic, D.; Ilic-Tomic, T.; Lješević, M.; Nikolaivits, E.; Topakas, E.; Maslak, V.; Nikodinovic-Runic, J. Synthesis and Characterization of Polyethylene Terephthalate (PET) Precursors and Potential Degradation Products: Toxicity Study and Application in Discovery of Novel PETases. Chemosphere 2021, 275, 130005. https://doi.org/10.1016/j.chemosphere.2021.130005." in Chemosphere (2021),
https://hdl.handle.net/21.15107/rcub_cherry_4410 .

Synthesis and characterization of polyethylene terephthalate (PET) precursors and potential degradation products: Toxicity study and application in discovery of novel PETases

Đapović, Milica; Milivojević, Dušan; Ilić-Tomić, Tatjana; Lješević, Marija; Nikolaivits, Efstratios; Topakas, Evangelos; Maslak, Veselin; Nikodinović-Runić, Jasmina

(Elsevier, 2021)

TY  - JOUR
AU  - Đapović, Milica
AU  - Milivojević, Dušan
AU  - Ilić-Tomić, Tatjana
AU  - Lješević, Marija
AU  - Nikolaivits, Efstratios
AU  - Topakas, Evangelos
AU  - Maslak, Veselin
AU  - Nikodinović-Runić, Jasmina
PY  - 2021
UR  - https://www.sciencedirect.com/science/article/pii/S0045653521004744
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4409
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4411
AB  - Polyethylene terephthalate (PET) is widely used material and as such became highly enriched in nature. It is generally considered inert and safe plastic, but due to the recent increased efforts to break-down PET using biotechnological approaches, we realized the scarcity of information about structural analysis of possible degradation products and their ecotoxicological assessment. Therefore, in this study, 11 compounds belonging to the group of PET precursors and possible degradation products have been comprehensively characterized. Seven of these compounds including 1-(2-hydroxyethyl)-4-methylterephthalate, ethylene glycol bis(methyl terephthalate), methyl bis(2-hydroxyethyl terephtahalate), 1,4-benzenedicarboxylic acid, 1,4-bis[2-[[4-(methoxycarbonyl)benzoyl]oxy]ethyl] ester and methyl tris(2-hydroxyethyl terephthalate) corresponding to mono-, 1.5-, di-, 2,5- and trimer of PET were synthetized and structurally characterized for the first time. In-silico druglikeness and physico-chemical properties of these compounds were predicted using variety of platforms. No antimicrobial properties were detected even at 1000 μg/mL. Ecotoxicological impact of the compounds against marine bacteria Allivibrio fischeri proved that the 6 out of 11 tested PET-associated compounds may be classified as harmful to aquatic microorganisms, with PET trimer being one of the most toxic. In comparison, most of the compounds were not toxic on human lung fibroblasts (MRC-5) at 200 μg/mL with inhibiting concentration (IC50) values of 30 μg/mL and 50 μg/mL determined for PET dimer and trimer. Only three of these compounds including PET monomer were toxic to nematode Caenorhabditis elegans at high concentration of 500 μg/mL. In terms of the applicative potential, PET dimer can be used as suitable substrate for the screening, identification and characterization of novel PET-depolymerizing enzymes.
PB  - Elsevier
T2  - Chemosphere
T2  - ChemosphereChemosphere
T1  - Synthesis and characterization of polyethylene terephthalate (PET) precursors and potential degradation products: Toxicity study and application in discovery of novel PETases
VL  - 275
SP  - 130005
DO  - 10.1016/j.chemosphere.2021.130005
ER  - 
@article{
author = "Đapović, Milica and Milivojević, Dušan and Ilić-Tomić, Tatjana and Lješević, Marija and Nikolaivits, Efstratios and Topakas, Evangelos and Maslak, Veselin and Nikodinović-Runić, Jasmina",
year = "2021",
abstract = "Polyethylene terephthalate (PET) is widely used material and as such became highly enriched in nature. It is generally considered inert and safe plastic, but due to the recent increased efforts to break-down PET using biotechnological approaches, we realized the scarcity of information about structural analysis of possible degradation products and their ecotoxicological assessment. Therefore, in this study, 11 compounds belonging to the group of PET precursors and possible degradation products have been comprehensively characterized. Seven of these compounds including 1-(2-hydroxyethyl)-4-methylterephthalate, ethylene glycol bis(methyl terephthalate), methyl bis(2-hydroxyethyl terephtahalate), 1,4-benzenedicarboxylic acid, 1,4-bis[2-[[4-(methoxycarbonyl)benzoyl]oxy]ethyl] ester and methyl tris(2-hydroxyethyl terephthalate) corresponding to mono-, 1.5-, di-, 2,5- and trimer of PET were synthetized and structurally characterized for the first time. In-silico druglikeness and physico-chemical properties of these compounds were predicted using variety of platforms. No antimicrobial properties were detected even at 1000 μg/mL. Ecotoxicological impact of the compounds against marine bacteria Allivibrio fischeri proved that the 6 out of 11 tested PET-associated compounds may be classified as harmful to aquatic microorganisms, with PET trimer being one of the most toxic. In comparison, most of the compounds were not toxic on human lung fibroblasts (MRC-5) at 200 μg/mL with inhibiting concentration (IC50) values of 30 μg/mL and 50 μg/mL determined for PET dimer and trimer. Only three of these compounds including PET monomer were toxic to nematode Caenorhabditis elegans at high concentration of 500 μg/mL. In terms of the applicative potential, PET dimer can be used as suitable substrate for the screening, identification and characterization of novel PET-depolymerizing enzymes.",
publisher = "Elsevier",
journal = "Chemosphere, ChemosphereChemosphere",
title = "Synthesis and characterization of polyethylene terephthalate (PET) precursors and potential degradation products: Toxicity study and application in discovery of novel PETases",
volume = "275",
pages = "130005",
doi = "10.1016/j.chemosphere.2021.130005"
}
Đapović, M., Milivojević, D., Ilić-Tomić, T., Lješević, M., Nikolaivits, E., Topakas, E., Maslak, V.,& Nikodinović-Runić, J.. (2021). Synthesis and characterization of polyethylene terephthalate (PET) precursors and potential degradation products: Toxicity study and application in discovery of novel PETases. in Chemosphere
Elsevier., 275, 130005.
https://doi.org/10.1016/j.chemosphere.2021.130005
Đapović M, Milivojević D, Ilić-Tomić T, Lješević M, Nikolaivits E, Topakas E, Maslak V, Nikodinović-Runić J. Synthesis and characterization of polyethylene terephthalate (PET) precursors and potential degradation products: Toxicity study and application in discovery of novel PETases. in Chemosphere. 2021;275:130005.
doi:10.1016/j.chemosphere.2021.130005 .
Đapović, Milica, Milivojević, Dušan, Ilić-Tomić, Tatjana, Lješević, Marija, Nikolaivits, Efstratios, Topakas, Evangelos, Maslak, Veselin, Nikodinović-Runić, Jasmina, "Synthesis and characterization of polyethylene terephthalate (PET) precursors and potential degradation products: Toxicity study and application in discovery of novel PETases" in Chemosphere, 275 (2021):130005,
https://doi.org/10.1016/j.chemosphere.2021.130005 . .
7
43
13
37
35

Synthesis and characterization of polyethylene terephthalate (PET) precursors and potential degradation products: Toxicity study and application in discovery of novel PETases

Đapović, Milica; Milivojević, Dušan; Ilić-Tomić, Tatjana; Lješević, Marija; Nikolaivits, Efstratios; Topakas, Evangelos; Maslak, Veselin; Nikodinović-Runić, Jasmina

(Elsevier, 2021)

TY  - JOUR
AU  - Đapović, Milica
AU  - Milivojević, Dušan
AU  - Ilić-Tomić, Tatjana
AU  - Lješević, Marija
AU  - Nikolaivits, Efstratios
AU  - Topakas, Evangelos
AU  - Maslak, Veselin
AU  - Nikodinović-Runić, Jasmina
PY  - 2021
UR  - https://www.sciencedirect.com/science/article/pii/S0045653521004744
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4409
AB  - Polyethylene terephthalate (PET) is widely used material and as such became highly enriched in nature. It is generally considered inert and safe plastic, but due to the recent increased efforts to break-down PET using biotechnological approaches, we realized the scarcity of information about structural analysis of possible degradation products and their ecotoxicological assessment. Therefore, in this study, 11 compounds belonging to the group of PET precursors and possible degradation products have been comprehensively characterized. Seven of these compounds including 1-(2-hydroxyethyl)-4-methylterephthalate, ethylene glycol bis(methyl terephthalate), methyl bis(2-hydroxyethyl terephtahalate), 1,4-benzenedicarboxylic acid, 1,4-bis[2-[[4-(methoxycarbonyl)benzoyl]oxy]ethyl] ester and methyl tris(2-hydroxyethyl terephthalate) corresponding to mono-, 1.5-, di-, 2,5- and trimer of PET were synthetized and structurally characterized for the first time. In-silico druglikeness and physico-chemical properties of these compounds were predicted using variety of platforms. No antimicrobial properties were detected even at 1000 μg/mL. Ecotoxicological impact of the compounds against marine bacteria Allivibrio fischeri proved that the 6 out of 11 tested PET-associated compounds may be classified as harmful to aquatic microorganisms, with PET trimer being one of the most toxic. In comparison, most of the compounds were not toxic on human lung fibroblasts (MRC-5) at 200 μg/mL with inhibiting concentration (IC50) values of 30 μg/mL and 50 μg/mL determined for PET dimer and trimer. Only three of these compounds including PET monomer were toxic to nematode Caenorhabditis elegans at high concentration of 500 μg/mL. In terms of the applicative potential, PET dimer can be used as suitable substrate for the screening, identification and characterization of novel PET-depolymerizing enzymes.
PB  - Elsevier
T2  - Chemosphere
T2  - ChemosphereChemosphere
T1  - Synthesis and characterization of polyethylene terephthalate (PET) precursors and potential degradation products: Toxicity study and application in discovery of novel PETases
VL  - 275
SP  - 130005
DO  - 10.1016/j.chemosphere.2021.130005
ER  - 
@article{
author = "Đapović, Milica and Milivojević, Dušan and Ilić-Tomić, Tatjana and Lješević, Marija and Nikolaivits, Efstratios and Topakas, Evangelos and Maslak, Veselin and Nikodinović-Runić, Jasmina",
year = "2021",
abstract = "Polyethylene terephthalate (PET) is widely used material and as such became highly enriched in nature. It is generally considered inert and safe plastic, but due to the recent increased efforts to break-down PET using biotechnological approaches, we realized the scarcity of information about structural analysis of possible degradation products and their ecotoxicological assessment. Therefore, in this study, 11 compounds belonging to the group of PET precursors and possible degradation products have been comprehensively characterized. Seven of these compounds including 1-(2-hydroxyethyl)-4-methylterephthalate, ethylene glycol bis(methyl terephthalate), methyl bis(2-hydroxyethyl terephtahalate), 1,4-benzenedicarboxylic acid, 1,4-bis[2-[[4-(methoxycarbonyl)benzoyl]oxy]ethyl] ester and methyl tris(2-hydroxyethyl terephthalate) corresponding to mono-, 1.5-, di-, 2,5- and trimer of PET were synthetized and structurally characterized for the first time. In-silico druglikeness and physico-chemical properties of these compounds were predicted using variety of platforms. No antimicrobial properties were detected even at 1000 μg/mL. Ecotoxicological impact of the compounds against marine bacteria Allivibrio fischeri proved that the 6 out of 11 tested PET-associated compounds may be classified as harmful to aquatic microorganisms, with PET trimer being one of the most toxic. In comparison, most of the compounds were not toxic on human lung fibroblasts (MRC-5) at 200 μg/mL with inhibiting concentration (IC50) values of 30 μg/mL and 50 μg/mL determined for PET dimer and trimer. Only three of these compounds including PET monomer were toxic to nematode Caenorhabditis elegans at high concentration of 500 μg/mL. In terms of the applicative potential, PET dimer can be used as suitable substrate for the screening, identification and characterization of novel PET-depolymerizing enzymes.",
publisher = "Elsevier",
journal = "Chemosphere, ChemosphereChemosphere",
title = "Synthesis and characterization of polyethylene terephthalate (PET) precursors and potential degradation products: Toxicity study and application in discovery of novel PETases",
volume = "275",
pages = "130005",
doi = "10.1016/j.chemosphere.2021.130005"
}
Đapović, M., Milivojević, D., Ilić-Tomić, T., Lješević, M., Nikolaivits, E., Topakas, E., Maslak, V.,& Nikodinović-Runić, J.. (2021). Synthesis and characterization of polyethylene terephthalate (PET) precursors and potential degradation products: Toxicity study and application in discovery of novel PETases. in Chemosphere
Elsevier., 275, 130005.
https://doi.org/10.1016/j.chemosphere.2021.130005
Đapović M, Milivojević D, Ilić-Tomić T, Lješević M, Nikolaivits E, Topakas E, Maslak V, Nikodinović-Runić J. Synthesis and characterization of polyethylene terephthalate (PET) precursors and potential degradation products: Toxicity study and application in discovery of novel PETases. in Chemosphere. 2021;275:130005.
doi:10.1016/j.chemosphere.2021.130005 .
Đapović, Milica, Milivojević, Dušan, Ilić-Tomić, Tatjana, Lješević, Marija, Nikolaivits, Efstratios, Topakas, Evangelos, Maslak, Veselin, Nikodinović-Runić, Jasmina, "Synthesis and characterization of polyethylene terephthalate (PET) precursors and potential degradation products: Toxicity study and application in discovery of novel PETases" in Chemosphere, 275 (2021):130005,
https://doi.org/10.1016/j.chemosphere.2021.130005 . .
7
43
13
37
35