Stevanović, Gordana

Link to this page

Authority KeyName Variants
cb7bb71c-52a2-4d2c-9966-6cdd2393d187
  • Stevanović, Gordana (2)
Projects

Author's Bibliography

Nanocomposite co-catalysts, based on smectite and biowaste-derived carbon, as peroxymonosulfate activators in degradation of tartrazine

Stevanović, Gordana; Jović-Jovičić, Nataša; Krstić, Jugoslav; Milutinović-Nikolić, Aleksandra D.; Banković, Predrag; Popović, Aleksandar R.; Ajduković, Marija

(Elsevier, 2022)

TY  - JOUR
AU  - Stevanović, Gordana
AU  - Jović-Jovičić, Nataša
AU  - Krstić, Jugoslav
AU  - Milutinović-Nikolić, Aleksandra D.
AU  - Banković, Predrag
AU  - Popović, Aleksandar R.
AU  - Ajduković, Marija
PY  - 2022
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5662
AB  - Chitosan (Ch)-derived from biowaste along with smectite, an abundant clay mineral, were used in a low-cost and eco-friendly synthesis of a new type of catalyst. Nanocomposite catalysts constituted of Co supported on smectite with chitosan-derived carbon loading were obtained using an impregnation‑carbonization procedure and denoted as Co/cCh-S-T (T stands for applied carbonization temperature). The carbonization was performed in the temperature range from 400 °C to 700 °C in the flow of N2 providing inert atmosphere. The temperature of 500 °C was found to be the most suitable for catalyst synthesis regarding catalytic performance in a peroxymonosulfate activated degradation of tartrazine. The incorporation of carbonized chitosan structure within the interlamellar space of the smectite was confirmed using X-ray powder diffraction. The high-resolution transmission electron microscopy confirmed a layered structure of nanocomposites characteristic for smectite, as well as the presence of small spherical cobalt containing nanoformations (confirmed by energy dispersive X-ray spectroscopy) well dispersed within structure. The existance of cobalt in the CoII and CoIII oxidation state was proven by X-ray photoelectron spectroscopy. The Co/cCh-S-500 catalyst was proven to be stable and efficient after 5 consecutive cycles. This work showed that nanocomposite Co-catalysts, based on smectite and biowaste-derived carbon, as peroxymonosulfate activators exhibited a very promising performance in the degradation of water pollutants.
PB  - Elsevier
T2  - Applied Clay Science
T1  - Nanocomposite co-catalysts, based on smectite and biowaste-derived carbon, as peroxymonosulfate activators in degradation of tartrazine
VL  - 230
SP  - 106718
DO  - 10.1016/j.clay.2022.106718
ER  - 
@article{
author = "Stevanović, Gordana and Jović-Jovičić, Nataša and Krstić, Jugoslav and Milutinović-Nikolić, Aleksandra D. and Banković, Predrag and Popović, Aleksandar R. and Ajduković, Marija",
year = "2022",
abstract = "Chitosan (Ch)-derived from biowaste along with smectite, an abundant clay mineral, were used in a low-cost and eco-friendly synthesis of a new type of catalyst. Nanocomposite catalysts constituted of Co supported on smectite with chitosan-derived carbon loading were obtained using an impregnation‑carbonization procedure and denoted as Co/cCh-S-T (T stands for applied carbonization temperature). The carbonization was performed in the temperature range from 400 °C to 700 °C in the flow of N2 providing inert atmosphere. The temperature of 500 °C was found to be the most suitable for catalyst synthesis regarding catalytic performance in a peroxymonosulfate activated degradation of tartrazine. The incorporation of carbonized chitosan structure within the interlamellar space of the smectite was confirmed using X-ray powder diffraction. The high-resolution transmission electron microscopy confirmed a layered structure of nanocomposites characteristic for smectite, as well as the presence of small spherical cobalt containing nanoformations (confirmed by energy dispersive X-ray spectroscopy) well dispersed within structure. The existance of cobalt in the CoII and CoIII oxidation state was proven by X-ray photoelectron spectroscopy. The Co/cCh-S-500 catalyst was proven to be stable and efficient after 5 consecutive cycles. This work showed that nanocomposite Co-catalysts, based on smectite and biowaste-derived carbon, as peroxymonosulfate activators exhibited a very promising performance in the degradation of water pollutants.",
publisher = "Elsevier",
journal = "Applied Clay Science",
title = "Nanocomposite co-catalysts, based on smectite and biowaste-derived carbon, as peroxymonosulfate activators in degradation of tartrazine",
volume = "230",
pages = "106718",
doi = "10.1016/j.clay.2022.106718"
}
Stevanović, G., Jović-Jovičić, N., Krstić, J., Milutinović-Nikolić, A. D., Banković, P., Popović, A. R.,& Ajduković, M.. (2022). Nanocomposite co-catalysts, based on smectite and biowaste-derived carbon, as peroxymonosulfate activators in degradation of tartrazine. in Applied Clay Science
Elsevier., 230, 106718.
https://doi.org/10.1016/j.clay.2022.106718
Stevanović G, Jović-Jovičić N, Krstić J, Milutinović-Nikolić AD, Banković P, Popović AR, Ajduković M. Nanocomposite co-catalysts, based on smectite and biowaste-derived carbon, as peroxymonosulfate activators in degradation of tartrazine. in Applied Clay Science. 2022;230:106718.
doi:10.1016/j.clay.2022.106718 .
Stevanović, Gordana, Jović-Jovičić, Nataša, Krstić, Jugoslav, Milutinović-Nikolić, Aleksandra D., Banković, Predrag, Popović, Aleksandar R., Ajduković, Marija, "Nanocomposite co-catalysts, based on smectite and biowaste-derived carbon, as peroxymonosulfate activators in degradation of tartrazine" in Applied Clay Science, 230 (2022):106718,
https://doi.org/10.1016/j.clay.2022.106718 . .
8
6
3

Supplementary material for: Stevanović, G., Jović-Jovičić, N., Krstić, J., Milutinović-Nikolić, A., Banković, P., Popović, A.,& Ajduković, M.. (2022). Nanocomposite co-catalysts, based on smectite and biowaste-derived carbon, as peroxymonosulfate activators in degradation of tartrazine. in Applied Clay Science Elsevier., 230, 106718. https://doi.org/10.1016/j.clay.2022.106718

Stevanović, Gordana; Jović-Jovičić, Nataša; Krstić, Jugoslav; Milutinović-Nikolić, Aleksandra D.; Banković, Predrag; Popović, Aleksandar R.; Ajduković, Marija

(Elsevier, 2022)

TY  - DATA
AU  - Stevanović, Gordana
AU  - Jović-Jovičić, Nataša
AU  - Krstić, Jugoslav
AU  - Milutinović-Nikolić, Aleksandra D.
AU  - Banković, Predrag
AU  - Popović, Aleksandar R.
AU  - Ajduković, Marija
PY  - 2022
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5671
AB  - Chitosan (Ch)-derived from biowaste along with smectite, an abundant clay mineral, were used in a low-cost and eco-friendly synthesis of a new type of catalyst. Nanocomposite catalysts constituted of Co supported on smectite with chitosan-derived carbon loading were obtained using an impregnation‑carbonization procedure and denoted as Co/cCh-S-T (T stands for applied carbonization temperature). The carbonization was performed in the temperature range from 400 °C to 700 °C in the flow of N2 providing inert atmosphere. The temperature of 500 °C was found to be the most suitable for catalyst synthesis regarding catalytic performance in a peroxymonosulfate activated degradation of tartrazine. The incorporation of carbonized chitosan structure within the interlamellar space of the smectite was confirmed using X-ray powder diffraction. The high-resolution transmission electron microscopy confirmed a layered structure of nanocomposites characteristic for smectite, as well as the presence of small spherical cobalt containing nanoformations (confirmed by energy dispersive X-ray spectroscopy) well dispersed within structure. The existance of cobalt in the CoII and CoIII oxidation state was proven by X-ray photoelectron spectroscopy. The Co/cCh-S-500 catalyst was proven to be stable and efficient after 5 consecutive cycles. This work showed that nanocomposite Co-catalysts, based on smectite and biowaste-derived carbon, as peroxymonosulfate activators exhibited a very promising performance in the degradation of water pollutants.
PB  - Elsevier
T2  - Applied Clay Science
T1  - Supplementary material for: Stevanović, G., Jović-Jovičić, N., Krstić, J., Milutinović-Nikolić, A., Banković, P., Popović, A.,& Ajduković, M.. (2022). Nanocomposite co-catalysts, based on smectite and biowaste-derived carbon, as peroxymonosulfate activators in degradation of tartrazine. in Applied Clay Science Elsevier., 230, 106718. https://doi.org/10.1016/j.clay.2022.106718
VL  - 230
SP  - 106718
UR  - https://hdl.handle.net/21.15107/rcub_cherry_5671
ER  - 
@misc{
author = "Stevanović, Gordana and Jović-Jovičić, Nataša and Krstić, Jugoslav and Milutinović-Nikolić, Aleksandra D. and Banković, Predrag and Popović, Aleksandar R. and Ajduković, Marija",
year = "2022",
abstract = "Chitosan (Ch)-derived from biowaste along with smectite, an abundant clay mineral, were used in a low-cost and eco-friendly synthesis of a new type of catalyst. Nanocomposite catalysts constituted of Co supported on smectite with chitosan-derived carbon loading were obtained using an impregnation‑carbonization procedure and denoted as Co/cCh-S-T (T stands for applied carbonization temperature). The carbonization was performed in the temperature range from 400 °C to 700 °C in the flow of N2 providing inert atmosphere. The temperature of 500 °C was found to be the most suitable for catalyst synthesis regarding catalytic performance in a peroxymonosulfate activated degradation of tartrazine. The incorporation of carbonized chitosan structure within the interlamellar space of the smectite was confirmed using X-ray powder diffraction. The high-resolution transmission electron microscopy confirmed a layered structure of nanocomposites characteristic for smectite, as well as the presence of small spherical cobalt containing nanoformations (confirmed by energy dispersive X-ray spectroscopy) well dispersed within structure. The existance of cobalt in the CoII and CoIII oxidation state was proven by X-ray photoelectron spectroscopy. The Co/cCh-S-500 catalyst was proven to be stable and efficient after 5 consecutive cycles. This work showed that nanocomposite Co-catalysts, based on smectite and biowaste-derived carbon, as peroxymonosulfate activators exhibited a very promising performance in the degradation of water pollutants.",
publisher = "Elsevier",
journal = "Applied Clay Science",
title = "Supplementary material for: Stevanović, G., Jović-Jovičić, N., Krstić, J., Milutinović-Nikolić, A., Banković, P., Popović, A.,& Ajduković, M.. (2022). Nanocomposite co-catalysts, based on smectite and biowaste-derived carbon, as peroxymonosulfate activators in degradation of tartrazine. in Applied Clay Science Elsevier., 230, 106718. https://doi.org/10.1016/j.clay.2022.106718",
volume = "230",
pages = "106718",
url = "https://hdl.handle.net/21.15107/rcub_cherry_5671"
}
Stevanović, G., Jović-Jovičić, N., Krstić, J., Milutinović-Nikolić, A. D., Banković, P., Popović, A. R.,& Ajduković, M.. (2022). Supplementary material for: Stevanović, G., Jović-Jovičić, N., Krstić, J., Milutinović-Nikolić, A., Banković, P., Popović, A.,& Ajduković, M.. (2022). Nanocomposite co-catalysts, based on smectite and biowaste-derived carbon, as peroxymonosulfate activators in degradation of tartrazine. in Applied Clay Science Elsevier., 230, 106718. https://doi.org/10.1016/j.clay.2022.106718. in Applied Clay Science
Elsevier., 230, 106718.
https://hdl.handle.net/21.15107/rcub_cherry_5671
Stevanović G, Jović-Jovičić N, Krstić J, Milutinović-Nikolić AD, Banković P, Popović AR, Ajduković M. Supplementary material for: Stevanović, G., Jović-Jovičić, N., Krstić, J., Milutinović-Nikolić, A., Banković, P., Popović, A.,& Ajduković, M.. (2022). Nanocomposite co-catalysts, based on smectite and biowaste-derived carbon, as peroxymonosulfate activators in degradation of tartrazine. in Applied Clay Science Elsevier., 230, 106718. https://doi.org/10.1016/j.clay.2022.106718. in Applied Clay Science. 2022;230:106718.
https://hdl.handle.net/21.15107/rcub_cherry_5671 .
Stevanović, Gordana, Jović-Jovičić, Nataša, Krstić, Jugoslav, Milutinović-Nikolić, Aleksandra D., Banković, Predrag, Popović, Aleksandar R., Ajduković, Marija, "Supplementary material for: Stevanović, G., Jović-Jovičić, N., Krstić, J., Milutinović-Nikolić, A., Banković, P., Popović, A.,& Ajduković, M.. (2022). Nanocomposite co-catalysts, based on smectite and biowaste-derived carbon, as peroxymonosulfate activators in degradation of tartrazine. in Applied Clay Science Elsevier., 230, 106718. https://doi.org/10.1016/j.clay.2022.106718" in Applied Clay Science, 230 (2022):106718,
https://hdl.handle.net/21.15107/rcub_cherry_5671 .