Filipović, Nenad R.

Link to this page

Authority KeyName Variants
33a69555-18ae-44cc-b853-ff70c03a676f
  • Filipović, Nenad R. (7)
Projects
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200168 (University of Belgrade, Faculty of Chemistry) Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200116 (University of Belgrade, Faculty of Agriculture)
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200288 (Innovation Center of the Faculty of Chemistry) Deutsche Forschungsgemeinschaft
Estonian Research Council Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200019 (University of Belgrade, Institute for the Application of Nuclear Energy - INEP)
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200026 (University of Belgrade, Institute of Chemistry, Technology and Metallurgy - IChTM) Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200125 (University of Novi Sad, Faculty of Science)
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200161 (University of Belgrade, Faculty of Pharmacy) This research is financially supported by the Canary Islands Government (ProID2020010101, ACIISI/FEDER, UE).
This research is financially supported by the Spanish Government (PGC2018-094503-B-C22, MCIU/AEI/FEDER, UE). This research is supported by the Canary Islands ACIISI for a predoctoral grant TESIS2020010055.
This research is supported by the EU Social Fund (FSE).

Author's Bibliography

Quinoline-based thiazolyl-hydrazones target cancer cells through autophagy inhibition

Ćurčić, Vladimir; Olszewski, Mateusz; Maciejewska, Natalia; Višnjevac, Aleksandar; Srdić-Rajić, Tatjana; Dobričić, Vladimir; García-Sosa, Alfonso T.; Kokanov, Sanja B.; Araškov, Jovana; Silvestri, Romano; Schüle, Roland; Jung, Manfred; Nikolić, Milan; Filipović, Nenad R.

TY  - JOUR
AU  - Ćurčić, Vladimir
AU  - Olszewski, Mateusz
AU  - Maciejewska, Natalia
AU  - Višnjevac, Aleksandar
AU  - Srdić-Rajić, Tatjana
AU  - Dobričić, Vladimir
AU  - García-Sosa, Alfonso T.
AU  - Kokanov, Sanja B.
AU  - Araškov, Jovana
AU  - Silvestri, Romano
AU  - Schüle, Roland
AU  - Jung, Manfred
AU  - Nikolić, Milan
AU  - Filipović, Nenad R.
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/6392
AB  - Heterocyclic pharmacophores such as thiazole and quinoline rings have a significant role in medicinal chemistry. They are considered privileged structures since they constitute several Food and Drug Administration (FDA)-approved drugs for cancer treatment. Herein, we report the synthesis, in silico evaluation of the ADMET profiles, and in vitro investigation of the anticancer activity of a series of novel thiazolyl-hydrazones based on the 8-quinoline (1a–c), 2-quinoline (2a–c), and 8-hydroxy-2-quinolyl moiety (3a–c). The panel of several human cancer cell lines and the nontumorigenic human embryonic kidney cell line HEK-293 were used to evaluate the compound-mediated in vitro anticancer activities, leading to [2-(2-(quinolyl-8-ol-2-ylmethylene)hydrazinyl)]-4-(4-methoxyphenyl)-1,3-thiazole (3c) as the most promising compound. The study revealed that 3c blocks the cell-cycle progression of a human colon cancer cell line (HCT-116) in the S phase and induces DNA double-strand breaks. Also, our findings demonstrate that 3c accumulates in lysosomes, ultimately leading to the cell death of the hepatocellular carcinoma cell line (Hep-G2) and HCT-116 cells, by the mechanism of autophagy inhibition.
PB  - John Wiley and Sons Inc
T2  - Archiv der Pharmazie
T2  - Archiv der Pharmazie
T1  - Quinoline-based thiazolyl-hydrazones target cancer cells through autophagy inhibition
VL  - n/a
IS  - n/a
SP  - e2300426
DO  - 10.1002/ardp.202300426
ER  - 
@article{
author = "Ćurčić, Vladimir and Olszewski, Mateusz and Maciejewska, Natalia and Višnjevac, Aleksandar and Srdić-Rajić, Tatjana and Dobričić, Vladimir and García-Sosa, Alfonso T. and Kokanov, Sanja B. and Araškov, Jovana and Silvestri, Romano and Schüle, Roland and Jung, Manfred and Nikolić, Milan and Filipović, Nenad R.",
abstract = "Heterocyclic pharmacophores such as thiazole and quinoline rings have a significant role in medicinal chemistry. They are considered privileged structures since they constitute several Food and Drug Administration (FDA)-approved drugs for cancer treatment. Herein, we report the synthesis, in silico evaluation of the ADMET profiles, and in vitro investigation of the anticancer activity of a series of novel thiazolyl-hydrazones based on the 8-quinoline (1a–c), 2-quinoline (2a–c), and 8-hydroxy-2-quinolyl moiety (3a–c). The panel of several human cancer cell lines and the nontumorigenic human embryonic kidney cell line HEK-293 were used to evaluate the compound-mediated in vitro anticancer activities, leading to [2-(2-(quinolyl-8-ol-2-ylmethylene)hydrazinyl)]-4-(4-methoxyphenyl)-1,3-thiazole (3c) as the most promising compound. The study revealed that 3c blocks the cell-cycle progression of a human colon cancer cell line (HCT-116) in the S phase and induces DNA double-strand breaks. Also, our findings demonstrate that 3c accumulates in lysosomes, ultimately leading to the cell death of the hepatocellular carcinoma cell line (Hep-G2) and HCT-116 cells, by the mechanism of autophagy inhibition.",
publisher = "John Wiley and Sons Inc",
journal = "Archiv der Pharmazie, Archiv der Pharmazie",
title = "Quinoline-based thiazolyl-hydrazones target cancer cells through autophagy inhibition",
volume = "n/a",
number = "n/a",
pages = "e2300426",
doi = "10.1002/ardp.202300426"
}
Ćurčić, V., Olszewski, M., Maciejewska, N., Višnjevac, A., Srdić-Rajić, T., Dobričić, V., García-Sosa, A. T., Kokanov, S. B., Araškov, J., Silvestri, R., Schüle, R., Jung, M., Nikolić, M.,& Filipović, N. R..Quinoline-based thiazolyl-hydrazones target cancer cells through autophagy inhibition. in Archiv der Pharmazie
John Wiley and Sons Inc., n/a(n/a), e2300426.
https://doi.org/10.1002/ardp.202300426
Ćurčić V, Olszewski M, Maciejewska N, Višnjevac A, Srdić-Rajić T, Dobričić V, García-Sosa AT, Kokanov SB, Araškov J, Silvestri R, Schüle R, Jung M, Nikolić M, Filipović NR. Quinoline-based thiazolyl-hydrazones target cancer cells through autophagy inhibition. in Archiv der Pharmazie.n/a(n/a):e2300426.
doi:10.1002/ardp.202300426 .
Ćurčić, Vladimir, Olszewski, Mateusz, Maciejewska, Natalia, Višnjevac, Aleksandar, Srdić-Rajić, Tatjana, Dobričić, Vladimir, García-Sosa, Alfonso T., Kokanov, Sanja B., Araškov, Jovana, Silvestri, Romano, Schüle, Roland, Jung, Manfred, Nikolić, Milan, Filipović, Nenad R., "Quinoline-based thiazolyl-hydrazones target cancer cells through autophagy inhibition" in Archiv der Pharmazie, n/a, no. n/a:e2300426,
https://doi.org/10.1002/ardp.202300426 . .
1

Zn(II) complexes with pyridyl-based 1,3-selen/thiazolyl-hydrazones: A comparative study

Višnjevac, Aleksandar; Araškov, Jovana; Nikolić, Milan; Bojić-Trbojević, Žanka; Pirković, Andrea; Dekanski, Dragana; Mitić, Dragana; Blagojević, Vladimir A.; Filipović, Nenad R.; Todorović, Tamara

(Elsevier, 2023)

TY  - JOUR
AU  - Višnjevac, Aleksandar
AU  - Araškov, Jovana
AU  - Nikolić, Milan
AU  - Bojić-Trbojević, Žanka
AU  - Pirković, Andrea
AU  - Dekanski, Dragana
AU  - Mitić, Dragana
AU  - Blagojević, Vladimir A.
AU  - Filipović, Nenad R.
AU  - Todorović, Tamara
PY  - 2023
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5877
AB  - The Zn(II) complexes [Zn(HLSe2)2](NO3)2∙CH3OH (2-NO3-Se) and [Zn(HLSe3)2](NO3)2·DMF (3-NO3-Se) with selenazolyl-hydrazone ligands 4-(4-methoxyphenyl)-2-(2-(pyridin-2-ylmethylene)hydrazinyl)-1,3-selenazole (HLSe2) and 4-(4-methylphenyl)-2-(2-(pyridin-2-ylmethylene)hydrazinyl)-1,3-selenazole (HLSe3) have been synthesized and characterized using singe crystal X-ray diffraction analysis. Antiproliferative activities of 2-NO3-Se and 3-NO3-Se, the corresponding ligands and sulphur isosteres of the complexes and the ligands were determined on non-malignant HTR-8/SVneo extravillous trophoblast cell line and malignant JEG-3 and JAr choriocarcinoma cell lines. All Zn complexes exhibited cytotoxic effect, comparable to that of a reference metal-based drug, cisplatin. The antioxidant activity of all compounds was determined in three antioxidant assays: ORAC (Oxygen Radical Absorbance Capacity), ABTS [(2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt] and CERAC [Ce(IV)-based reducing capacity]. As a result of synergy between Zn(II) and selenazolyl-hydrazone ligands, the complexes 2-NO3-Se and 3-NO3-Se appeared to be more active than Trolox, which is not the case for their sulfur counterparts. In-silico calculations of ADME properties pointed that the compounds possess some of desirable Lipinski rule principles. Applied algorithms did not report the compounds as potential PAINS or covalent inhibitors, although due to high molecular weight none of the compounds represent a potential lead compound. Toxicity prediction of the compounds is performed using machine learning models. The complexation of the ligands most likely reduces their toxicity or reduces their negative metabolic effects.
PB  - Elsevier
T2  - Journal of Molecular Structure
T2  - Journal of Molecular StructureJournal of Molecular Structure
T1  - Zn(II) complexes with pyridyl-based 1,3-selen/thiazolyl-hydrazones: A comparative study
VL  - 1281
SP  - 135193
DO  - 10.1016/j.molstruc.2023.135193
ER  - 
@article{
author = "Višnjevac, Aleksandar and Araškov, Jovana and Nikolić, Milan and Bojić-Trbojević, Žanka and Pirković, Andrea and Dekanski, Dragana and Mitić, Dragana and Blagojević, Vladimir A. and Filipović, Nenad R. and Todorović, Tamara",
year = "2023",
abstract = "The Zn(II) complexes [Zn(HLSe2)2](NO3)2∙CH3OH (2-NO3-Se) and [Zn(HLSe3)2](NO3)2·DMF (3-NO3-Se) with selenazolyl-hydrazone ligands 4-(4-methoxyphenyl)-2-(2-(pyridin-2-ylmethylene)hydrazinyl)-1,3-selenazole (HLSe2) and 4-(4-methylphenyl)-2-(2-(pyridin-2-ylmethylene)hydrazinyl)-1,3-selenazole (HLSe3) have been synthesized and characterized using singe crystal X-ray diffraction analysis. Antiproliferative activities of 2-NO3-Se and 3-NO3-Se, the corresponding ligands and sulphur isosteres of the complexes and the ligands were determined on non-malignant HTR-8/SVneo extravillous trophoblast cell line and malignant JEG-3 and JAr choriocarcinoma cell lines. All Zn complexes exhibited cytotoxic effect, comparable to that of a reference metal-based drug, cisplatin. The antioxidant activity of all compounds was determined in three antioxidant assays: ORAC (Oxygen Radical Absorbance Capacity), ABTS [(2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt] and CERAC [Ce(IV)-based reducing capacity]. As a result of synergy between Zn(II) and selenazolyl-hydrazone ligands, the complexes 2-NO3-Se and 3-NO3-Se appeared to be more active than Trolox, which is not the case for their sulfur counterparts. In-silico calculations of ADME properties pointed that the compounds possess some of desirable Lipinski rule principles. Applied algorithms did not report the compounds as potential PAINS or covalent inhibitors, although due to high molecular weight none of the compounds represent a potential lead compound. Toxicity prediction of the compounds is performed using machine learning models. The complexation of the ligands most likely reduces their toxicity or reduces their negative metabolic effects.",
publisher = "Elsevier",
journal = "Journal of Molecular Structure, Journal of Molecular StructureJournal of Molecular Structure",
title = "Zn(II) complexes with pyridyl-based 1,3-selen/thiazolyl-hydrazones: A comparative study",
volume = "1281",
pages = "135193",
doi = "10.1016/j.molstruc.2023.135193"
}
Višnjevac, A., Araškov, J., Nikolić, M., Bojić-Trbojević, Ž., Pirković, A., Dekanski, D., Mitić, D., Blagojević, V. A., Filipović, N. R.,& Todorović, T.. (2023). Zn(II) complexes with pyridyl-based 1,3-selen/thiazolyl-hydrazones: A comparative study. in Journal of Molecular Structure
Elsevier., 1281, 135193.
https://doi.org/10.1016/j.molstruc.2023.135193
Višnjevac A, Araškov J, Nikolić M, Bojić-Trbojević Ž, Pirković A, Dekanski D, Mitić D, Blagojević VA, Filipović NR, Todorović T. Zn(II) complexes with pyridyl-based 1,3-selen/thiazolyl-hydrazones: A comparative study. in Journal of Molecular Structure. 2023;1281:135193.
doi:10.1016/j.molstruc.2023.135193 .
Višnjevac, Aleksandar, Araškov, Jovana, Nikolić, Milan, Bojić-Trbojević, Žanka, Pirković, Andrea, Dekanski, Dragana, Mitić, Dragana, Blagojević, Vladimir A., Filipović, Nenad R., Todorović, Tamara, "Zn(II) complexes with pyridyl-based 1,3-selen/thiazolyl-hydrazones: A comparative study" in Journal of Molecular Structure, 1281 (2023):135193,
https://doi.org/10.1016/j.molstruc.2023.135193 . .
1
1

A detailed experimental and computational study of Cd complexes with pyridyl-based thiazolyl hydrazones

Kokanov, Sanja B.; Filipović, Nenad R.; Višnjevac, Aleksandar; Nikolić, Milan; Novaković, Irena T.; Janjić, Goran; Holló, Berta Barta; Ramotowska, Sandra; Nowicka, Paulina; Makowski, Mariusz; Uğuz, Özlem; Koca, Atıf; Todorović, Tamara

(Wiley, 2023)

TY  - JOUR
AU  - Kokanov, Sanja B.
AU  - Filipović, Nenad R.
AU  - Višnjevac, Aleksandar
AU  - Nikolić, Milan
AU  - Novaković, Irena T.
AU  - Janjić, Goran
AU  - Holló, Berta Barta
AU  - Ramotowska, Sandra
AU  - Nowicka, Paulina
AU  - Makowski, Mariusz
AU  - Uğuz, Özlem
AU  - Koca, Atıf
AU  - Todorović, Tamara
PY  - 2023
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5986
AB  - Interest in Cd complexes has been growing in recent years. Cd complexes are considered a potential solution in the search for novel antibiotics that can fight antimicrobial resistance. In addition, Cd complexes draw attention to material chemistry. The main objective of this work was to prepare the first Cd(II) complexes with anionic forms of pyridine-based thiazolyl hydrazone (THs) ligands HLS2 [(E)-4-(4-methoxyphenyl)-2-(2-[pyridine-2-ylmethylene]hydrazinyl)thiazole] and HLS3 [(E)-2-(2-[pyridine-2-ylmethylene]hydrazinyl)-4-(p-tolyl)thiazole] and perform their structural and spectroscopic characterization, as well as stability in solution and upon heating. Studies related to their biological activities and possible electrochromic applications are also being conducted. Complexes [Cd(HLS2)2] (1) and [Cd(HLS3)2] (2) have been characterized by a single-crystal X-ray diffraction and computational analysis of intermolecular interactions responsible for their solid-state structures was performed. Thermal stability of 1 and 2 in the solid-state was analyzed by TGA/MS, where as their solution stability was determined by the spectrophotometric titration method. Electrochemical and in situ UV–Vis spectroelectrochemical analyses of 1 and 2 were carried out to determine redox mechanisms and the influence of the substituents and electrolytes on their redox responses. The antioxidant capacity of both complexes was tested in antioxidant assays, while their antimicrobial activity was tested against five Gram-positive and four Gram-negative bacteria, as well as against three fungi. The obtained results indicate their potent antioxidant capacity. The antimicrobial activity of investigated compounds on almost all tested bacterial strains was stronger than that of the standard antibiotic erythromycin. The results of docking studies indicate that the minor groove DNA is the possible biological target of 1 and 2.
PB  - Wiley
T2  - Applied Organometallic Chemistry
T1  - A detailed experimental and computational study of Cd complexes with pyridyl-based thiazolyl hydrazones
VL  - 37
IS  - 1
DO  - 10.1002/aoc.6942
ER  - 
@article{
author = "Kokanov, Sanja B. and Filipović, Nenad R. and Višnjevac, Aleksandar and Nikolić, Milan and Novaković, Irena T. and Janjić, Goran and Holló, Berta Barta and Ramotowska, Sandra and Nowicka, Paulina and Makowski, Mariusz and Uğuz, Özlem and Koca, Atıf and Todorović, Tamara",
year = "2023",
abstract = "Interest in Cd complexes has been growing in recent years. Cd complexes are considered a potential solution in the search for novel antibiotics that can fight antimicrobial resistance. In addition, Cd complexes draw attention to material chemistry. The main objective of this work was to prepare the first Cd(II) complexes with anionic forms of pyridine-based thiazolyl hydrazone (THs) ligands HLS2 [(E)-4-(4-methoxyphenyl)-2-(2-[pyridine-2-ylmethylene]hydrazinyl)thiazole] and HLS3 [(E)-2-(2-[pyridine-2-ylmethylene]hydrazinyl)-4-(p-tolyl)thiazole] and perform their structural and spectroscopic characterization, as well as stability in solution and upon heating. Studies related to their biological activities and possible electrochromic applications are also being conducted. Complexes [Cd(HLS2)2] (1) and [Cd(HLS3)2] (2) have been characterized by a single-crystal X-ray diffraction and computational analysis of intermolecular interactions responsible for their solid-state structures was performed. Thermal stability of 1 and 2 in the solid-state was analyzed by TGA/MS, where as their solution stability was determined by the spectrophotometric titration method. Electrochemical and in situ UV–Vis spectroelectrochemical analyses of 1 and 2 were carried out to determine redox mechanisms and the influence of the substituents and electrolytes on their redox responses. The antioxidant capacity of both complexes was tested in antioxidant assays, while their antimicrobial activity was tested against five Gram-positive and four Gram-negative bacteria, as well as against three fungi. The obtained results indicate their potent antioxidant capacity. The antimicrobial activity of investigated compounds on almost all tested bacterial strains was stronger than that of the standard antibiotic erythromycin. The results of docking studies indicate that the minor groove DNA is the possible biological target of 1 and 2.",
publisher = "Wiley",
journal = "Applied Organometallic Chemistry",
title = "A detailed experimental and computational study of Cd complexes with pyridyl-based thiazolyl hydrazones",
volume = "37",
number = "1",
doi = "10.1002/aoc.6942"
}
Kokanov, S. B., Filipović, N. R., Višnjevac, A., Nikolić, M., Novaković, I. T., Janjić, G., Holló, B. B., Ramotowska, S., Nowicka, P., Makowski, M., Uğuz, Ö., Koca, A.,& Todorović, T.. (2023). A detailed experimental and computational study of Cd complexes with pyridyl-based thiazolyl hydrazones. in Applied Organometallic Chemistry
Wiley., 37(1).
https://doi.org/10.1002/aoc.6942
Kokanov SB, Filipović NR, Višnjevac A, Nikolić M, Novaković IT, Janjić G, Holló BB, Ramotowska S, Nowicka P, Makowski M, Uğuz Ö, Koca A, Todorović T. A detailed experimental and computational study of Cd complexes with pyridyl-based thiazolyl hydrazones. in Applied Organometallic Chemistry. 2023;37(1).
doi:10.1002/aoc.6942 .
Kokanov, Sanja B., Filipović, Nenad R., Višnjevac, Aleksandar, Nikolić, Milan, Novaković, Irena T., Janjić, Goran, Holló, Berta Barta, Ramotowska, Sandra, Nowicka, Paulina, Makowski, Mariusz, Uğuz, Özlem, Koca, Atıf, Todorović, Tamara, "A detailed experimental and computational study of Cd complexes with pyridyl-based thiazolyl hydrazones" in Applied Organometallic Chemistry, 37, no. 1 (2023),
https://doi.org/10.1002/aoc.6942 . .

The effect of non-specific binding of Pd(II) complexes with N-heteroaromatic hydrazone ligands on the protein structure

Mijin, Nemanja D.; Milošević, Jelica; Filipović, Nenad R.; Mitić, Dragana; Anđelković, Katarina K.; Polović, Natalija; Todorović, Tamara

(Serbian Chemical Society, 2022)

TY  - JOUR
AU  - Mijin, Nemanja D.
AU  - Milošević, Jelica
AU  - Filipović, Nenad R.
AU  - Mitić, Dragana
AU  - Anđelković, Katarina K.
AU  - Polović, Natalija
AU  - Todorović, Tamara
PY  - 2022
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5686
AB  - Previously, the cytotoxic actions of five Pd(II) complexes with bidentate N-heteroaromatic chelators (complexes 1–5) on a palette of several cancer
cell lines were investigated. However, the results of the cytotoxic activity did
not correlate with the hydrophobic character of the complexes. To gain further
insight into the structure–activity relationship, essential for the design of novel
potential drugs, other factors, such as non-specific interactions with cellular
proteins, have to be taken into account. To explore the potential non-specific
influence of the complexes on protein structures, ovalbumin (OVA) was
chosen as a model system to mimic cellular non-specific crowding environments with high protein concentrations. A Fourier-transform infrared spectroscopy study implied that the binding of 3 and 4 led to only moderate alternations in the secondary structures of the protein, without the possibility to penetrate into hydrophobic core of the protein and disruption of protein native fold.
Contrary, the effect of complex 5 on OVA secondary structures was concentration-dependent. While the lower concentration of complex 5 had no effect
on OVA structure, a doubled concentration of complex 5 led to complete disruption of the content native-like secondary structures. The concentration-dependent effect of complex 5 on the changes in secondary structures and considerable increase in the exposure of OVA hydrophobic surfaces to water may
be related to a potential crosslinking that leads to OVA aggregation.
PB  - Serbian Chemical Society
T2  - Journal of the Serbian Chemical Society
T1  - The effect of non-specific binding of Pd(II) complexes with N-heteroaromatic hydrazone ligands on the protein structure
VL  - 87
IS  - 10
SP  - 1143
SP  - 1156
DO  - 10.2298/JSC220518050M
ER  - 
@article{
author = "Mijin, Nemanja D. and Milošević, Jelica and Filipović, Nenad R. and Mitić, Dragana and Anđelković, Katarina K. and Polović, Natalija and Todorović, Tamara",
year = "2022",
abstract = "Previously, the cytotoxic actions of five Pd(II) complexes with bidentate N-heteroaromatic chelators (complexes 1–5) on a palette of several cancer
cell lines were investigated. However, the results of the cytotoxic activity did
not correlate with the hydrophobic character of the complexes. To gain further
insight into the structure–activity relationship, essential for the design of novel
potential drugs, other factors, such as non-specific interactions with cellular
proteins, have to be taken into account. To explore the potential non-specific
influence of the complexes on protein structures, ovalbumin (OVA) was
chosen as a model system to mimic cellular non-specific crowding environments with high protein concentrations. A Fourier-transform infrared spectroscopy study implied that the binding of 3 and 4 led to only moderate alternations in the secondary structures of the protein, without the possibility to penetrate into hydrophobic core of the protein and disruption of protein native fold.
Contrary, the effect of complex 5 on OVA secondary structures was concentration-dependent. While the lower concentration of complex 5 had no effect
on OVA structure, a doubled concentration of complex 5 led to complete disruption of the content native-like secondary structures. The concentration-dependent effect of complex 5 on the changes in secondary structures and considerable increase in the exposure of OVA hydrophobic surfaces to water may
be related to a potential crosslinking that leads to OVA aggregation.",
publisher = "Serbian Chemical Society",
journal = "Journal of the Serbian Chemical Society",
title = "The effect of non-specific binding of Pd(II) complexes with N-heteroaromatic hydrazone ligands on the protein structure",
volume = "87",
number = "10",
pages = "1143-1156",
doi = "10.2298/JSC220518050M"
}
Mijin, N. D., Milošević, J., Filipović, N. R., Mitić, D., Anđelković, K. K., Polović, N.,& Todorović, T.. (2022). The effect of non-specific binding of Pd(II) complexes with N-heteroaromatic hydrazone ligands on the protein structure. in Journal of the Serbian Chemical Society
Serbian Chemical Society., 87(10), 1143.
https://doi.org/10.2298/JSC220518050M
Mijin ND, Milošević J, Filipović NR, Mitić D, Anđelković KK, Polović N, Todorović T. The effect of non-specific binding of Pd(II) complexes with N-heteroaromatic hydrazone ligands on the protein structure. in Journal of the Serbian Chemical Society. 2022;87(10):1143.
doi:10.2298/JSC220518050M .
Mijin, Nemanja D., Milošević, Jelica, Filipović, Nenad R., Mitić, Dragana, Anđelković, Katarina K., Polović, Natalija, Todorović, Tamara, "The effect of non-specific binding of Pd(II) complexes with N-heteroaromatic hydrazone ligands on the protein structure" in Journal of the Serbian Chemical Society, 87, no. 10 (2022):1143,
https://doi.org/10.2298/JSC220518050M . .

Supplementary material for: Mijin, N. D., Milošević, J., Filipović, N. R., Mitić, D., Anđelković, K., Polović, N. Đ., & Todorović, T. R. (2022). The effect of non-specific binding of Pd(II) complexes with N-heteroaromatic hydrazone ligands on the protein structure. Journal of the Serbian Chemical Society, 87(10), 1143. https://doi.org/10.2298/JSC220518050M

Mijin, Nemanja D.; Milošević, Jelica; Filipović, Nenad R.; Mitić, Dragana; Anđelković, Katarina K.; Polović, Natalija; Todorović, Tamara

(Serbian Chemical Society, 2022)

TY  - DATA
AU  - Mijin, Nemanja D.
AU  - Milošević, Jelica
AU  - Filipović, Nenad R.
AU  - Mitić, Dragana
AU  - Anđelković, Katarina K.
AU  - Polović, Natalija
AU  - Todorović, Tamara
PY  - 2022
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5707
AB  - Previously, the cytotoxic actions of five Pd(II) complexes with bidentate N-heteroaromatic chelators (complexes 1–5) on a palette of several cancercell lines were investigated. However, the results of the cytotoxic activity didnot correlate with the hydrophobic character of the complexes. To gain furtherinsight into the structure–activity relationship, essential for the design of novelpotential drugs, other factors, such as non-specific interactions with cellularproteins, have to be taken into account. To explore the potential non-specificinfluence of the complexes on protein structures, ovalbumin (OVA) waschosen as a model system to mimic cellular non-specific crowding environments with high protein concentrations. A Fourier-transform infrared spectroscopy study implied that the binding of 3 and 4 led to only moderate alternations in the secondary structures of the protein, without the possibility to penetrate into hydrophobic core of the protein and disruption of protein native fold.Contrary, the effect of complex 5 on OVA secondary structures was concentration-dependent. While the lower concentration of complex 5 had no effecton OVA structure, a doubled concentration of complex 5 led to complete disruption of the content native-like secondary structures. The concentration-dependent effect of complex 5 on the changes in secondary structures and considerable increase in the exposure of OVA hydrophobic surfaces to water maybe related to a potential crosslinking that leads to OVA aggregation.
PB  - Serbian Chemical Society
T2  - Journal of the Serbian Chemical Society
T1  - Supplementary material for: Mijin, N. D., Milošević, J., Filipović, N. R., Mitić, D., Anđelković, K., Polović, N. Đ., & Todorović, T. R. (2022). The effect of non-specific binding of Pd(II) complexes with N-heteroaromatic hydrazone ligands on the protein structure. Journal of the Serbian Chemical Society, 87(10), 1143. https://doi.org/10.2298/JSC220518050M
VL  - 87
IS  - 10
SP  - 1143
SP  - 1156
UR  - https://hdl.handle.net/21.15107/rcub_cherry_5707
ER  - 
@misc{
author = "Mijin, Nemanja D. and Milošević, Jelica and Filipović, Nenad R. and Mitić, Dragana and Anđelković, Katarina K. and Polović, Natalija and Todorović, Tamara",
year = "2022",
abstract = "Previously, the cytotoxic actions of five Pd(II) complexes with bidentate N-heteroaromatic chelators (complexes 1–5) on a palette of several cancercell lines were investigated. However, the results of the cytotoxic activity didnot correlate with the hydrophobic character of the complexes. To gain furtherinsight into the structure–activity relationship, essential for the design of novelpotential drugs, other factors, such as non-specific interactions with cellularproteins, have to be taken into account. To explore the potential non-specificinfluence of the complexes on protein structures, ovalbumin (OVA) waschosen as a model system to mimic cellular non-specific crowding environments with high protein concentrations. A Fourier-transform infrared spectroscopy study implied that the binding of 3 and 4 led to only moderate alternations in the secondary structures of the protein, without the possibility to penetrate into hydrophobic core of the protein and disruption of protein native fold.Contrary, the effect of complex 5 on OVA secondary structures was concentration-dependent. While the lower concentration of complex 5 had no effecton OVA structure, a doubled concentration of complex 5 led to complete disruption of the content native-like secondary structures. The concentration-dependent effect of complex 5 on the changes in secondary structures and considerable increase in the exposure of OVA hydrophobic surfaces to water maybe related to a potential crosslinking that leads to OVA aggregation.",
publisher = "Serbian Chemical Society",
journal = "Journal of the Serbian Chemical Society",
title = "Supplementary material for: Mijin, N. D., Milošević, J., Filipović, N. R., Mitić, D., Anđelković, K., Polović, N. Đ., & Todorović, T. R. (2022). The effect of non-specific binding of Pd(II) complexes with N-heteroaromatic hydrazone ligands on the protein structure. Journal of the Serbian Chemical Society, 87(10), 1143. https://doi.org/10.2298/JSC220518050M",
volume = "87",
number = "10",
pages = "1143-1156",
url = "https://hdl.handle.net/21.15107/rcub_cherry_5707"
}
Mijin, N. D., Milošević, J., Filipović, N. R., Mitić, D., Anđelković, K. K., Polović, N.,& Todorović, T.. (2022). Supplementary material for: Mijin, N. D., Milošević, J., Filipović, N. R., Mitić, D., Anđelković, K., Polović, N. Đ., & Todorović, T. R. (2022). The effect of non-specific binding of Pd(II) complexes with N-heteroaromatic hydrazone ligands on the protein structure. Journal of the Serbian Chemical Society, 87(10), 1143. https://doi.org/10.2298/JSC220518050M. in Journal of the Serbian Chemical Society
Serbian Chemical Society., 87(10), 1143.
https://hdl.handle.net/21.15107/rcub_cherry_5707
Mijin ND, Milošević J, Filipović NR, Mitić D, Anđelković KK, Polović N, Todorović T. Supplementary material for: Mijin, N. D., Milošević, J., Filipović, N. R., Mitić, D., Anđelković, K., Polović, N. Đ., & Todorović, T. R. (2022). The effect of non-specific binding of Pd(II) complexes with N-heteroaromatic hydrazone ligands on the protein structure. Journal of the Serbian Chemical Society, 87(10), 1143. https://doi.org/10.2298/JSC220518050M. in Journal of the Serbian Chemical Society. 2022;87(10):1143.
https://hdl.handle.net/21.15107/rcub_cherry_5707 .
Mijin, Nemanja D., Milošević, Jelica, Filipović, Nenad R., Mitić, Dragana, Anđelković, Katarina K., Polović, Natalija, Todorović, Tamara, "Supplementary material for: Mijin, N. D., Milošević, J., Filipović, N. R., Mitić, D., Anđelković, K., Polović, N. Đ., & Todorović, T. R. (2022). The effect of non-specific binding of Pd(II) complexes with N-heteroaromatic hydrazone ligands on the protein structure. Journal of the Serbian Chemical Society, 87(10), 1143. https://doi.org/10.2298/JSC220518050M" in Journal of the Serbian Chemical Society, 87, no. 10 (2022):1143,
https://hdl.handle.net/21.15107/rcub_cherry_5707 .

Zn(II) complexes with thiazolyl–hydrazones: structure, intermolecular interactions, photophysical properties, computational study and anticancer activity

Araškov, Jovana; Višnjevac, Aleksandar; Popović, Jasminka; Blagojević, Vladimir A.; Fernandes, Henrique S.; Sousa, Sérgio F.; Novaković, Irena T.; Padrón, José M.; Holló, Berta Barta; Monge, Miguel; Rodríguez-Castillo, María; López-de-Luzuriaga, José M.; Filipović, Nenad R.; Todorović, Tamara

(2022)

TY  - JOUR
AU  - Araškov, Jovana
AU  - Višnjevac, Aleksandar
AU  - Popović, Jasminka
AU  - Blagojević, Vladimir A.
AU  - Fernandes, Henrique S.
AU  - Sousa, Sérgio F.
AU  - Novaković, Irena T.
AU  - Padrón, José M.
AU  - Holló, Berta Barta
AU  - Monge, Miguel
AU  - Rodríguez-Castillo, María
AU  - López-de-Luzuriaga, José M.
AU  - Filipović, Nenad R.
AU  - Todorović, Tamara
PY  - 2022
UR  - https://pubs.rsc.org/en/content/articlelanding/2022/ce/d2ce00443g
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5380
AB  - Earth-abundant, cheap and non-toxic zinc-based coordination compounds are drawing research attention as promising candidates for various applications, such as photoluminescent materials and anticancer agents. In this paper we report six zinc complexes (1–3-NO3 and 1–3-Cl) with pyridyl-based thiazolyl–hydrazone ligands, which differ in the nature of substituents at the ligands' periphery, anion type, and geometry around the metal ion. The complexes were characterized by single-crystal and powder X-ray diffraction analysis, as well as IR and NMR spectroscopy. The symmetrical complexes 2-Cl and 3-Cl, where zinc atoms are located at a two-fold axis, do not exhibit photophysical properties, unlike their asymmetrical analogs 2-NO3 and 3-NO3 with the same complex cation. Asymmetrical pentacoordinated 1-Cl and hexacoordinated 1-NO3 complexes exhibit photophysical properties. An admixture of allowed intra-ligand (1IL) and chloro (X)-to-ligand charge-transfer (1XLCT) electronic transitions is responsible for the fluorescence of the 1-Cl complex. The origin of the emission of the 1-NO3 complex is ascribed to an admixture of 3IL and ligand-to-ligand charge-transfer (3LLCT) forbidden electronic transitions, while for 3-NO3 most electronic excitations are of LLCT character. The thermal stability of the complexes is in accord with the strength of respective intermolecular interactions. The antiproliferative activity of the complexes was in the nanomolar range on some of the investigated cancer cell lines. Contrary to the increase of antiproliferative activity of the complexes in comparison to the free ligands in cancer cell lines, an acute toxicity determined in the brine shrimp assay follows the opposite trend. The overall results suggest that Zn(II) thiazoyl–hydrazone complexes have considerable potential as multifunctional materials.
T2  - CrystEngComm
T1  - Zn(II) complexes with thiazolyl–hydrazones: structure, intermolecular interactions, photophysical properties, computational study and anticancer activity
IS  - 29
DO  - 10.1039/D2CE00443G
ER  - 
@article{
author = "Araškov, Jovana and Višnjevac, Aleksandar and Popović, Jasminka and Blagojević, Vladimir A. and Fernandes, Henrique S. and Sousa, Sérgio F. and Novaković, Irena T. and Padrón, José M. and Holló, Berta Barta and Monge, Miguel and Rodríguez-Castillo, María and López-de-Luzuriaga, José M. and Filipović, Nenad R. and Todorović, Tamara",
year = "2022",
abstract = "Earth-abundant, cheap and non-toxic zinc-based coordination compounds are drawing research attention as promising candidates for various applications, such as photoluminescent materials and anticancer agents. In this paper we report six zinc complexes (1–3-NO3 and 1–3-Cl) with pyridyl-based thiazolyl–hydrazone ligands, which differ in the nature of substituents at the ligands' periphery, anion type, and geometry around the metal ion. The complexes were characterized by single-crystal and powder X-ray diffraction analysis, as well as IR and NMR spectroscopy. The symmetrical complexes 2-Cl and 3-Cl, where zinc atoms are located at a two-fold axis, do not exhibit photophysical properties, unlike their asymmetrical analogs 2-NO3 and 3-NO3 with the same complex cation. Asymmetrical pentacoordinated 1-Cl and hexacoordinated 1-NO3 complexes exhibit photophysical properties. An admixture of allowed intra-ligand (1IL) and chloro (X)-to-ligand charge-transfer (1XLCT) electronic transitions is responsible for the fluorescence of the 1-Cl complex. The origin of the emission of the 1-NO3 complex is ascribed to an admixture of 3IL and ligand-to-ligand charge-transfer (3LLCT) forbidden electronic transitions, while for 3-NO3 most electronic excitations are of LLCT character. The thermal stability of the complexes is in accord with the strength of respective intermolecular interactions. The antiproliferative activity of the complexes was in the nanomolar range on some of the investigated cancer cell lines. Contrary to the increase of antiproliferative activity of the complexes in comparison to the free ligands in cancer cell lines, an acute toxicity determined in the brine shrimp assay follows the opposite trend. The overall results suggest that Zn(II) thiazoyl–hydrazone complexes have considerable potential as multifunctional materials.",
journal = "CrystEngComm",
title = "Zn(II) complexes with thiazolyl–hydrazones: structure, intermolecular interactions, photophysical properties, computational study and anticancer activity",
number = "29",
doi = "10.1039/D2CE00443G"
}
Araškov, J., Višnjevac, A., Popović, J., Blagojević, V. A., Fernandes, H. S., Sousa, S. F., Novaković, I. T., Padrón, J. M., Holló, B. B., Monge, M., Rodríguez-Castillo, M., López-de-Luzuriaga, J. M., Filipović, N. R.,& Todorović, T.. (2022). Zn(II) complexes with thiazolyl–hydrazones: structure, intermolecular interactions, photophysical properties, computational study and anticancer activity. in CrystEngComm(29).
https://doi.org/10.1039/D2CE00443G
Araškov J, Višnjevac A, Popović J, Blagojević VA, Fernandes HS, Sousa SF, Novaković IT, Padrón JM, Holló BB, Monge M, Rodríguez-Castillo M, López-de-Luzuriaga JM, Filipović NR, Todorović T. Zn(II) complexes with thiazolyl–hydrazones: structure, intermolecular interactions, photophysical properties, computational study and anticancer activity. in CrystEngComm. 2022;(29).
doi:10.1039/D2CE00443G .
Araškov, Jovana, Višnjevac, Aleksandar, Popović, Jasminka, Blagojević, Vladimir A., Fernandes, Henrique S., Sousa, Sérgio F., Novaković, Irena T., Padrón, José M., Holló, Berta Barta, Monge, Miguel, Rodríguez-Castillo, María, López-de-Luzuriaga, José M., Filipović, Nenad R., Todorović, Tamara, "Zn(II) complexes with thiazolyl–hydrazones: structure, intermolecular interactions, photophysical properties, computational study and anticancer activity" in CrystEngComm, no. 29 (2022),
https://doi.org/10.1039/D2CE00443G . .
6
7
7
5

Study of the anticancer potential of Cd complexes of selenazoyl-hydrazones and their sulfur isosters

Marković, Sanja B.; Maciejewska, Natalia; Olszewski, Mateusz; Višnjevac, Aleksandar; Puerta, Adrián; Padrón, José M.; Novaković, Irena T.; Kojić, Snežana; Fernandes, Henrique S.; Sousa, Sérgio F.; Ramotowska, Sandra; Chylewska, Agnieszka; Makowski, Mariusz; Todorović, Tamara; Filipović, Nenad R.

(Elsevier, 2022)

TY  - JOUR
AU  - Marković, Sanja B.
AU  - Maciejewska, Natalia
AU  - Olszewski, Mateusz
AU  - Višnjevac, Aleksandar
AU  - Puerta, Adrián
AU  - Padrón, José M.
AU  - Novaković, Irena T.
AU  - Kojić, Snežana
AU  - Fernandes, Henrique S.
AU  - Sousa, Sérgio F.
AU  - Ramotowska, Sandra
AU  - Chylewska, Agnieszka
AU  - Makowski, Mariusz
AU  - Todorović, Tamara
AU  - Filipović, Nenad R.
PY  - 2022
UR  - https://www.sciencedirect.com/science/article/pii/S0223523422003518
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5209
AB  - The biological activity of Cd compounds has been investigated scarce since Cd has been recognized as a human carcinogen. However, the toxicity of cadmium is comparable to the toxicity of noble metals such as Pt and Pd. The paradigm of metal toxicity has been challenged suggesting that metal toxicity is not a constant property, yet it depends on many factors like the presence of appropriate ligands. Studies on anticancer activity of cadmium complexes showed that the complexation of various ligands resulted in complexes that showed better activities than approved drugs. In the present study, cadmium complexes with biologically potent thiazolyl/selenazoyl-hydrazone ligands have been prepared, and tested for their activity against different types of tumor cell models. The complexation of ligands with Cd(II) resulted in a synergistic effect. The antiproliferative activity study revealed that all complexes are more active compared to 5-fluorouracil and cisplatin. The mechanism of tumor cell growth inhibition reveal that selenium-based compounds induce cell death in T-47D (gland carcinoma) cells through apoptosis via caspase-3/7 activation. Additionally, their pro-apoptotic effect was stronger compared to etoposide and cisplatin. Nuclease activity, detected by gel electrophoresis, may be the possible mechanism of anticancer action of investigated complexes.
PB  - Elsevier
T2  - European Journal of Medicinal Chemistry
T1  - Study of the anticancer potential of Cd complexes of selenazoyl-hydrazones and their sulfur isosters
VL  - 238
SP  - 114449
DO  - 10.1016/j.ejmech.2022.114449
ER  - 
@article{
author = "Marković, Sanja B. and Maciejewska, Natalia and Olszewski, Mateusz and Višnjevac, Aleksandar and Puerta, Adrián and Padrón, José M. and Novaković, Irena T. and Kojić, Snežana and Fernandes, Henrique S. and Sousa, Sérgio F. and Ramotowska, Sandra and Chylewska, Agnieszka and Makowski, Mariusz and Todorović, Tamara and Filipović, Nenad R.",
year = "2022",
abstract = "The biological activity of Cd compounds has been investigated scarce since Cd has been recognized as a human carcinogen. However, the toxicity of cadmium is comparable to the toxicity of noble metals such as Pt and Pd. The paradigm of metal toxicity has been challenged suggesting that metal toxicity is not a constant property, yet it depends on many factors like the presence of appropriate ligands. Studies on anticancer activity of cadmium complexes showed that the complexation of various ligands resulted in complexes that showed better activities than approved drugs. In the present study, cadmium complexes with biologically potent thiazolyl/selenazoyl-hydrazone ligands have been prepared, and tested for their activity against different types of tumor cell models. The complexation of ligands with Cd(II) resulted in a synergistic effect. The antiproliferative activity study revealed that all complexes are more active compared to 5-fluorouracil and cisplatin. The mechanism of tumor cell growth inhibition reveal that selenium-based compounds induce cell death in T-47D (gland carcinoma) cells through apoptosis via caspase-3/7 activation. Additionally, their pro-apoptotic effect was stronger compared to etoposide and cisplatin. Nuclease activity, detected by gel electrophoresis, may be the possible mechanism of anticancer action of investigated complexes.",
publisher = "Elsevier",
journal = "European Journal of Medicinal Chemistry",
title = "Study of the anticancer potential of Cd complexes of selenazoyl-hydrazones and their sulfur isosters",
volume = "238",
pages = "114449",
doi = "10.1016/j.ejmech.2022.114449"
}
Marković, S. B., Maciejewska, N., Olszewski, M., Višnjevac, A., Puerta, A., Padrón, J. M., Novaković, I. T., Kojić, S., Fernandes, H. S., Sousa, S. F., Ramotowska, S., Chylewska, A., Makowski, M., Todorović, T.,& Filipović, N. R.. (2022). Study of the anticancer potential of Cd complexes of selenazoyl-hydrazones and their sulfur isosters. in European Journal of Medicinal Chemistry
Elsevier., 238, 114449.
https://doi.org/10.1016/j.ejmech.2022.114449
Marković SB, Maciejewska N, Olszewski M, Višnjevac A, Puerta A, Padrón JM, Novaković IT, Kojić S, Fernandes HS, Sousa SF, Ramotowska S, Chylewska A, Makowski M, Todorović T, Filipović NR. Study of the anticancer potential of Cd complexes of selenazoyl-hydrazones and their sulfur isosters. in European Journal of Medicinal Chemistry. 2022;238:114449.
doi:10.1016/j.ejmech.2022.114449 .
Marković, Sanja B., Maciejewska, Natalia, Olszewski, Mateusz, Višnjevac, Aleksandar, Puerta, Adrián, Padrón, José M., Novaković, Irena T., Kojić, Snežana, Fernandes, Henrique S., Sousa, Sérgio F., Ramotowska, Sandra, Chylewska, Agnieszka, Makowski, Mariusz, Todorović, Tamara, Filipović, Nenad R., "Study of the anticancer potential of Cd complexes of selenazoyl-hydrazones and their sulfur isosters" in European Journal of Medicinal Chemistry, 238 (2022):114449,
https://doi.org/10.1016/j.ejmech.2022.114449 . .
11
10
1
8
6