Janković-Častvan, Ivona

Link to this page

Authority KeyName Variants
29016eaf-27a4-4c9d-a373-a63e9816228d
  • Janković-Častvan, Ivona (3)
Projects

Author's Bibliography

Synthesis and characterization of luminescent Cu2+–doped fluorapatite nanocrystals as potential broad–spectrum antimicrobial agents

Milojkov, Dušan V.; Radosavljević-Mihajlović, Ana S.; Stanić, Vojislav Đ.; Nastasijević, Branislav J.; Radotić, Ksenija; Janković-Častvan, Ivona; Živković-Radovanović, Vukosava

(2023)

TY  - JOUR
AU  - Milojkov, Dušan V.
AU  - Radosavljević-Mihajlović, Ana S.
AU  - Stanić, Vojislav Đ.
AU  - Nastasijević, Branislav J.
AU  - Radotić, Ksenija
AU  - Janković-Častvan, Ivona
AU  - Živković-Radovanović, Vukosava
PY  - 2023
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/6057
AB  - Nanomaterials based on metal–doped fluorapatite (FAP) have attracted considerable interest as potential next–generation antimicrobial agents. In this study, Cu2+–doped FAP nanocrystals have been successfully synthesized by a neutralization method at room temperature. Their structural, optical, antimicrobial, and hemcompatible properties have been investigated. XRD, FTIR, FESEM, and N2 adsorption–desorption studies indicate the formation of single–phase FAP mesoporous nanopowders, composed of rod–like particles. TEM images confirmed the formation of nanorodes with a length of 60 nm and a width of about 18 nm. Rietveld analysis shows that the Cu2+ ions preferentially substitute Ca2 (6 h) sites in the hexagonal fluorapatite crystal structure. Fluorescence spectroscopy accompanied by MCR–ALS method confirms substitution of Cu2+ ions in FAP crystal lattice with extracting additional d–d band transition at green color from FAP broadband self–activated luminescence in violet–blue color. Antimicrobial studies conducted on Staphylococcus aureus, Escherichia coli and Micrococcus lysodeikticus showed that FAP nanopowder with the highest Cu2+ content have strong bacteriostatic action on Staphylococcus aureus bacterial strain in mediums containing nutrition matters. In addition, this sample in comparison to pure FAP achieved a high percentage of relative reduction of bacterial population for all three species, being >90% in most cases. Fungistatic action is noticed too, throwgh the slowing down mycelium growth of fungus Aspergillus niger, Aspergillus flavus and Penicillium roqueforti and reduction of sporulation of Aspergillus niger species. Cu2+–doped FAP nanocrystals shows a synergistic antimicrobial effect with Cu2+ and F− ions. Concerning the potential biomedical applications, the hemolysis ratios of the Cu2+–doped FAP samples were below 5%. The obtained results pointed out the possible use of the synthesized nanocrystals as broad–spectrum antimicrobial agents for various biomedical and health care preparations.
T2  - Journal of Photochemistry and Photobiology B: Biology
T1  - Synthesis and characterization of luminescent Cu2+–doped fluorapatite nanocrystals as potential broad–spectrum antimicrobial agents
VL  - 239
SP  - 112649
DO  - 10.1016/j.jphotobiol.2023.112649
ER  - 
@article{
author = "Milojkov, Dušan V. and Radosavljević-Mihajlović, Ana S. and Stanić, Vojislav Đ. and Nastasijević, Branislav J. and Radotić, Ksenija and Janković-Častvan, Ivona and Živković-Radovanović, Vukosava",
year = "2023",
abstract = "Nanomaterials based on metal–doped fluorapatite (FAP) have attracted considerable interest as potential next–generation antimicrobial agents. In this study, Cu2+–doped FAP nanocrystals have been successfully synthesized by a neutralization method at room temperature. Their structural, optical, antimicrobial, and hemcompatible properties have been investigated. XRD, FTIR, FESEM, and N2 adsorption–desorption studies indicate the formation of single–phase FAP mesoporous nanopowders, composed of rod–like particles. TEM images confirmed the formation of nanorodes with a length of 60 nm and a width of about 18 nm. Rietveld analysis shows that the Cu2+ ions preferentially substitute Ca2 (6 h) sites in the hexagonal fluorapatite crystal structure. Fluorescence spectroscopy accompanied by MCR–ALS method confirms substitution of Cu2+ ions in FAP crystal lattice with extracting additional d–d band transition at green color from FAP broadband self–activated luminescence in violet–blue color. Antimicrobial studies conducted on Staphylococcus aureus, Escherichia coli and Micrococcus lysodeikticus showed that FAP nanopowder with the highest Cu2+ content have strong bacteriostatic action on Staphylococcus aureus bacterial strain in mediums containing nutrition matters. In addition, this sample in comparison to pure FAP achieved a high percentage of relative reduction of bacterial population for all three species, being >90% in most cases. Fungistatic action is noticed too, throwgh the slowing down mycelium growth of fungus Aspergillus niger, Aspergillus flavus and Penicillium roqueforti and reduction of sporulation of Aspergillus niger species. Cu2+–doped FAP nanocrystals shows a synergistic antimicrobial effect with Cu2+ and F− ions. Concerning the potential biomedical applications, the hemolysis ratios of the Cu2+–doped FAP samples were below 5%. The obtained results pointed out the possible use of the synthesized nanocrystals as broad–spectrum antimicrobial agents for various biomedical and health care preparations.",
journal = "Journal of Photochemistry and Photobiology B: Biology",
title = "Synthesis and characterization of luminescent Cu2+–doped fluorapatite nanocrystals as potential broad–spectrum antimicrobial agents",
volume = "239",
pages = "112649",
doi = "10.1016/j.jphotobiol.2023.112649"
}
Milojkov, D. V., Radosavljević-Mihajlović, A. S., Stanić, V. Đ., Nastasijević, B. J., Radotić, K., Janković-Častvan, I.,& Živković-Radovanović, V.. (2023). Synthesis and characterization of luminescent Cu2+–doped fluorapatite nanocrystals as potential broad–spectrum antimicrobial agents. in Journal of Photochemistry and Photobiology B: Biology, 239, 112649.
https://doi.org/10.1016/j.jphotobiol.2023.112649
Milojkov DV, Radosavljević-Mihajlović AS, Stanić VĐ, Nastasijević BJ, Radotić K, Janković-Častvan I, Živković-Radovanović V. Synthesis and characterization of luminescent Cu2+–doped fluorapatite nanocrystals as potential broad–spectrum antimicrobial agents. in Journal of Photochemistry and Photobiology B: Biology. 2023;239:112649.
doi:10.1016/j.jphotobiol.2023.112649 .
Milojkov, Dušan V., Radosavljević-Mihajlović, Ana S., Stanić, Vojislav Đ., Nastasijević, Branislav J., Radotić, Ksenija, Janković-Častvan, Ivona, Živković-Radovanović, Vukosava, "Synthesis and characterization of luminescent Cu2+–doped fluorapatite nanocrystals as potential broad–spectrum antimicrobial agents" in Journal of Photochemistry and Photobiology B: Biology, 239 (2023):112649,
https://doi.org/10.1016/j.jphotobiol.2023.112649 . .
2
1
1

Sponge-like europium oxide from hollow carbon sphere as a template for an anode material for Reactive Blue 52 electrochemical degradation

Stanković, Dalibor; Kukuruzar, Andrej; Savić, Slađana D.; Ognjannović, Miloš; Janković-Častvan, Ivona; Roglić, Goran; Antić, Bratislav; Manojlović, Dragan D.; Dojčinović, Biljana P.

(Elsevier, 2021)

TY  - JOUR
AU  - Stanković, Dalibor
AU  - Kukuruzar, Andrej
AU  - Savić, Slađana D.
AU  - Ognjannović, Miloš
AU  - Janković-Častvan, Ivona
AU  - Roglić, Goran
AU  - Antić, Bratislav
AU  - Manojlović, Dragan D.
AU  - Dojčinović, Biljana P.
PY  - 2021
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/4934
AB  - The textile industry is one of the major pollutants of waterbodies with effluents high in biochemical and chemical oxygen demand values, high values of total dissolved solids, total suspended solids, and low dissolved oxygen values along with strong color. The existence of a successful method for its decontamination would be beneficial. In this work, we synthesized sponge-like europium oxide (Eu2O3) using a template-directed route from carbon hollow spheres, obtained from glucose as a carbon source. The material synthesis method was done in an aqueous environment, without using any organic solvents. Electrochemical properties of the synthesized material were investigated using cyclic voltammetry and electrical impedance spectroscopy, while morphological characterization was done using scanning electron microscopy and X-ray powder diffraction analysis. Eu2O3 were successfully immobilized at the surface of a screen-printed carbon electrode (Eu2O3/SPCE) using the drop-casting method. Finally, the prepared electrodes were tested toward the removal of Reactive Blue 52 (RB52) using electrochemical advanced oxidation processes (EAOPs). Important parameters, that is, the supporting electrolyte, its concentration, pH value, and the applied voltage, were optimized for RB52 degradation. The rate of removal was monitored spectrophotometrically and by high-performance liquid chromatography with a diode array detector (HPLC-DAD). It was found that the proposed approach reaches complete decolorization of the RB52 solution after a 60-min treatment, at pH 5.6 of KCl supporting electrolyte at a concentration of 0.05 M. Under optimal parameters, after 3 h of treatment, total organic carbon (TOC) was lowered by ~40%. The obtained results indicate that the proposed method may find potential application in EAOPs, considering electrode stability, durability, and efficiency and simplicity of the method.
PB  - Elsevier
T2  - Materials Chemistry and Physics
T1  - Sponge-like europium oxide from hollow carbon sphere as a template for an anode material for Reactive Blue 52 electrochemical degradation
VL  - 273
SP  - 125154
DO  - 10.1016/j.matchemphys.2021.125154
ER  - 
@article{
author = "Stanković, Dalibor and Kukuruzar, Andrej and Savić, Slađana D. and Ognjannović, Miloš and Janković-Častvan, Ivona and Roglić, Goran and Antić, Bratislav and Manojlović, Dragan D. and Dojčinović, Biljana P.",
year = "2021",
abstract = "The textile industry is one of the major pollutants of waterbodies with effluents high in biochemical and chemical oxygen demand values, high values of total dissolved solids, total suspended solids, and low dissolved oxygen values along with strong color. The existence of a successful method for its decontamination would be beneficial. In this work, we synthesized sponge-like europium oxide (Eu2O3) using a template-directed route from carbon hollow spheres, obtained from glucose as a carbon source. The material synthesis method was done in an aqueous environment, without using any organic solvents. Electrochemical properties of the synthesized material were investigated using cyclic voltammetry and electrical impedance spectroscopy, while morphological characterization was done using scanning electron microscopy and X-ray powder diffraction analysis. Eu2O3 were successfully immobilized at the surface of a screen-printed carbon electrode (Eu2O3/SPCE) using the drop-casting method. Finally, the prepared electrodes were tested toward the removal of Reactive Blue 52 (RB52) using electrochemical advanced oxidation processes (EAOPs). Important parameters, that is, the supporting electrolyte, its concentration, pH value, and the applied voltage, were optimized for RB52 degradation. The rate of removal was monitored spectrophotometrically and by high-performance liquid chromatography with a diode array detector (HPLC-DAD). It was found that the proposed approach reaches complete decolorization of the RB52 solution after a 60-min treatment, at pH 5.6 of KCl supporting electrolyte at a concentration of 0.05 M. Under optimal parameters, after 3 h of treatment, total organic carbon (TOC) was lowered by ~40%. The obtained results indicate that the proposed method may find potential application in EAOPs, considering electrode stability, durability, and efficiency and simplicity of the method.",
publisher = "Elsevier",
journal = "Materials Chemistry and Physics",
title = "Sponge-like europium oxide from hollow carbon sphere as a template for an anode material for Reactive Blue 52 electrochemical degradation",
volume = "273",
pages = "125154",
doi = "10.1016/j.matchemphys.2021.125154"
}
Stanković, D., Kukuruzar, A., Savić, S. D., Ognjannović, M., Janković-Častvan, I., Roglić, G., Antić, B., Manojlović, D. D.,& Dojčinović, B. P.. (2021). Sponge-like europium oxide from hollow carbon sphere as a template for an anode material for Reactive Blue 52 electrochemical degradation. in Materials Chemistry and Physics
Elsevier., 273, 125154.
https://doi.org/10.1016/j.matchemphys.2021.125154
Stanković D, Kukuruzar A, Savić SD, Ognjannović M, Janković-Častvan I, Roglić G, Antić B, Manojlović DD, Dojčinović BP. Sponge-like europium oxide from hollow carbon sphere as a template for an anode material for Reactive Blue 52 electrochemical degradation. in Materials Chemistry and Physics. 2021;273:125154.
doi:10.1016/j.matchemphys.2021.125154 .
Stanković, Dalibor, Kukuruzar, Andrej, Savić, Slađana D., Ognjannović, Miloš, Janković-Častvan, Ivona, Roglić, Goran, Antić, Bratislav, Manojlović, Dragan D., Dojčinović, Biljana P., "Sponge-like europium oxide from hollow carbon sphere as a template for an anode material for Reactive Blue 52 electrochemical degradation" in Materials Chemistry and Physics, 273 (2021):125154,
https://doi.org/10.1016/j.matchemphys.2021.125154 . .
1
3
2
3
3

Sponge-like europium oxide from hollow carbon sphere as a template for an anode material for Reactive Blue 52 electrochemical degradation

Stanković, Dalibor; Kukuruzar, Andrej; Savić, Slađana D.; Ognjannović, Miloš; Janković-Častvan, Ivona; Roglić, Goran; Antić, Bratislav; Manojlović, Dragan D.; Dojčinović, Biljana P.

(Elsevier, 2021)

TY  - JOUR
AU  - Stanković, Dalibor
AU  - Kukuruzar, Andrej
AU  - Savić, Slađana D.
AU  - Ognjannović, Miloš
AU  - Janković-Častvan, Ivona
AU  - Roglić, Goran
AU  - Antić, Bratislav
AU  - Manojlović, Dragan D.
AU  - Dojčinović, Biljana P.
PY  - 2021
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/4935
AB  - The textile industry is one of the major pollutants of waterbodies with effluents high in biochemical and chemical oxygen demand values, high values of total dissolved solids, total suspended solids, and low dissolved oxygen values along with strong color. The existence of a successful method for its decontamination would be beneficial. In this work, we synthesized sponge-like europium oxide (Eu2O3) using a template-directed route from carbon hollow spheres, obtained from glucose as a carbon source. The material synthesis method was done in an aqueous environment, without using any organic solvents. Electrochemical properties of the synthesized material were investigated using cyclic voltammetry and electrical impedance spectroscopy, while morphological characterization was done using scanning electron microscopy and X-ray powder diffraction analysis. Eu2O3 were successfully immobilized at the surface of a screen-printed carbon electrode (Eu2O3/SPCE) using the drop-casting method. Finally, the prepared electrodes were tested toward the removal of Reactive Blue 52 (RB52) using electrochemical advanced oxidation processes (EAOPs). Important parameters, that is, the supporting electrolyte, its concentration, pH value, and the applied voltage, were optimized for RB52 degradation. The rate of removal was monitored spectrophotometrically and by high-performance liquid chromatography with a diode array detector (HPLC-DAD). It was found that the proposed approach reaches complete decolorization of the RB52 solution after a 60-min treatment, at pH 5.6 of KCl supporting electrolyte at a concentration of 0.05 M. Under optimal parameters, after 3 h of treatment, total organic carbon (TOC) was lowered by ~40%. The obtained results indicate that the proposed method may find potential application in EAOPs, considering electrode stability, durability, and efficiency and simplicity of the method.
PB  - Elsevier
T2  - Materials Chemistry and Physics
T1  - Sponge-like europium oxide from hollow carbon sphere as a template for an anode material for Reactive Blue 52 electrochemical degradation
VL  - 273
SP  - 125154
DO  - 10.1016/j.matchemphys.2021.125154
ER  - 
@article{
author = "Stanković, Dalibor and Kukuruzar, Andrej and Savić, Slađana D. and Ognjannović, Miloš and Janković-Častvan, Ivona and Roglić, Goran and Antić, Bratislav and Manojlović, Dragan D. and Dojčinović, Biljana P.",
year = "2021",
abstract = "The textile industry is one of the major pollutants of waterbodies with effluents high in biochemical and chemical oxygen demand values, high values of total dissolved solids, total suspended solids, and low dissolved oxygen values along with strong color. The existence of a successful method for its decontamination would be beneficial. In this work, we synthesized sponge-like europium oxide (Eu2O3) using a template-directed route from carbon hollow spheres, obtained from glucose as a carbon source. The material synthesis method was done in an aqueous environment, without using any organic solvents. Electrochemical properties of the synthesized material were investigated using cyclic voltammetry and electrical impedance spectroscopy, while morphological characterization was done using scanning electron microscopy and X-ray powder diffraction analysis. Eu2O3 were successfully immobilized at the surface of a screen-printed carbon electrode (Eu2O3/SPCE) using the drop-casting method. Finally, the prepared electrodes were tested toward the removal of Reactive Blue 52 (RB52) using electrochemical advanced oxidation processes (EAOPs). Important parameters, that is, the supporting electrolyte, its concentration, pH value, and the applied voltage, were optimized for RB52 degradation. The rate of removal was monitored spectrophotometrically and by high-performance liquid chromatography with a diode array detector (HPLC-DAD). It was found that the proposed approach reaches complete decolorization of the RB52 solution after a 60-min treatment, at pH 5.6 of KCl supporting electrolyte at a concentration of 0.05 M. Under optimal parameters, after 3 h of treatment, total organic carbon (TOC) was lowered by ~40%. The obtained results indicate that the proposed method may find potential application in EAOPs, considering electrode stability, durability, and efficiency and simplicity of the method.",
publisher = "Elsevier",
journal = "Materials Chemistry and Physics",
title = "Sponge-like europium oxide from hollow carbon sphere as a template for an anode material for Reactive Blue 52 electrochemical degradation",
volume = "273",
pages = "125154",
doi = "10.1016/j.matchemphys.2021.125154"
}
Stanković, D., Kukuruzar, A., Savić, S. D., Ognjannović, M., Janković-Častvan, I., Roglić, G., Antić, B., Manojlović, D. D.,& Dojčinović, B. P.. (2021). Sponge-like europium oxide from hollow carbon sphere as a template for an anode material for Reactive Blue 52 electrochemical degradation. in Materials Chemistry and Physics
Elsevier., 273, 125154.
https://doi.org/10.1016/j.matchemphys.2021.125154
Stanković D, Kukuruzar A, Savić SD, Ognjannović M, Janković-Častvan I, Roglić G, Antić B, Manojlović DD, Dojčinović BP. Sponge-like europium oxide from hollow carbon sphere as a template for an anode material for Reactive Blue 52 electrochemical degradation. in Materials Chemistry and Physics. 2021;273:125154.
doi:10.1016/j.matchemphys.2021.125154 .
Stanković, Dalibor, Kukuruzar, Andrej, Savić, Slađana D., Ognjannović, Miloš, Janković-Častvan, Ivona, Roglić, Goran, Antić, Bratislav, Manojlović, Dragan D., Dojčinović, Biljana P., "Sponge-like europium oxide from hollow carbon sphere as a template for an anode material for Reactive Blue 52 electrochemical degradation" in Materials Chemistry and Physics, 273 (2021):125154,
https://doi.org/10.1016/j.matchemphys.2021.125154 . .
1
3
2
3
3