Stanić, Marina

Link to this page

Authority KeyName Variants
orcid::0000-0002-2779-7932
  • Stanić, Marina (13)

Author's Bibliography

Mechanisms of detoxification of high copper concentrations by the microalga Chlorella sorokiniana

Vojvodić, Snežana; Stanić, Marina; Zechmann, Bernd; Dučić, Tanja; Žižić, Milan; Dimitrijević, Milena; Danilović Luković, Jelena; Milenković, Milica R.; Pittman, Jon K.; Spasojević, Ivan

(Portland Press, 2020)

TY  - JOUR
AU  - Vojvodić, Snežana
AU  - Stanić, Marina
AU  - Zechmann, Bernd
AU  - Dučić, Tanja
AU  - Žižić, Milan
AU  - Dimitrijević, Milena
AU  - Danilović Luković, Jelena
AU  - Milenković, Milica R.
AU  - Pittman, Jon K.
AU  - Spasojević, Ivan
PY  - 2020
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4263
AB  - Microalgae have evolved mechanisms to respond to changes in copper ion availability, which are very important for normal cellular function, to tolerate metal pollution of aquatic ecosystems, and for modulation of copper bioavailability and toxicity to other organisms. Knowledge and application of these mechanisms will benefit the use of microalgae in wastewater processing and biomass production, and the use of copper compounds in the suppression of harmful algal blooms. Here, using electron microscopy, synchrotron radiation-based Fourier transform infrared spectroscopy, electron paramagnetic resonance spectroscopy, and X-ray absorption fine structure spectroscopy, we show that the microalga Chlorella sorokiniana responds promptly to Cu2+ at high non-toxic concentration, by mucilage release, alterations in the architecture of the outer cell wall layer and lipid structures, and polyphosphate accumulation within mucilage matrix. The main route of copper detoxification is by Cu2+ coordination to polyphosphates in penta-coordinated geometry. The sequestrated Cu2+ was accessible and could be released by extracellular chelating agents. Finally, the reduction in Cu2+ to Cu1+ appears also to take place. These findings reveal the biochemical basis of the capacity of microalgae to adapt to high external copper concentrations and to serve as both, sinks and pools of environmental copper.
PB  - Portland Press
T2  - The Biochemical Journal
T1  - Mechanisms of detoxification of high copper concentrations by the microalga Chlorella sorokiniana
VL  - 477
IS  - 19
SP  - 3729
EP  - 3741
DO  - 10.1042/BCJ20200600
ER  - 
@article{
author = "Vojvodić, Snežana and Stanić, Marina and Zechmann, Bernd and Dučić, Tanja and Žižić, Milan and Dimitrijević, Milena and Danilović Luković, Jelena and Milenković, Milica R. and Pittman, Jon K. and Spasojević, Ivan",
year = "2020",
abstract = "Microalgae have evolved mechanisms to respond to changes in copper ion availability, which are very important for normal cellular function, to tolerate metal pollution of aquatic ecosystems, and for modulation of copper bioavailability and toxicity to other organisms. Knowledge and application of these mechanisms will benefit the use of microalgae in wastewater processing and biomass production, and the use of copper compounds in the suppression of harmful algal blooms. Here, using electron microscopy, synchrotron radiation-based Fourier transform infrared spectroscopy, electron paramagnetic resonance spectroscopy, and X-ray absorption fine structure spectroscopy, we show that the microalga Chlorella sorokiniana responds promptly to Cu2+ at high non-toxic concentration, by mucilage release, alterations in the architecture of the outer cell wall layer and lipid structures, and polyphosphate accumulation within mucilage matrix. The main route of copper detoxification is by Cu2+ coordination to polyphosphates in penta-coordinated geometry. The sequestrated Cu2+ was accessible and could be released by extracellular chelating agents. Finally, the reduction in Cu2+ to Cu1+ appears also to take place. These findings reveal the biochemical basis of the capacity of microalgae to adapt to high external copper concentrations and to serve as both, sinks and pools of environmental copper.",
publisher = "Portland Press",
journal = "The Biochemical Journal",
title = "Mechanisms of detoxification of high copper concentrations by the microalga Chlorella sorokiniana",
volume = "477",
number = "19",
pages = "3729-3741",
doi = "10.1042/BCJ20200600"
}
Vojvodić, S., Stanić, M., Zechmann, B., Dučić, T., Žižić, M., Dimitrijević, M., Danilović Luković, J., Milenković, M. R., Pittman, J. K.,& Spasojević, I.. (2020). Mechanisms of detoxification of high copper concentrations by the microalga Chlorella sorokiniana. in The Biochemical Journal
Portland Press., 477(19), 3729-3741.
https://doi.org/10.1042/BCJ20200600
Vojvodić S, Stanić M, Zechmann B, Dučić T, Žižić M, Dimitrijević M, Danilović Luković J, Milenković MR, Pittman JK, Spasojević I. Mechanisms of detoxification of high copper concentrations by the microalga Chlorella sorokiniana. in The Biochemical Journal. 2020;477(19):3729-3741.
doi:10.1042/BCJ20200600 .
Vojvodić, Snežana, Stanić, Marina, Zechmann, Bernd, Dučić, Tanja, Žižić, Milan, Dimitrijević, Milena, Danilović Luković, Jelena, Milenković, Milica R., Pittman, Jon K., Spasojević, Ivan, "Mechanisms of detoxification of high copper concentrations by the microalga Chlorella sorokiniana" in The Biochemical Journal, 477, no. 19 (2020):3729-3741,
https://doi.org/10.1042/BCJ20200600 . .
4
4
4

The effects of ionizing radiation on the structure and antioxidative and metal-binding capacity of the cell wall of microalga Chlorella sorokiniana

Danilović Luković, Jelena; Zechmann, Bernd; Jevtović, Mima; Bogdanović Pristov, Jelena; Stanić, Marina; Marco Lizzul, Alessandro; Pittman, Jon K.; Spasojević, Ivan

(Elsevier, 2020)

TY  - JOUR
AU  - Danilović Luković, Jelena
AU  - Zechmann, Bernd
AU  - Jevtović, Mima
AU  - Bogdanović Pristov, Jelena
AU  - Stanić, Marina
AU  - Marco Lizzul, Alessandro
AU  - Pittman, Jon K.
AU  - Spasojević, Ivan
PY  - 2020
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4241
AB  - The impact of ionizing radiation on microorganisms such as microalgae is a topic of increasing importance for understanding the dynamics of aquatic ecosystems in response to environmental radiation, and for the development of efficient approaches for bioremediation of mining and nuclear power plants wastewaters. Currently, nothing is known about the effects of ionizing radiation on the microalgal cell wall, which represents the first line of defence against chemical and physical environmental stresses. Using various microscopy, spectroscopy and biochemical techniques we show that the unicellular alga Chlorella sorokiniana elicits a fast response to ionizing radiation. Within one day after irradiation with doses of 1–5 Gy, the fibrilar layer of the cell wall became thicker, the fraction of uronic acids was higher, and the capacity to remove the main reactive product of water radiolysis increased. In addition, the isolated cell wall fraction showed significant binding capacity for Cu2+, Mn2+, and Cr3+. The irradiation further increased the binding capacity for Cu2+, which appears to be mainly bound to glucosamine moieties within a chitosan-like polymer in the outer rigid layer of the wall. These results imply that the cell wall represents a dynamic structure that is involved in the protective response of microalgae to ionizing radiation. It appears that microalgae may exhibit a significant control of metal mobility in aquatic ecosystems via biosorption by the cell wall matrix.
PB  - Elsevier
T2  - Chemosphere
T1  - The effects of ionizing radiation on the structure and antioxidative and metal-binding capacity of the cell wall of microalga Chlorella sorokiniana
VL  - 260
SP  - 127553
DO  - 10.1016/j.chemosphere.2020.127553
ER  - 
@article{
author = "Danilović Luković, Jelena and Zechmann, Bernd and Jevtović, Mima and Bogdanović Pristov, Jelena and Stanić, Marina and Marco Lizzul, Alessandro and Pittman, Jon K. and Spasojević, Ivan",
year = "2020",
abstract = "The impact of ionizing radiation on microorganisms such as microalgae is a topic of increasing importance for understanding the dynamics of aquatic ecosystems in response to environmental radiation, and for the development of efficient approaches for bioremediation of mining and nuclear power plants wastewaters. Currently, nothing is known about the effects of ionizing radiation on the microalgal cell wall, which represents the first line of defence against chemical and physical environmental stresses. Using various microscopy, spectroscopy and biochemical techniques we show that the unicellular alga Chlorella sorokiniana elicits a fast response to ionizing radiation. Within one day after irradiation with doses of 1–5 Gy, the fibrilar layer of the cell wall became thicker, the fraction of uronic acids was higher, and the capacity to remove the main reactive product of water radiolysis increased. In addition, the isolated cell wall fraction showed significant binding capacity for Cu2+, Mn2+, and Cr3+. The irradiation further increased the binding capacity for Cu2+, which appears to be mainly bound to glucosamine moieties within a chitosan-like polymer in the outer rigid layer of the wall. These results imply that the cell wall represents a dynamic structure that is involved in the protective response of microalgae to ionizing radiation. It appears that microalgae may exhibit a significant control of metal mobility in aquatic ecosystems via biosorption by the cell wall matrix.",
publisher = "Elsevier",
journal = "Chemosphere",
title = "The effects of ionizing radiation on the structure and antioxidative and metal-binding capacity of the cell wall of microalga Chlorella sorokiniana",
volume = "260",
pages = "127553",
doi = "10.1016/j.chemosphere.2020.127553"
}
Danilović Luković, J., Zechmann, B., Jevtović, M., Bogdanović Pristov, J., Stanić, M., Marco Lizzul, A., Pittman, J. K.,& Spasojević, I.. (2020). The effects of ionizing radiation on the structure and antioxidative and metal-binding capacity of the cell wall of microalga Chlorella sorokiniana. in Chemosphere
Elsevier., 260, 127553.
https://doi.org/10.1016/j.chemosphere.2020.127553
Danilović Luković J, Zechmann B, Jevtović M, Bogdanović Pristov J, Stanić M, Marco Lizzul A, Pittman JK, Spasojević I. The effects of ionizing radiation on the structure and antioxidative and metal-binding capacity of the cell wall of microalga Chlorella sorokiniana. in Chemosphere. 2020;260:127553.
doi:10.1016/j.chemosphere.2020.127553 .
Danilović Luković, Jelena, Zechmann, Bernd, Jevtović, Mima, Bogdanović Pristov, Jelena, Stanić, Marina, Marco Lizzul, Alessandro, Pittman, Jon K., Spasojević, Ivan, "The effects of ionizing radiation on the structure and antioxidative and metal-binding capacity of the cell wall of microalga Chlorella sorokiniana" in Chemosphere, 260 (2020):127553,
https://doi.org/10.1016/j.chemosphere.2020.127553 . .
1
1

Biliverdin-copper complex at physiological pH

Dimitrijević, Milena S.; Bogdanović Pristov, Jelena; Žižić, Milan; Stanković, Dalibor; Bajuk-Bogdanović, Danica; Stanić, Marina; Spasić, Snežana; Hagen, Wilfred; Spasojević, Ivan

(2019)

TY  - JOUR
AU  - Dimitrijević, Milena S.
AU  - Bogdanović Pristov, Jelena
AU  - Žižić, Milan
AU  - Stanković, Dalibor
AU  - Bajuk-Bogdanović, Danica
AU  - Stanić, Marina
AU  - Spasić, Snežana
AU  - Hagen, Wilfred
AU  - Spasojević, Ivan
PY  - 2019
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3066
AB  - Biliverdin (BV), a product of heme catabolism, is known to interact with transition metals, but the details of such interactions under physiological conditions are scarce. Herein, we examined coordinate/redox interactions of BV with Cu2+ in phosphate buffer at pH 7.4, using spectrophotometry, HESI-MS, Raman spectroscopy, 1 H NMR, EPR, fluorimetry, and electrochemical methods. BV formed a stable coordination complex with copper in 1 : 1 stoichiometry. The structure of BV was more planar and energetically stable in the complex. The complex showed strong paramagnetic effects that were attributed to an unpaired delocalized e−. The delocalized electron may come from BV or Cu2+, so the complex is formally composed either of BV radical cation and Cu1+ or of BV radical anion and Cu3+. The complex underwent oxidation only in the presence of both O2 and an excess of Cu2+, or a strong oxidizing agent, and it was resistant to reducing agents. The biological effects of the stable BV metallocomplex containing a delocalized unpaired electron should be further examined, and may provide an answer to the long-standing question of high energy investment in the catabolism of BV, which represents a relatively harmless molecule per se.
T2  - Dalton Transactions
T1  - Biliverdin-copper complex at physiological pH
VL  - 48
IS  - 18
SP  - 6061
EP  - 6070
DO  - 10.1039/c8dt04724c
ER  - 
@article{
author = "Dimitrijević, Milena S. and Bogdanović Pristov, Jelena and Žižić, Milan and Stanković, Dalibor and Bajuk-Bogdanović, Danica and Stanić, Marina and Spasić, Snežana and Hagen, Wilfred and Spasojević, Ivan",
year = "2019",
abstract = "Biliverdin (BV), a product of heme catabolism, is known to interact with transition metals, but the details of such interactions under physiological conditions are scarce. Herein, we examined coordinate/redox interactions of BV with Cu2+ in phosphate buffer at pH 7.4, using spectrophotometry, HESI-MS, Raman spectroscopy, 1 H NMR, EPR, fluorimetry, and electrochemical methods. BV formed a stable coordination complex with copper in 1 : 1 stoichiometry. The structure of BV was more planar and energetically stable in the complex. The complex showed strong paramagnetic effects that were attributed to an unpaired delocalized e−. The delocalized electron may come from BV or Cu2+, so the complex is formally composed either of BV radical cation and Cu1+ or of BV radical anion and Cu3+. The complex underwent oxidation only in the presence of both O2 and an excess of Cu2+, or a strong oxidizing agent, and it was resistant to reducing agents. The biological effects of the stable BV metallocomplex containing a delocalized unpaired electron should be further examined, and may provide an answer to the long-standing question of high energy investment in the catabolism of BV, which represents a relatively harmless molecule per se.",
journal = "Dalton Transactions",
title = "Biliverdin-copper complex at physiological pH",
volume = "48",
number = "18",
pages = "6061-6070",
doi = "10.1039/c8dt04724c"
}
Dimitrijević, M. S., Bogdanović Pristov, J., Žižić, M., Stanković, D., Bajuk-Bogdanović, D., Stanić, M., Spasić, S., Hagen, W.,& Spasojević, I.. (2019). Biliverdin-copper complex at physiological pH. in Dalton Transactions, 48(18), 6061-6070.
https://doi.org/10.1039/c8dt04724c
Dimitrijević MS, Bogdanović Pristov J, Žižić M, Stanković D, Bajuk-Bogdanović D, Stanić M, Spasić S, Hagen W, Spasojević I. Biliverdin-copper complex at physiological pH. in Dalton Transactions. 2019;48(18):6061-6070.
doi:10.1039/c8dt04724c .
Dimitrijević, Milena S., Bogdanović Pristov, Jelena, Žižić, Milan, Stanković, Dalibor, Bajuk-Bogdanović, Danica, Stanić, Marina, Spasić, Snežana, Hagen, Wilfred, Spasojević, Ivan, "Biliverdin-copper complex at physiological pH" in Dalton Transactions, 48, no. 18 (2019):6061-6070,
https://doi.org/10.1039/c8dt04724c . .
7
6
6

Biliverdin-copper complex at physiological pH

Dimitrijević, Milena S.; Bogdanović Pristov, Jelena; Žižić, Milan; Stanković, Dalibor; Bajuk-Bogdanović, Danica; Stanić, Marina; Spasić, Snežana; Hagen, Wilfred; Spasojević, Ivan

(2019)

TY  - JOUR
AU  - Dimitrijević, Milena S.
AU  - Bogdanović Pristov, Jelena
AU  - Žižić, Milan
AU  - Stanković, Dalibor
AU  - Bajuk-Bogdanović, Danica
AU  - Stanić, Marina
AU  - Spasić, Snežana
AU  - Hagen, Wilfred
AU  - Spasojević, Ivan
PY  - 2019
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3068
AB  - Biliverdin (BV), a product of heme catabolism, is known to interact with transition metals, but the details of such interactions under physiological conditions are scarce. Herein, we examined coordinate/redox interactions of BV with Cu2+ in phosphate buffer at pH 7.4, using spectrophotometry, HESI-MS, Raman spectroscopy, 1 H NMR, EPR, fluorimetry, and electrochemical methods. BV formed a stable coordination complex with copper in 1 : 1 stoichiometry. The structure of BV was more planar and energetically stable in the complex. The complex showed strong paramagnetic effects that were attributed to an unpaired delocalized e−. The delocalized electron may come from BV or Cu2+, so the complex is formally composed either of BV radical cation and Cu1+ or of BV radical anion and Cu3+. The complex underwent oxidation only in the presence of both O2 and an excess of Cu2+, or a strong oxidizing agent, and it was resistant to reducing agents. The biological effects of the stable BV metallocomplex containing a delocalized unpaired electron should be further examined, and may provide an answer to the long-standing question of high energy investment in the catabolism of BV, which represents a relatively harmless molecule per se.
T2  - Dalton Transactions
T1  - Biliverdin-copper complex at physiological pH
VL  - 48
IS  - 18
SP  - 6061
EP  - 6070
DO  - 10.1039/c8dt04724c
ER  - 
@article{
author = "Dimitrijević, Milena S. and Bogdanović Pristov, Jelena and Žižić, Milan and Stanković, Dalibor and Bajuk-Bogdanović, Danica and Stanić, Marina and Spasić, Snežana and Hagen, Wilfred and Spasojević, Ivan",
year = "2019",
abstract = "Biliverdin (BV), a product of heme catabolism, is known to interact with transition metals, but the details of such interactions under physiological conditions are scarce. Herein, we examined coordinate/redox interactions of BV with Cu2+ in phosphate buffer at pH 7.4, using spectrophotometry, HESI-MS, Raman spectroscopy, 1 H NMR, EPR, fluorimetry, and electrochemical methods. BV formed a stable coordination complex with copper in 1 : 1 stoichiometry. The structure of BV was more planar and energetically stable in the complex. The complex showed strong paramagnetic effects that were attributed to an unpaired delocalized e−. The delocalized electron may come from BV or Cu2+, so the complex is formally composed either of BV radical cation and Cu1+ or of BV radical anion and Cu3+. The complex underwent oxidation only in the presence of both O2 and an excess of Cu2+, or a strong oxidizing agent, and it was resistant to reducing agents. The biological effects of the stable BV metallocomplex containing a delocalized unpaired electron should be further examined, and may provide an answer to the long-standing question of high energy investment in the catabolism of BV, which represents a relatively harmless molecule per se.",
journal = "Dalton Transactions",
title = "Biliverdin-copper complex at physiological pH",
volume = "48",
number = "18",
pages = "6061-6070",
doi = "10.1039/c8dt04724c"
}
Dimitrijević, M. S., Bogdanović Pristov, J., Žižić, M., Stanković, D., Bajuk-Bogdanović, D., Stanić, M., Spasić, S., Hagen, W.,& Spasojević, I.. (2019). Biliverdin-copper complex at physiological pH. in Dalton Transactions, 48(18), 6061-6070.
https://doi.org/10.1039/c8dt04724c
Dimitrijević MS, Bogdanović Pristov J, Žižić M, Stanković D, Bajuk-Bogdanović D, Stanić M, Spasić S, Hagen W, Spasojević I. Biliverdin-copper complex at physiological pH. in Dalton Transactions. 2019;48(18):6061-6070.
doi:10.1039/c8dt04724c .
Dimitrijević, Milena S., Bogdanović Pristov, Jelena, Žižić, Milan, Stanković, Dalibor, Bajuk-Bogdanović, Danica, Stanić, Marina, Spasić, Snežana, Hagen, Wilfred, Spasojević, Ivan, "Biliverdin-copper complex at physiological pH" in Dalton Transactions, 48, no. 18 (2019):6061-6070,
https://doi.org/10.1039/c8dt04724c . .
7
6
6

Supplementary data for article: Dimitrijević, M. S.; Bogdanović Pristov, J.; Žižić, M.; Stanković, D. M.; Bajuk-Bogdanović, D.; Stanić, M.; Spasić, S.; Hagen, W.; Spasojević, I. Biliverdin-Copper Complex at Physiological PH. Dalton Transactions 2019, 48 (18), 6061–6070. https://doi.org/10.1039/c8dt04724c

Dimitrijević, Milena S.; Bogdanović Pristov, Jelena; Žižić, Milan; Stanković, Dalibor; Bajuk-Bogdanović, Danica; Stanić, Marina; Spasić, Snežana; Hagen, Wilfred; Spasojević, Ivan

(2019)

TY  - DATA
AU  - Dimitrijević, Milena S.
AU  - Bogdanović Pristov, Jelena
AU  - Žižić, Milan
AU  - Stanković, Dalibor
AU  - Bajuk-Bogdanović, Danica
AU  - Stanić, Marina
AU  - Spasić, Snežana
AU  - Hagen, Wilfred
AU  - Spasojević, Ivan
PY  - 2019
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3069
T2  - Dalton Transactions
T1  - Supplementary data for article:
Dimitrijević, M. S.; Bogdanović Pristov, J.; Žižić, M.; Stanković, D. M.; Bajuk-Bogdanović, D.; Stanić, M.; Spasić, S.; Hagen, W.; Spasojević, I. Biliverdin-Copper Complex at Physiological PH. Dalton Transactions 2019, 48 (18), 6061–6070. https://doi.org/10.1039/c8dt04724c
VL  - 48
IS  - 18
SP  - 6061
EP  - 6070
ER  - 
@misc{
author = "Dimitrijević, Milena S. and Bogdanović Pristov, Jelena and Žižić, Milan and Stanković, Dalibor and Bajuk-Bogdanović, Danica and Stanić, Marina and Spasić, Snežana and Hagen, Wilfred and Spasojević, Ivan",
year = "2019",
journal = "Dalton Transactions",
title = "Supplementary data for article:
Dimitrijević, M. S.; Bogdanović Pristov, J.; Žižić, M.; Stanković, D. M.; Bajuk-Bogdanović, D.; Stanić, M.; Spasić, S.; Hagen, W.; Spasojević, I. Biliverdin-Copper Complex at Physiological PH. Dalton Transactions 2019, 48 (18), 6061–6070. https://doi.org/10.1039/c8dt04724c",
volume = "48",
number = "18",
pages = "6061-6070"
}
Dimitrijević, M. S., Bogdanović Pristov, J., Žižić, M., Stanković, D., Bajuk-Bogdanović, D., Stanić, M., Spasić, S., Hagen, W.,& Spasojević, I.. (2019). Supplementary data for article:
Dimitrijević, M. S.; Bogdanović Pristov, J.; Žižić, M.; Stanković, D. M.; Bajuk-Bogdanović, D.; Stanić, M.; Spasić, S.; Hagen, W.; Spasojević, I. Biliverdin-Copper Complex at Physiological PH. Dalton Transactions 2019, 48 (18), 6061–6070. https://doi.org/10.1039/c8dt04724c. in Dalton Transactions, 48(18), 6061-6070.
Dimitrijević MS, Bogdanović Pristov J, Žižić M, Stanković D, Bajuk-Bogdanović D, Stanić M, Spasić S, Hagen W, Spasojević I. Supplementary data for article:
Dimitrijević, M. S.; Bogdanović Pristov, J.; Žižić, M.; Stanković, D. M.; Bajuk-Bogdanović, D.; Stanić, M.; Spasić, S.; Hagen, W.; Spasojević, I. Biliverdin-Copper Complex at Physiological PH. Dalton Transactions 2019, 48 (18), 6061–6070. https://doi.org/10.1039/c8dt04724c. in Dalton Transactions. 2019;48(18):6061-6070..
Dimitrijević, Milena S., Bogdanović Pristov, Jelena, Žižić, Milan, Stanković, Dalibor, Bajuk-Bogdanović, Danica, Stanić, Marina, Spasić, Snežana, Hagen, Wilfred, Spasojević, Ivan, "Supplementary data for article:
Dimitrijević, M. S.; Bogdanović Pristov, J.; Žižić, M.; Stanković, D. M.; Bajuk-Bogdanović, D.; Stanić, M.; Spasić, S.; Hagen, W.; Spasojević, I. Biliverdin-Copper Complex at Physiological PH. Dalton Transactions 2019, 48 (18), 6061–6070. https://doi.org/10.1039/c8dt04724c" in Dalton Transactions, 48, no. 18 (2019):6061-6070.

Supplementary data for the article: Korać, J.; Stanković, D. M.; Stanić, M.; Bajuk-Bogdanović, D.; Žižić, M.; Pristov, J. B.; Grgurić-Šipka, S.; Popović-Bijelić, A.; Spasojević, I. Coordinate and Redox Interactions of Epinephrine with Ferric and Ferrous Iron at Physiological PH. Scientific Reports 2018, 8 (1). https://doi.org/10.1038/s41598-018-21940-7

Korać, Jelena; Stanković, Dalibor; Stanić, Marina; Bajuk-Bogdanović, Danica; Žižić, Milan; Pristov-Bogdanović, Jelena; Grgurić-Šipka, Sanja; Popović-Bijelić, Ana; Spasojević, Ivan

(Nature Publishing Group, London, 2018)

TY  - DATA
AU  - Korać, Jelena
AU  - Stanković, Dalibor
AU  - Stanić, Marina
AU  - Bajuk-Bogdanović, Danica
AU  - Žižić, Milan
AU  - Pristov-Bogdanović, Jelena
AU  - Grgurić-Šipka, Sanja
AU  - Popović-Bijelić, Ana
AU  - Spasojević, Ivan
PY  - 2018
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3040
PB  - Nature Publishing Group, London
T2  - Scientific Reports
T1  - Supplementary data for the article: Korać, J.; Stanković, D. M.; Stanić, M.; Bajuk-Bogdanović, D.; Žižić, M.; Pristov, J. B.; Grgurić-Šipka, S.; Popović-Bijelić, A.; Spasojević, I. Coordinate and Redox Interactions of Epinephrine with Ferric and Ferrous Iron at Physiological PH. Scientific Reports 2018, 8 (1). https://doi.org/10.1038/s41598-018-21940-7
UR  - Kon_3428
ER  - 
@misc{
author = "Korać, Jelena and Stanković, Dalibor and Stanić, Marina and Bajuk-Bogdanović, Danica and Žižić, Milan and Pristov-Bogdanović, Jelena and Grgurić-Šipka, Sanja and Popović-Bijelić, Ana and Spasojević, Ivan",
year = "2018",
publisher = "Nature Publishing Group, London",
journal = "Scientific Reports",
title = "Supplementary data for the article: Korać, J.; Stanković, D. M.; Stanić, M.; Bajuk-Bogdanović, D.; Žižić, M.; Pristov, J. B.; Grgurić-Šipka, S.; Popović-Bijelić, A.; Spasojević, I. Coordinate and Redox Interactions of Epinephrine with Ferric and Ferrous Iron at Physiological PH. Scientific Reports 2018, 8 (1). https://doi.org/10.1038/s41598-018-21940-7",
url = "Kon_3428"
}
Korać, J., Stanković, D., Stanić, M., Bajuk-Bogdanović, D., Žižić, M., Pristov-Bogdanović, J., Grgurić-Šipka, S., Popović-Bijelić, A.,& Spasojević, I.. (2018). Supplementary data for the article: Korać, J.; Stanković, D. M.; Stanić, M.; Bajuk-Bogdanović, D.; Žižić, M.; Pristov, J. B.; Grgurić-Šipka, S.; Popović-Bijelić, A.; Spasojević, I. Coordinate and Redox Interactions of Epinephrine with Ferric and Ferrous Iron at Physiological PH. Scientific Reports 2018, 8 (1). https://doi.org/10.1038/s41598-018-21940-7. in Scientific Reports
Nature Publishing Group, London..
Kon_3428
Korać J, Stanković D, Stanić M, Bajuk-Bogdanović D, Žižić M, Pristov-Bogdanović J, Grgurić-Šipka S, Popović-Bijelić A, Spasojević I. Supplementary data for the article: Korać, J.; Stanković, D. M.; Stanić, M.; Bajuk-Bogdanović, D.; Žižić, M.; Pristov, J. B.; Grgurić-Šipka, S.; Popović-Bijelić, A.; Spasojević, I. Coordinate and Redox Interactions of Epinephrine with Ferric and Ferrous Iron at Physiological PH. Scientific Reports 2018, 8 (1). https://doi.org/10.1038/s41598-018-21940-7. in Scientific Reports. 2018;.
Kon_3428 .
Korać, Jelena, Stanković, Dalibor, Stanić, Marina, Bajuk-Bogdanović, Danica, Žižić, Milan, Pristov-Bogdanović, Jelena, Grgurić-Šipka, Sanja, Popović-Bijelić, Ana, Spasojević, Ivan, "Supplementary data for the article: Korać, J.; Stanković, D. M.; Stanić, M.; Bajuk-Bogdanović, D.; Žižić, M.; Pristov, J. B.; Grgurić-Šipka, S.; Popović-Bijelić, A.; Spasojević, I. Coordinate and Redox Interactions of Epinephrine with Ferric and Ferrous Iron at Physiological PH. Scientific Reports 2018, 8 (1). https://doi.org/10.1038/s41598-018-21940-7" in Scientific Reports (2018),
Kon_3428 .

Coordination and redox interactions of β-lactam antibiotics with Cu2+ in physiological settings and the impact on antibacterial activity

Božić, Bojana; Korać, Jelena; Stanković, Dalibor; Stanić, Marina; Romanović, Mima; Pristov-Bogdanović, Jelena; Spasić, Snežana; Popović-Bijelić, Ana; Spasojević, Ivan; Bajčetić, Milica

(Elsevier, 2018)

TY  - JOUR
AU  - Božić, Bojana
AU  - Korać, Jelena
AU  - Stanković, Dalibor
AU  - Stanić, Marina
AU  - Romanović, Mima
AU  - Pristov-Bogdanović, Jelena
AU  - Spasić, Snežana
AU  - Popović-Bijelić, Ana
AU  - Spasojević, Ivan
AU  - Bajčetić, Milica
PY  - 2018
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/349
AB  - An increase in the copper pool in body fluids has been related to a number of pathological conditions, including infections. Copper ions may affect antibiotics via the formation of coordination bonds and/or redox reactions. Herein, we analyzed the interactions of Cu2+ with eight β-lactam antibiotics using UV–Vis spectrophotometry, EPR spectroscopy, and electrochemical methods. Penicillin G did not show any detectable interactions with Cu2+. Ampicillin, amoxicillin and cephalexin formed stable colored complexes with octahedral coordination environment of Cu2+ with tetragonal distortion, and primary amine group as the site of coordinate bond formation. These β-lactams increased the solubility of Cu2+ in the phosphate buffer. Ceftazidime and Cu2+ formed a complex with a similar geometry and gave rise to an organic radical. Ceftriaxone-Cu2+ complex appears to exhibit different geometry. All complexes showed 1:1 stoichiometry. Cefaclor reduced Cu2+ to Cu1+ that further reacted with molecular oxygen to produce hydrogen peroxide. Finally, meropenem underwent degradation in the presence of copper. The analysis of activity against Escherichia coli and Staphylococcus aureus showed that the effects of meropenem, amoxicillin, ampicillin, and ceftriaxone were significantly hindered in the presence of copper ions. The interactions with copper ions should be taken into account regarding the problem of antibiotic resistance and in the selection of the most efficient antimicrobial therapy for patients with altered copper homeostasis. © 2018 Elsevier Inc.
PB  - Elsevier
T2  - Free Radical Biology and Medicine
T1  - Coordination and redox interactions of β-lactam antibiotics with Cu2+ in physiological settings and the impact on antibacterial activity
VL  - 129
SP  - 279
EP  - 285
DO  - 10.1016/j.freeradbiomed.2018.09.038
UR  - Kon_1320
ER  - 
@article{
author = "Božić, Bojana and Korać, Jelena and Stanković, Dalibor and Stanić, Marina and Romanović, Mima and Pristov-Bogdanović, Jelena and Spasić, Snežana and Popović-Bijelić, Ana and Spasojević, Ivan and Bajčetić, Milica",
year = "2018",
abstract = "An increase in the copper pool in body fluids has been related to a number of pathological conditions, including infections. Copper ions may affect antibiotics via the formation of coordination bonds and/or redox reactions. Herein, we analyzed the interactions of Cu2+ with eight β-lactam antibiotics using UV–Vis spectrophotometry, EPR spectroscopy, and electrochemical methods. Penicillin G did not show any detectable interactions with Cu2+. Ampicillin, amoxicillin and cephalexin formed stable colored complexes with octahedral coordination environment of Cu2+ with tetragonal distortion, and primary amine group as the site of coordinate bond formation. These β-lactams increased the solubility of Cu2+ in the phosphate buffer. Ceftazidime and Cu2+ formed a complex with a similar geometry and gave rise to an organic radical. Ceftriaxone-Cu2+ complex appears to exhibit different geometry. All complexes showed 1:1 stoichiometry. Cefaclor reduced Cu2+ to Cu1+ that further reacted with molecular oxygen to produce hydrogen peroxide. Finally, meropenem underwent degradation in the presence of copper. The analysis of activity against Escherichia coli and Staphylococcus aureus showed that the effects of meropenem, amoxicillin, ampicillin, and ceftriaxone were significantly hindered in the presence of copper ions. The interactions with copper ions should be taken into account regarding the problem of antibiotic resistance and in the selection of the most efficient antimicrobial therapy for patients with altered copper homeostasis. © 2018 Elsevier Inc.",
publisher = "Elsevier",
journal = "Free Radical Biology and Medicine",
title = "Coordination and redox interactions of β-lactam antibiotics with Cu2+ in physiological settings and the impact on antibacterial activity",
volume = "129",
pages = "279-285",
doi = "10.1016/j.freeradbiomed.2018.09.038",
url = "Kon_1320"
}
Božić, B., Korać, J., Stanković, D., Stanić, M., Romanović, M., Pristov-Bogdanović, J., Spasić, S., Popović-Bijelić, A., Spasojević, I.,& Bajčetić, M.. (2018). Coordination and redox interactions of β-lactam antibiotics with Cu2+ in physiological settings and the impact on antibacterial activity. in Free Radical Biology and Medicine
Elsevier., 129, 279-285.
https://doi.org/10.1016/j.freeradbiomed.2018.09.038
Kon_1320
Božić B, Korać J, Stanković D, Stanić M, Romanović M, Pristov-Bogdanović J, Spasić S, Popović-Bijelić A, Spasojević I, Bajčetić M. Coordination and redox interactions of β-lactam antibiotics with Cu2+ in physiological settings and the impact on antibacterial activity. in Free Radical Biology and Medicine. 2018;129:279-285.
doi:10.1016/j.freeradbiomed.2018.09.038
Kon_1320 .
Božić, Bojana, Korać, Jelena, Stanković, Dalibor, Stanić, Marina, Romanović, Mima, Pristov-Bogdanović, Jelena, Spasić, Snežana, Popović-Bijelić, Ana, Spasojević, Ivan, Bajčetić, Milica, "Coordination and redox interactions of β-lactam antibiotics with Cu2+ in physiological settings and the impact on antibacterial activity" in Free Radical Biology and Medicine, 129 (2018):279-285,
https://doi.org/10.1016/j.freeradbiomed.2018.09.038 .,
Kon_1320 .
1
4
2
4

Coordination and redox interactions of β-lactam antibiotics with Cu2+ in physiological settings and the impact on antibacterial activity

Božić, Bojana; Korać, Jelena; Stanković, Dalibor; Stanić, Marina; Romanović, Mima; Pristov-Bogdanović, Jelena; Spasić, Snežana; Popović-Bijelić, Ana; Spasojević, Ivan; Bajčetić, Milica

(Elsevier, 2018)

TY  - JOUR
AU  - Božić, Bojana
AU  - Korać, Jelena
AU  - Stanković, Dalibor
AU  - Stanić, Marina
AU  - Romanović, Mima
AU  - Pristov-Bogdanović, Jelena
AU  - Spasić, Snežana
AU  - Popović-Bijelić, Ana
AU  - Spasojević, Ivan
AU  - Bajčetić, Milica
PY  - 2018
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/2940
AB  - An increase in the copper pool in body fluids has been related to a number of pathological conditions, including infections. Copper ions may affect antibiotics via the formation of coordination bonds and/or redox reactions. Herein, we analyzed the interactions of Cu2+ with eight β-lactam antibiotics using UV–Vis spectrophotometry, EPR spectroscopy, and electrochemical methods. Penicillin G did not show any detectable interactions with Cu2+. Ampicillin, amoxicillin and cephalexin formed stable colored complexes with octahedral coordination environment of Cu2+ with tetragonal distortion, and primary amine group as the site of coordinate bond formation. These β-lactams increased the solubility of Cu2+ in the phosphate buffer. Ceftazidime and Cu2+ formed a complex with a similar geometry and gave rise to an organic radical. Ceftriaxone-Cu2+ complex appears to exhibit different geometry. All complexes showed 1:1 stoichiometry. Cefaclor reduced Cu2+ to Cu1+ that further reacted with molecular oxygen to produce hydrogen peroxide. Finally, meropenem underwent degradation in the presence of copper. The analysis of activity against Escherichia coli and Staphylococcus aureus showed that the effects of meropenem, amoxicillin, ampicillin, and ceftriaxone were significantly hindered in the presence of copper ions. The interactions with copper ions should be taken into account regarding the problem of antibiotic resistance and in the selection of the most efficient antimicrobial therapy for patients with altered copper homeostasis. © 2018 Elsevier Inc.
PB  - Elsevier
T2  - Free Radical Biology and Medicine
T1  - Coordination and redox interactions of β-lactam antibiotics with Cu2+ in physiological settings and the impact on antibacterial activity
VL  - 129
SP  - 279
EP  - 285
DO  - 10.1016/j.freeradbiomed.2018.09.038
UR  - Kon_1320
ER  - 
@article{
author = "Božić, Bojana and Korać, Jelena and Stanković, Dalibor and Stanić, Marina and Romanović, Mima and Pristov-Bogdanović, Jelena and Spasić, Snežana and Popović-Bijelić, Ana and Spasojević, Ivan and Bajčetić, Milica",
year = "2018",
abstract = "An increase in the copper pool in body fluids has been related to a number of pathological conditions, including infections. Copper ions may affect antibiotics via the formation of coordination bonds and/or redox reactions. Herein, we analyzed the interactions of Cu2+ with eight β-lactam antibiotics using UV–Vis spectrophotometry, EPR spectroscopy, and electrochemical methods. Penicillin G did not show any detectable interactions with Cu2+. Ampicillin, amoxicillin and cephalexin formed stable colored complexes with octahedral coordination environment of Cu2+ with tetragonal distortion, and primary amine group as the site of coordinate bond formation. These β-lactams increased the solubility of Cu2+ in the phosphate buffer. Ceftazidime and Cu2+ formed a complex with a similar geometry and gave rise to an organic radical. Ceftriaxone-Cu2+ complex appears to exhibit different geometry. All complexes showed 1:1 stoichiometry. Cefaclor reduced Cu2+ to Cu1+ that further reacted with molecular oxygen to produce hydrogen peroxide. Finally, meropenem underwent degradation in the presence of copper. The analysis of activity against Escherichia coli and Staphylococcus aureus showed that the effects of meropenem, amoxicillin, ampicillin, and ceftriaxone were significantly hindered in the presence of copper ions. The interactions with copper ions should be taken into account regarding the problem of antibiotic resistance and in the selection of the most efficient antimicrobial therapy for patients with altered copper homeostasis. © 2018 Elsevier Inc.",
publisher = "Elsevier",
journal = "Free Radical Biology and Medicine",
title = "Coordination and redox interactions of β-lactam antibiotics with Cu2+ in physiological settings and the impact on antibacterial activity",
volume = "129",
pages = "279-285",
doi = "10.1016/j.freeradbiomed.2018.09.038",
url = "Kon_1320"
}
Božić, B., Korać, J., Stanković, D., Stanić, M., Romanović, M., Pristov-Bogdanović, J., Spasić, S., Popović-Bijelić, A., Spasojević, I.,& Bajčetić, M.. (2018). Coordination and redox interactions of β-lactam antibiotics with Cu2+ in physiological settings and the impact on antibacterial activity. in Free Radical Biology and Medicine
Elsevier., 129, 279-285.
https://doi.org/10.1016/j.freeradbiomed.2018.09.038
Kon_1320
Božić B, Korać J, Stanković D, Stanić M, Romanović M, Pristov-Bogdanović J, Spasić S, Popović-Bijelić A, Spasojević I, Bajčetić M. Coordination and redox interactions of β-lactam antibiotics with Cu2+ in physiological settings and the impact on antibacterial activity. in Free Radical Biology and Medicine. 2018;129:279-285.
doi:10.1016/j.freeradbiomed.2018.09.038
Kon_1320 .
Božić, Bojana, Korać, Jelena, Stanković, Dalibor, Stanić, Marina, Romanović, Mima, Pristov-Bogdanović, Jelena, Spasić, Snežana, Popović-Bijelić, Ana, Spasojević, Ivan, Bajčetić, Milica, "Coordination and redox interactions of β-lactam antibiotics with Cu2+ in physiological settings and the impact on antibacterial activity" in Free Radical Biology and Medicine, 129 (2018):279-285,
https://doi.org/10.1016/j.freeradbiomed.2018.09.038 .,
Kon_1320 .
1
4
2
4

Supplementary data for the article: Božić, B.; Korać, J.; Stanković, D. M.; Stanić, M.; Romanović, M.; Pristov, J. B.; Spasić, S.; Popović-Bijelić, A.; Spasojević, I.; Bajčetić, M. Coordination and Redox Interactions of β-Lactam Antibiotics with Cu2+ in Physiological Settings and the Impact on Antibacterial Activity. Free Radical Biology and Medicine 2018, 129, 279–285. https://doi.org/10.1016/j.freeradbiomed.2018.09.038

Božić, Bojana; Korać, Jelena; Stanković, Dalibor; Stanić, Marina; Romanović, Mima; Pristov-Bogdanović, Jelena; Spasić, Snežana; Popović-Bijelić, Ana; Spasojević, Ivan; Bajčetić, Milica

(2018)

TY  - DATA
AU  - Božić, Bojana
AU  - Korać, Jelena
AU  - Stanković, Dalibor
AU  - Stanić, Marina
AU  - Romanović, Mima
AU  - Pristov-Bogdanović, Jelena
AU  - Spasić, Snežana
AU  - Popović-Bijelić, Ana
AU  - Spasojević, Ivan
AU  - Bajčetić, Milica
PY  - 2018
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/2941
T2  - Free Radical Biology and Medicine
T1  - Supplementary data for the article: Božić, B.; Korać, J.; Stanković, D. M.; Stanić, M.; Romanović, M.; Pristov, J. B.; Spasić, S.; Popović-Bijelić, A.; Spasojević, I.; Bajčetić, M. Coordination and Redox Interactions of β-Lactam Antibiotics with Cu2+ in Physiological Settings and the Impact on Antibacterial Activity. Free Radical Biology and Medicine 2018, 129, 279–285. https://doi.org/10.1016/j.freeradbiomed.2018.09.038
VL  - 129
SP  - 279
EP  - 285
UR  - Kon_1320
ER  - 
@misc{
author = "Božić, Bojana and Korać, Jelena and Stanković, Dalibor and Stanić, Marina and Romanović, Mima and Pristov-Bogdanović, Jelena and Spasić, Snežana and Popović-Bijelić, Ana and Spasojević, Ivan and Bajčetić, Milica",
year = "2018",
journal = "Free Radical Biology and Medicine",
title = "Supplementary data for the article: Božić, B.; Korać, J.; Stanković, D. M.; Stanić, M.; Romanović, M.; Pristov, J. B.; Spasić, S.; Popović-Bijelić, A.; Spasojević, I.; Bajčetić, M. Coordination and Redox Interactions of β-Lactam Antibiotics with Cu2+ in Physiological Settings and the Impact on Antibacterial Activity. Free Radical Biology and Medicine 2018, 129, 279–285. https://doi.org/10.1016/j.freeradbiomed.2018.09.038",
volume = "129",
pages = "279-285",
url = "Kon_1320"
}
Božić, B., Korać, J., Stanković, D., Stanić, M., Romanović, M., Pristov-Bogdanović, J., Spasić, S., Popović-Bijelić, A., Spasojević, I.,& Bajčetić, M.. (2018). Supplementary data for the article: Božić, B.; Korać, J.; Stanković, D. M.; Stanić, M.; Romanović, M.; Pristov, J. B.; Spasić, S.; Popović-Bijelić, A.; Spasojević, I.; Bajčetić, M. Coordination and Redox Interactions of β-Lactam Antibiotics with Cu2+ in Physiological Settings and the Impact on Antibacterial Activity. Free Radical Biology and Medicine 2018, 129, 279–285. https://doi.org/10.1016/j.freeradbiomed.2018.09.038. in Free Radical Biology and Medicine, 129, 279-285.
Kon_1320
Božić B, Korać J, Stanković D, Stanić M, Romanović M, Pristov-Bogdanović J, Spasić S, Popović-Bijelić A, Spasojević I, Bajčetić M. Supplementary data for the article: Božić, B.; Korać, J.; Stanković, D. M.; Stanić, M.; Romanović, M.; Pristov, J. B.; Spasić, S.; Popović-Bijelić, A.; Spasojević, I.; Bajčetić, M. Coordination and Redox Interactions of β-Lactam Antibiotics with Cu2+ in Physiological Settings and the Impact on Antibacterial Activity. Free Radical Biology and Medicine 2018, 129, 279–285. https://doi.org/10.1016/j.freeradbiomed.2018.09.038. in Free Radical Biology and Medicine. 2018;129:279-285.
Kon_1320 .
Božić, Bojana, Korać, Jelena, Stanković, Dalibor, Stanić, Marina, Romanović, Mima, Pristov-Bogdanović, Jelena, Spasić, Snežana, Popović-Bijelić, Ana, Spasojević, Ivan, Bajčetić, Milica, "Supplementary data for the article: Božić, B.; Korać, J.; Stanković, D. M.; Stanić, M.; Romanović, M.; Pristov, J. B.; Spasić, S.; Popović-Bijelić, A.; Spasojević, I.; Bajčetić, M. Coordination and Redox Interactions of β-Lactam Antibiotics with Cu2+ in Physiological Settings and the Impact on Antibacterial Activity. Free Radical Biology and Medicine 2018, 129, 279–285. https://doi.org/10.1016/j.freeradbiomed.2018.09.038" in Free Radical Biology and Medicine, 129 (2018):279-285,
Kon_1320 .

Coordinate and redox interactions of epinephrine with ferric and ferrous iron at physiological pH

Korać, Jelena; Stanković, Dalibor; Stanić, Marina; Bajuk-Bogdanović, Danica; Žižić, Milan; Pristov-Bogdanović, Jelena; Grgurić-Šipka, Sanja; Popović-Bijelić, Ana; Spasojević, Ivan

(Nature Publishing Group, London, 2018)

TY  - JOUR
AU  - Korać, Jelena
AU  - Stanković, Dalibor
AU  - Stanić, Marina
AU  - Bajuk-Bogdanović, Danica
AU  - Žižić, Milan
AU  - Pristov-Bogdanović, Jelena
AU  - Grgurić-Šipka, Sanja
AU  - Popović-Bijelić, Ana
AU  - Spasojević, Ivan
PY  - 2018
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/2097
AB  - Coordinate and redox interactions of epinephrine (Epi) with iron at physiological pH are essential for understanding two very different phenomena - the detrimental effects of chronic stress on the cardiovascular system and the cross-linking of catecholamine-rich biopolymers and frameworks. Here we show that Epi and Fe3+ form stable high-spin complexes in the 1:1 or 3:1 stoichiometry, depending on the Epi/Fe3+ concentration ratio (low or high). Oxygen atoms on the catechol ring represent the sites of coordinate bond formation within physiologically relevant bidentate 1:1 complex. Redox properties of Epi are slightly impacted by Fe3+. On the other hand, Epi and Fe2+ form a complex that acts as a strong reducing agent, which leads to the production of hydrogen peroxide via O-2 reduction, and to a facilitated formation of the Epi-Fe3+ complexes. Epi is not oxidized in this process, i.e. Fe2+ is not an electron shuttle, but the electron donor. Epi-catalyzed oxidation of Fe2+ represents a plausible chemical basis of stress-related damage to heart cells. In addition, our results support the previous findings on the interactions of catecholamine moieties in polymers with iron and provide a novel strategy for improving the efficiency of cross-linking.
PB  - Nature Publishing Group, London
T2  - Scientific Reports
T1  - Coordinate and redox interactions of epinephrine with ferric and ferrous iron at physiological pH
VL  - 8
DO  - 10.1038/s41598-018-21940-7
UR  - Kon_3428
ER  - 
@article{
author = "Korać, Jelena and Stanković, Dalibor and Stanić, Marina and Bajuk-Bogdanović, Danica and Žižić, Milan and Pristov-Bogdanović, Jelena and Grgurić-Šipka, Sanja and Popović-Bijelić, Ana and Spasojević, Ivan",
year = "2018",
abstract = "Coordinate and redox interactions of epinephrine (Epi) with iron at physiological pH are essential for understanding two very different phenomena - the detrimental effects of chronic stress on the cardiovascular system and the cross-linking of catecholamine-rich biopolymers and frameworks. Here we show that Epi and Fe3+ form stable high-spin complexes in the 1:1 or 3:1 stoichiometry, depending on the Epi/Fe3+ concentration ratio (low or high). Oxygen atoms on the catechol ring represent the sites of coordinate bond formation within physiologically relevant bidentate 1:1 complex. Redox properties of Epi are slightly impacted by Fe3+. On the other hand, Epi and Fe2+ form a complex that acts as a strong reducing agent, which leads to the production of hydrogen peroxide via O-2 reduction, and to a facilitated formation of the Epi-Fe3+ complexes. Epi is not oxidized in this process, i.e. Fe2+ is not an electron shuttle, but the electron donor. Epi-catalyzed oxidation of Fe2+ represents a plausible chemical basis of stress-related damage to heart cells. In addition, our results support the previous findings on the interactions of catecholamine moieties in polymers with iron and provide a novel strategy for improving the efficiency of cross-linking.",
publisher = "Nature Publishing Group, London",
journal = "Scientific Reports",
title = "Coordinate and redox interactions of epinephrine with ferric and ferrous iron at physiological pH",
volume = "8",
doi = "10.1038/s41598-018-21940-7",
url = "Kon_3428"
}
Korać, J., Stanković, D., Stanić, M., Bajuk-Bogdanović, D., Žižić, M., Pristov-Bogdanović, J., Grgurić-Šipka, S., Popović-Bijelić, A.,& Spasojević, I.. (2018). Coordinate and redox interactions of epinephrine with ferric and ferrous iron at physiological pH. in Scientific Reports
Nature Publishing Group, London., 8.
https://doi.org/10.1038/s41598-018-21940-7
Kon_3428
Korać J, Stanković D, Stanić M, Bajuk-Bogdanović D, Žižić M, Pristov-Bogdanović J, Grgurić-Šipka S, Popović-Bijelić A, Spasojević I. Coordinate and redox interactions of epinephrine with ferric and ferrous iron at physiological pH. in Scientific Reports. 2018;8.
doi:10.1038/s41598-018-21940-7
Kon_3428 .
Korać, Jelena, Stanković, Dalibor, Stanić, Marina, Bajuk-Bogdanović, Danica, Žižić, Milan, Pristov-Bogdanović, Jelena, Grgurić-Šipka, Sanja, Popović-Bijelić, Ana, Spasojević, Ivan, "Coordinate and redox interactions of epinephrine with ferric and ferrous iron at physiological pH" in Scientific Reports, 8 (2018),
https://doi.org/10.1038/s41598-018-21940-7 .,
Kon_3428 .
1
7
5
5

Mechanisms of redox interactions of bilirubin with copper and the effects of penicillamine

Božić, Bojana; Korać, Jelena; Stanković, Dalibor; Stanić, Marina; Popović-Bijelić, Ana; Bogdanović Pristov, Jelena; Spasojević, Ivan; Bajčetić, Milica

(Elsevier Ireland Ltd, Clare, 2017)

TY  - JOUR
AU  - Božić, Bojana
AU  - Korać, Jelena
AU  - Stanković, Dalibor
AU  - Stanić, Marina
AU  - Popović-Bijelić, Ana
AU  - Bogdanović Pristov, Jelena
AU  - Spasojević, Ivan
AU  - Bajčetić, Milica
PY  - 2017
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3105
AB  - Toxic effects of unconjugated bilirubin (BR) in neonatal hyperbilirubinemia have been related to redox and/or coordinate interactions with Cu2+. However, the development and mechanisms of such interactions at physiological pH have not been resolved. This study shows that BR reduces Cu2+ to Cu1+ in 1:1 stoichiometry. Apparently, BR undergoes degradation, i.e. BR and Cu2+ do not form stable complexes. The binding of Cu2+ to inorganic phosphates, liposomal phosphate groups, or to chelating drug penicillamine, impedes redox interactions with BR. Cu1+ undergoes spontaneous oxidation by O-2 resulting in hydrogen peroxide accumulation and hydroxyl radical production. In relation to this, copper and BR induced synergistic oxidative/damaging effects on erythrocytes membrane, which were alleviated by penicillamine. The production of reactive oxygen species by BR and copper represents a plausible cause of BR toxic effects and cell damage in hyperbilirubinemia. Further examination of therapeutic potentials of copper chelators in the treatment of severe neonatal hyperbilirubinemia is needed.
PB  - Elsevier Ireland Ltd, Clare
T2  - Chemico-Biological Interactions
T1  - Mechanisms of redox interactions of bilirubin with copper and the effects of penicillamine
VL  - 278
SP  - 129
EP  - 134
DO  - 10.1016/j.cbi.2017.10.022
ER  - 
@article{
author = "Božić, Bojana and Korać, Jelena and Stanković, Dalibor and Stanić, Marina and Popović-Bijelić, Ana and Bogdanović Pristov, Jelena and Spasojević, Ivan and Bajčetić, Milica",
year = "2017",
abstract = "Toxic effects of unconjugated bilirubin (BR) in neonatal hyperbilirubinemia have been related to redox and/or coordinate interactions with Cu2+. However, the development and mechanisms of such interactions at physiological pH have not been resolved. This study shows that BR reduces Cu2+ to Cu1+ in 1:1 stoichiometry. Apparently, BR undergoes degradation, i.e. BR and Cu2+ do not form stable complexes. The binding of Cu2+ to inorganic phosphates, liposomal phosphate groups, or to chelating drug penicillamine, impedes redox interactions with BR. Cu1+ undergoes spontaneous oxidation by O-2 resulting in hydrogen peroxide accumulation and hydroxyl radical production. In relation to this, copper and BR induced synergistic oxidative/damaging effects on erythrocytes membrane, which were alleviated by penicillamine. The production of reactive oxygen species by BR and copper represents a plausible cause of BR toxic effects and cell damage in hyperbilirubinemia. Further examination of therapeutic potentials of copper chelators in the treatment of severe neonatal hyperbilirubinemia is needed.",
publisher = "Elsevier Ireland Ltd, Clare",
journal = "Chemico-Biological Interactions",
title = "Mechanisms of redox interactions of bilirubin with copper and the effects of penicillamine",
volume = "278",
pages = "129-134",
doi = "10.1016/j.cbi.2017.10.022"
}
Božić, B., Korać, J., Stanković, D., Stanić, M., Popović-Bijelić, A., Bogdanović Pristov, J., Spasojević, I.,& Bajčetić, M.. (2017). Mechanisms of redox interactions of bilirubin with copper and the effects of penicillamine. in Chemico-Biological Interactions
Elsevier Ireland Ltd, Clare., 278, 129-134.
https://doi.org/10.1016/j.cbi.2017.10.022
Božić B, Korać J, Stanković D, Stanić M, Popović-Bijelić A, Bogdanović Pristov J, Spasojević I, Bajčetić M. Mechanisms of redox interactions of bilirubin with copper and the effects of penicillamine. in Chemico-Biological Interactions. 2017;278:129-134.
doi:10.1016/j.cbi.2017.10.022 .
Božić, Bojana, Korać, Jelena, Stanković, Dalibor, Stanić, Marina, Popović-Bijelić, Ana, Bogdanović Pristov, Jelena, Spasojević, Ivan, Bajčetić, Milica, "Mechanisms of redox interactions of bilirubin with copper and the effects of penicillamine" in Chemico-Biological Interactions, 278 (2017):129-134,
https://doi.org/10.1016/j.cbi.2017.10.022 . .
3
2
3

Supplementary data for article: Božić, B.; Korać, J.; Stanković, D. M.; Stanić, M.; Popović-Bijelić, A.; Bogdanović Pristov, J.; Spasojević, I.; Bajčetić, M. Mechanisms of Redox Interactions of Bilirubin with Copper and the Effects of Penicillamine. Chemico-Biological Interactions 2017, 278, 129–134. https://doi.org/10.1016/j.cbi.2017.10.022

Božić, Bojana; Korać, Jelena; Stanković, Dalibor; Stanić, Marina; Popović-Bijelić, Ana; Bogdanović Pristov, Jelena; Spasojević, Ivan; Bajčetić, Milica

(Elsevier Ireland Ltd, Clare, 2017)

TY  - DATA
AU  - Božić, Bojana
AU  - Korać, Jelena
AU  - Stanković, Dalibor
AU  - Stanić, Marina
AU  - Popović-Bijelić, Ana
AU  - Bogdanović Pristov, Jelena
AU  - Spasojević, Ivan
AU  - Bajčetić, Milica
PY  - 2017
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3106
PB  - Elsevier Ireland Ltd, Clare
T2  - Chemico-Biological Interactions
T1  - Supplementary data for article: Božić, B.; Korać, J.; Stanković, D. M.; Stanić, M.; Popović-Bijelić, A.; Bogdanović Pristov, J.; Spasojević, I.; Bajčetić, M. Mechanisms of Redox Interactions of Bilirubin with Copper and the Effects of Penicillamine. Chemico-Biological Interactions 2017, 278, 129–134. https://doi.org/10.1016/j.cbi.2017.10.022
ER  - 
@misc{
author = "Božić, Bojana and Korać, Jelena and Stanković, Dalibor and Stanić, Marina and Popović-Bijelić, Ana and Bogdanović Pristov, Jelena and Spasojević, Ivan and Bajčetić, Milica",
year = "2017",
publisher = "Elsevier Ireland Ltd, Clare",
journal = "Chemico-Biological Interactions",
title = "Supplementary data for article: Božić, B.; Korać, J.; Stanković, D. M.; Stanić, M.; Popović-Bijelić, A.; Bogdanović Pristov, J.; Spasojević, I.; Bajčetić, M. Mechanisms of Redox Interactions of Bilirubin with Copper and the Effects of Penicillamine. Chemico-Biological Interactions 2017, 278, 129–134. https://doi.org/10.1016/j.cbi.2017.10.022"
}
Božić, B., Korać, J., Stanković, D., Stanić, M., Popović-Bijelić, A., Bogdanović Pristov, J., Spasojević, I.,& Bajčetić, M.. (2017). Supplementary data for article: Božić, B.; Korać, J.; Stanković, D. M.; Stanić, M.; Popović-Bijelić, A.; Bogdanović Pristov, J.; Spasojević, I.; Bajčetić, M. Mechanisms of Redox Interactions of Bilirubin with Copper and the Effects of Penicillamine. Chemico-Biological Interactions 2017, 278, 129–134. https://doi.org/10.1016/j.cbi.2017.10.022. in Chemico-Biological Interactions
Elsevier Ireland Ltd, Clare..
Božić B, Korać J, Stanković D, Stanić M, Popović-Bijelić A, Bogdanović Pristov J, Spasojević I, Bajčetić M. Supplementary data for article: Božić, B.; Korać, J.; Stanković, D. M.; Stanić, M.; Popović-Bijelić, A.; Bogdanović Pristov, J.; Spasojević, I.; Bajčetić, M. Mechanisms of Redox Interactions of Bilirubin with Copper and the Effects of Penicillamine. Chemico-Biological Interactions 2017, 278, 129–134. https://doi.org/10.1016/j.cbi.2017.10.022. in Chemico-Biological Interactions. 2017;..
Božić, Bojana, Korać, Jelena, Stanković, Dalibor, Stanić, Marina, Popović-Bijelić, Ana, Bogdanović Pristov, Jelena, Spasojević, Ivan, Bajčetić, Milica, "Supplementary data for article: Božić, B.; Korać, J.; Stanković, D. M.; Stanić, M.; Popović-Bijelić, A.; Bogdanović Pristov, J.; Spasojević, I.; Bajčetić, M. Mechanisms of Redox Interactions of Bilirubin with Copper and the Effects of Penicillamine. Chemico-Biological Interactions 2017, 278, 129–134. https://doi.org/10.1016/j.cbi.2017.10.022" in Chemico-Biological Interactions (2017).

Mechanisms of redox interactions of bilirubin with copper and the effects of penicillamine

Božić, Bojana; Korać, Jelena; Stanković, Dalibor; Stanić, Marina; Popović-Bijelić, Ana; Pristov-Bogdanović, Jelena; Spasojević, Ivan; Bajčetić, Milica

(Elsevier Ireland Ltd, Clare, 2017)

TY  - JOUR
AU  - Božić, Bojana
AU  - Korać, Jelena
AU  - Stanković, Dalibor
AU  - Stanić, Marina
AU  - Popović-Bijelić, Ana
AU  - Pristov-Bogdanović, Jelena
AU  - Spasojević, Ivan
AU  - Bajčetić, Milica
PY  - 2017
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/2570
AB  - Toxic effects of unconjugated bilirubin (BR) in neonatal hyperbilirubinemia have been related to redox and/or coordinate interactions with Cu2+. However, the development and mechanisms of such interactions at physiological pH have not been resolved. This study shows that BR reduces Cu2+ to Cu1+ in 1:1 stoichiometry. Apparently, BR undergoes degradation, i.e. BR and Cu2+ do not form stable complexes. The binding of Cu2+ to inorganic phosphates, liposomal phosphate groups, or to chelating drug penicillamine, impedes redox interactions with BR. Cu1+ undergoes spontaneous oxidation by O-2 resulting in hydrogen peroxide accumulation and hydroxyl radical production. In relation to this, copper and BR induced synergistic oxidative/damaging effects on erythrocytes membrane, which were alleviated by penicillamine. The production of reactive oxygen species by BR and copper represents a plausible cause of BR toxic effects and cell damage in hyperbilirubinemia. Further examination of therapeutic potentials of copper chelators in the treatment of severe neonatal hyperbilirubinemia is needed.
PB  - Elsevier Ireland Ltd, Clare
T2  - Chemico-biological Interactions
T1  - Mechanisms of redox interactions of bilirubin with copper and the effects of penicillamine
VL  - 278
SP  - 129
EP  - 134
DO  - 10.1016/j.cbi.2017.10.022
UR  - Kon_3386
ER  - 
@article{
author = "Božić, Bojana and Korać, Jelena and Stanković, Dalibor and Stanić, Marina and Popović-Bijelić, Ana and Pristov-Bogdanović, Jelena and Spasojević, Ivan and Bajčetić, Milica",
year = "2017",
abstract = "Toxic effects of unconjugated bilirubin (BR) in neonatal hyperbilirubinemia have been related to redox and/or coordinate interactions with Cu2+. However, the development and mechanisms of such interactions at physiological pH have not been resolved. This study shows that BR reduces Cu2+ to Cu1+ in 1:1 stoichiometry. Apparently, BR undergoes degradation, i.e. BR and Cu2+ do not form stable complexes. The binding of Cu2+ to inorganic phosphates, liposomal phosphate groups, or to chelating drug penicillamine, impedes redox interactions with BR. Cu1+ undergoes spontaneous oxidation by O-2 resulting in hydrogen peroxide accumulation and hydroxyl radical production. In relation to this, copper and BR induced synergistic oxidative/damaging effects on erythrocytes membrane, which were alleviated by penicillamine. The production of reactive oxygen species by BR and copper represents a plausible cause of BR toxic effects and cell damage in hyperbilirubinemia. Further examination of therapeutic potentials of copper chelators in the treatment of severe neonatal hyperbilirubinemia is needed.",
publisher = "Elsevier Ireland Ltd, Clare",
journal = "Chemico-biological Interactions",
title = "Mechanisms of redox interactions of bilirubin with copper and the effects of penicillamine",
volume = "278",
pages = "129-134",
doi = "10.1016/j.cbi.2017.10.022",
url = "Kon_3386"
}
Božić, B., Korać, J., Stanković, D., Stanić, M., Popović-Bijelić, A., Pristov-Bogdanović, J., Spasojević, I.,& Bajčetić, M.. (2017). Mechanisms of redox interactions of bilirubin with copper and the effects of penicillamine. in Chemico-biological Interactions
Elsevier Ireland Ltd, Clare., 278, 129-134.
https://doi.org/10.1016/j.cbi.2017.10.022
Kon_3386
Božić B, Korać J, Stanković D, Stanić M, Popović-Bijelić A, Pristov-Bogdanović J, Spasojević I, Bajčetić M. Mechanisms of redox interactions of bilirubin with copper and the effects of penicillamine. in Chemico-biological Interactions. 2017;278:129-134.
doi:10.1016/j.cbi.2017.10.022
Kon_3386 .
Božić, Bojana, Korać, Jelena, Stanković, Dalibor, Stanić, Marina, Popović-Bijelić, Ana, Pristov-Bogdanović, Jelena, Spasojević, Ivan, Bajčetić, Milica, "Mechanisms of redox interactions of bilirubin with copper and the effects of penicillamine" in Chemico-biological Interactions, 278 (2017):129-134,
https://doi.org/10.1016/j.cbi.2017.10.022 .,
Kon_3386 .
3
2
3