Konya, Zoltan

Link to this page

Authority KeyName Variants
54a216c2-e63a-4055-8455-2ac95f65b34a
  • Konya, Zoltan (2)
Projects

Author's Bibliography

Differently prepared PbO2/graphitic carbon nitride composites for efficient electrochemical removal of Reactive Black 5 dye

Marković, Aleksandar; Savić, Slađana D.; Kukuruzar, Andrej; Konya, Zoltan; Manojlović, Dragan D.; Ognjanović, Miloš; Stanković, Dalibor

(MDPI, 2023)

TY  - JOUR
AU  - Marković, Aleksandar
AU  - Savić, Slađana D.
AU  - Kukuruzar, Andrej
AU  - Konya, Zoltan
AU  - Manojlović, Dragan D.
AU  - Ognjanović, Miloš
AU  - Stanković, Dalibor
PY  - 2023
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5806
AB  - In this paper, electrochemical degradation of Reactive Black 5 (RB5) textile azo dye was examined in regard to different synthesis procedures for making PbO2–graphitic carbon nitride (g-C3N4) electrode. The reaction of with ClO− in the presence of different surfactants, i.e., cetyltrimethylammonium bromide (CTAB) and tetrabutylammonium phosphate (TBAP), under conventional conditions, resulted in the formation of PbO2 with varying morphology. The obtained materials were combined with g-C3N4 for the preparation of the final composite materials, which were then characterized morphologically and electrochemically. After optimizing the degradation method, it was shown that an anode comprising a steel electrode coated with the composite of PbO2 synthesized using CTAB as template and g-C3N4, and using 0.15 M Na2SO4 as the supporting electrolyte, gave the best performance for RB5 dye removal from a 35 mg/L solution. The treatment duration was 60 min, applying a current of 0.17 A (electrode surface 4 cm2, current density of 42.5 mA/cm2), while the initial pH of the testing solution was 2. The reusability and longevity of the electrode surface (which showed no significant change in activity throughout the study) may suggest that this approach is a promising candidate for wastewater treatment and pollutant removal.
PB  - MDPI
T2  - Catalysts
T1  - Differently prepared PbO2/graphitic carbon nitride composites for efficient electrochemical removal of Reactive Black 5 dye
VL  - 13
IS  - 2
SP  - 328
DO  - 10.3390/catal13020328
ER  - 
@article{
author = "Marković, Aleksandar and Savić, Slađana D. and Kukuruzar, Andrej and Konya, Zoltan and Manojlović, Dragan D. and Ognjanović, Miloš and Stanković, Dalibor",
year = "2023",
abstract = "In this paper, electrochemical degradation of Reactive Black 5 (RB5) textile azo dye was examined in regard to different synthesis procedures for making PbO2–graphitic carbon nitride (g-C3N4) electrode. The reaction of with ClO− in the presence of different surfactants, i.e., cetyltrimethylammonium bromide (CTAB) and tetrabutylammonium phosphate (TBAP), under conventional conditions, resulted in the formation of PbO2 with varying morphology. The obtained materials were combined with g-C3N4 for the preparation of the final composite materials, which were then characterized morphologically and electrochemically. After optimizing the degradation method, it was shown that an anode comprising a steel electrode coated with the composite of PbO2 synthesized using CTAB as template and g-C3N4, and using 0.15 M Na2SO4 as the supporting electrolyte, gave the best performance for RB5 dye removal from a 35 mg/L solution. The treatment duration was 60 min, applying a current of 0.17 A (electrode surface 4 cm2, current density of 42.5 mA/cm2), while the initial pH of the testing solution was 2. The reusability and longevity of the electrode surface (which showed no significant change in activity throughout the study) may suggest that this approach is a promising candidate for wastewater treatment and pollutant removal.",
publisher = "MDPI",
journal = "Catalysts",
title = "Differently prepared PbO2/graphitic carbon nitride composites for efficient electrochemical removal of Reactive Black 5 dye",
volume = "13",
number = "2",
pages = "328",
doi = "10.3390/catal13020328"
}
Marković, A., Savić, S. D., Kukuruzar, A., Konya, Z., Manojlović, D. D., Ognjanović, M.,& Stanković, D.. (2023). Differently prepared PbO2/graphitic carbon nitride composites for efficient electrochemical removal of Reactive Black 5 dye. in Catalysts
MDPI., 13(2), 328.
https://doi.org/10.3390/catal13020328
Marković A, Savić SD, Kukuruzar A, Konya Z, Manojlović DD, Ognjanović M, Stanković D. Differently prepared PbO2/graphitic carbon nitride composites for efficient electrochemical removal of Reactive Black 5 dye. in Catalysts. 2023;13(2):328.
doi:10.3390/catal13020328 .
Marković, Aleksandar, Savić, Slađana D., Kukuruzar, Andrej, Konya, Zoltan, Manojlović, Dragan D., Ognjanović, Miloš, Stanković, Dalibor, "Differently prepared PbO2/graphitic carbon nitride composites for efficient electrochemical removal of Reactive Black 5 dye" in Catalysts, 13, no. 2 (2023):328,
https://doi.org/10.3390/catal13020328 . .
1
1

Facile immobilization of cholesterol oxidase on Pt,Ru–C nanocomposite and ionic liquid–modified carbon paste electrode for an efficient amperometric free cholesterol biosensing

Mutić, Sanja; Stanković, Dalibor; Konya, Zoltan; Anojčić, Jasmina

(2023)

TY  - JOUR
AU  - Mutić, Sanja
AU  - Stanković, Dalibor
AU  - Konya, Zoltan
AU  - Anojčić, Jasmina
PY  - 2023
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/6280
AB  - In present work, the enzyme cholesterol oxidase (ChOx) was immobilized by Nafion® (Naf) on Pt,Ru–C nanocomposite and an ionic liquid (IL)–modified carbon paste electrode (CPE) in order to create cholesterol biosensor (Naf/ChOx/Pt,Ru–C/IL-CPE). The prepared working electrodes were characterized using scanning electron microscopy–energy-dispersive spectrometry, while their electrochemical performance was evaluated using electrochemical impedance spectroscopic, cyclic voltammetric, and amperometric techniques. Excellent synergism between IL 1-allyl-3-methylimidazolium dicyanamide ([AMIM][DCA]), Pt,Ru–C, and ChOx, as modifiers of CPE, offers the most pronounced analytical performance for improved cholesterol amperometric determination in phosphate buffer solution pH 7.50 at a working potential of 0.60 V. Under optimized experimental conditions, a linear relationship between oxidation current and cholesterol concentration was found for the range from 0.31 to 2.46 µM, with an estimated detection limit of 0.13 µM and relative standard deviation (RSD) below 5.5%. The optimized amperometric method in combination with the developed Naf/ChOx/Pt,Ru–C/IL-CPE biosensor showed good repeatability and high selectivity towards cholesterol biosensing. The proposed biosensor was successfully applied to determine free cholesterol in a human blood serum sample via its enzymatic reaction product hydrogen peroxide despite the presence of possible interferences. The percentage recovery ranged from 99.08 to 102.81%, while RSD was below 2.0% for the unspiked as well as the spiked human blood serum sample. The obtained results indicated excellent accuracy and precision of the method, concluding that the developed biosensor can be a promising alternative to existing commercial cholesterol tests used in medical practice. Graphical abstract: [Figure not available: see fulltext.]. © 2023, The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature.
T2  - Analytical and Bioanalytical Chemistry
T1  - Facile immobilization of cholesterol oxidase on Pt,Ru–C nanocomposite and ionic liquid–modified carbon paste electrode for an efficient amperometric free cholesterol biosensing
VL  - 415
IS  - 23
SP  - 5709
EP  - 5722
DO  - 10.1007/s00216-023-04847-9
ER  - 
@article{
author = "Mutić, Sanja and Stanković, Dalibor and Konya, Zoltan and Anojčić, Jasmina",
year = "2023",
abstract = "In present work, the enzyme cholesterol oxidase (ChOx) was immobilized by Nafion® (Naf) on Pt,Ru–C nanocomposite and an ionic liquid (IL)–modified carbon paste electrode (CPE) in order to create cholesterol biosensor (Naf/ChOx/Pt,Ru–C/IL-CPE). The prepared working electrodes were characterized using scanning electron microscopy–energy-dispersive spectrometry, while their electrochemical performance was evaluated using electrochemical impedance spectroscopic, cyclic voltammetric, and amperometric techniques. Excellent synergism between IL 1-allyl-3-methylimidazolium dicyanamide ([AMIM][DCA]), Pt,Ru–C, and ChOx, as modifiers of CPE, offers the most pronounced analytical performance for improved cholesterol amperometric determination in phosphate buffer solution pH 7.50 at a working potential of 0.60 V. Under optimized experimental conditions, a linear relationship between oxidation current and cholesterol concentration was found for the range from 0.31 to 2.46 µM, with an estimated detection limit of 0.13 µM and relative standard deviation (RSD) below 5.5%. The optimized amperometric method in combination with the developed Naf/ChOx/Pt,Ru–C/IL-CPE biosensor showed good repeatability and high selectivity towards cholesterol biosensing. The proposed biosensor was successfully applied to determine free cholesterol in a human blood serum sample via its enzymatic reaction product hydrogen peroxide despite the presence of possible interferences. The percentage recovery ranged from 99.08 to 102.81%, while RSD was below 2.0% for the unspiked as well as the spiked human blood serum sample. The obtained results indicated excellent accuracy and precision of the method, concluding that the developed biosensor can be a promising alternative to existing commercial cholesterol tests used in medical practice. Graphical abstract: [Figure not available: see fulltext.]. © 2023, The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature.",
journal = "Analytical and Bioanalytical Chemistry",
title = "Facile immobilization of cholesterol oxidase on Pt,Ru–C nanocomposite and ionic liquid–modified carbon paste electrode for an efficient amperometric free cholesterol biosensing",
volume = "415",
number = "23",
pages = "5709-5722",
doi = "10.1007/s00216-023-04847-9"
}
Mutić, S., Stanković, D., Konya, Z.,& Anojčić, J.. (2023). Facile immobilization of cholesterol oxidase on Pt,Ru–C nanocomposite and ionic liquid–modified carbon paste electrode for an efficient amperometric free cholesterol biosensing. in Analytical and Bioanalytical Chemistry, 415(23), 5709-5722.
https://doi.org/10.1007/s00216-023-04847-9
Mutić S, Stanković D, Konya Z, Anojčić J. Facile immobilization of cholesterol oxidase on Pt,Ru–C nanocomposite and ionic liquid–modified carbon paste electrode for an efficient amperometric free cholesterol biosensing. in Analytical and Bioanalytical Chemistry. 2023;415(23):5709-5722.
doi:10.1007/s00216-023-04847-9 .
Mutić, Sanja, Stanković, Dalibor, Konya, Zoltan, Anojčić, Jasmina, "Facile immobilization of cholesterol oxidase on Pt,Ru–C nanocomposite and ionic liquid–modified carbon paste electrode for an efficient amperometric free cholesterol biosensing" in Analytical and Bioanalytical Chemistry, 415, no. 23 (2023):5709-5722,
https://doi.org/10.1007/s00216-023-04847-9 . .
2
3
3