Dimović, Slavko

Link to this page

Authority KeyName Variants
1f066b95-f716-4792-8ae3-5c0e97bacac5
  • Dimović, Slavko (1)
Projects

Author's Bibliography

Effects of Ag+ ion doping on UV radiation absorption and luminescence profiles of fluorapatite nanomaterials obtained by neutralization method

Milojkov, Dušan; Stanić, Vojislav; Dimović, Slavko; Mutavdžić, Dragosav; Živković-Radovanović, Vukosava; Janjić, Goran V.; Radotić, Ksenija

(Polish Academy of Sciences, 2019)

TY  - JOUR
AU  - Milojkov, Dušan
AU  - Stanić, Vojislav
AU  - Dimović, Slavko
AU  - Mutavdžić, Dragosav
AU  - Živković-Radovanović, Vukosava
AU  - Janjić, Goran V.
AU  - Radotić, Ksenija
PY  - 2019
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3717
AB  - In the present study we have analyzed effects of Ag+ ions doping on energetic profiles of nanophosphors materials based on fluorapatite crystal system. The UV radiation absorption and luminescence properties of monophase fluorapatite (FAP) and Ag+ doped fluorapatite (AgFAP) nanomaterials obtained by neutralization method were investigated using the photoluminescence spectrophotometry. The excitation-emission profiles of nanomaterials were analyzed statistically by MCR-ALS method and number of fluorophores was extracted. FAP lattice absorbed light at 350 nm in the UVA part of spectrum, and with increasing concentration of Ag+ ions new absorption maximum appeared at 270 nm in the UVC part. Fluorescence of FAP nanoparticles was in violet region of visible part of the spectrum, with a red shift to the green region when Ag+ was doped in lattice. MCR-ALS analyses of fluorescence spectra confirm formation of two maxima, at 484 and 505 nm, as a consequence of Ag+ ions doping in FAP lattice at Ca1 (4f) sites. The results of quantum chemical calculations showed that an Ag+ ion is stronger bonded to the binding site 1 (-1352:6 kcal/mol) than to the binding site 2 (-1249:0 kcal/mol). Considering that AgFAP1 nanopowder absorbs photons over all part of UV radiation spectrum, this material might be used as potential radiation protective nanomaterial.
PB  - Polish Academy of Sciences
T2  - Acta Physica Polonica A
T1  - Effects of Ag+ ion doping on UV radiation absorption and luminescence profiles of fluorapatite nanomaterials obtained by neutralization method
VL  - 136
IS  - 1
SP  - 86
EP  - 91
DO  - 10.12693/APhysPolA.136.86
ER  - 
@article{
author = "Milojkov, Dušan and Stanić, Vojislav and Dimović, Slavko and Mutavdžić, Dragosav and Živković-Radovanović, Vukosava and Janjić, Goran V. and Radotić, Ksenija",
year = "2019",
abstract = "In the present study we have analyzed effects of Ag+ ions doping on energetic profiles of nanophosphors materials based on fluorapatite crystal system. The UV radiation absorption and luminescence properties of monophase fluorapatite (FAP) and Ag+ doped fluorapatite (AgFAP) nanomaterials obtained by neutralization method were investigated using the photoluminescence spectrophotometry. The excitation-emission profiles of nanomaterials were analyzed statistically by MCR-ALS method and number of fluorophores was extracted. FAP lattice absorbed light at 350 nm in the UVA part of spectrum, and with increasing concentration of Ag+ ions new absorption maximum appeared at 270 nm in the UVC part. Fluorescence of FAP nanoparticles was in violet region of visible part of the spectrum, with a red shift to the green region when Ag+ was doped in lattice. MCR-ALS analyses of fluorescence spectra confirm formation of two maxima, at 484 and 505 nm, as a consequence of Ag+ ions doping in FAP lattice at Ca1 (4f) sites. The results of quantum chemical calculations showed that an Ag+ ion is stronger bonded to the binding site 1 (-1352:6 kcal/mol) than to the binding site 2 (-1249:0 kcal/mol). Considering that AgFAP1 nanopowder absorbs photons over all part of UV radiation spectrum, this material might be used as potential radiation protective nanomaterial.",
publisher = "Polish Academy of Sciences",
journal = "Acta Physica Polonica A",
title = "Effects of Ag+ ion doping on UV radiation absorption and luminescence profiles of fluorapatite nanomaterials obtained by neutralization method",
volume = "136",
number = "1",
pages = "86-91",
doi = "10.12693/APhysPolA.136.86"
}
Milojkov, D., Stanić, V., Dimović, S., Mutavdžić, D., Živković-Radovanović, V., Janjić, G. V.,& Radotić, K.. (2019). Effects of Ag+ ion doping on UV radiation absorption and luminescence profiles of fluorapatite nanomaterials obtained by neutralization method. in Acta Physica Polonica A
Polish Academy of Sciences., 136(1), 86-91.
https://doi.org/10.12693/APhysPolA.136.86
Milojkov D, Stanić V, Dimović S, Mutavdžić D, Živković-Radovanović V, Janjić GV, Radotić K. Effects of Ag+ ion doping on UV radiation absorption and luminescence profiles of fluorapatite nanomaterials obtained by neutralization method. in Acta Physica Polonica A. 2019;136(1):86-91.
doi:10.12693/APhysPolA.136.86 .
Milojkov, Dušan, Stanić, Vojislav, Dimović, Slavko, Mutavdžić, Dragosav, Živković-Radovanović, Vukosava, Janjić, Goran V., Radotić, Ksenija, "Effects of Ag+ ion doping on UV radiation absorption and luminescence profiles of fluorapatite nanomaterials obtained by neutralization method" in Acta Physica Polonica A, 136, no. 1 (2019):86-91,
https://doi.org/10.12693/APhysPolA.136.86 . .
3
1
3
3