Fernandes, Henrique S.

Link to this page

Authority KeyName Variants
301fd1bd-82b2-4333-a907-390efb0eaa80
  • Fernandes, Henrique S. (3)

Author's Bibliography

Structural, physicochemical and anticancer study of Zn complexes with pyridyl-based thiazolyl-hydrazones

Rodríguez-Castillo, María; Monge, Miguel; Holló, Berta Barta; Padrón, José M.; Puerta, Adrián; Sousa, Sérgio F.; Fernandes, Henrique S.; Blagojević, Vladimir; Višnjevac, Aleksandar; Olszewski, Mateusz; Maciejewska, Natalia; Araškov, Jovana

(Elsevier, 2023)

TY  - JOUR
AU  - Rodríguez-Castillo, María
AU  - Monge, Miguel
AU  - Holló, Berta Barta
AU  - Padrón, José M.
AU  - Puerta, Adrián
AU  - Sousa, Sérgio F.
AU  - Fernandes, Henrique S.
AU  - Blagojević, Vladimir
AU  - Višnjevac, Aleksandar
AU  - Olszewski, Mateusz
AU  - Maciejewska, Natalia
AU  - Araškov, Jovana
PY  - 2023
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5885
AB  - Thiazolyl-hydrazones (THs) exhibit a wide spectrum of biological activity that can be enhanced by complexation with various metal ions. Zn(II) complexes with α-pyridine-1,3-TH ligands may represent an alternative to the standard platinum-based chemotherapeutics. In addition, they show photoluminescence properties and thus can be regarded as multifunctional materials. In this study, we synthesized and characterized three neutral Zn(II) complexes (1–3) with pyridine-based TH ligands HLS1‒3 in order to investigate the influence of the ligands charge on the structure and intermolecular interactions in the solid state, and consequently photophysical properties. The deprotonation of the ligands mainly affects the relative energies of electronic levels in the complexes, compared to cationic counterparts, resulting in similar photoluminescence mechanisms and quantum yields with a small shift in emission energy. The influence of the substitution at the ligands’ periphery on the selected quantum molecular descriptors of the complexes is localized to the substitution site. Also, the substituents did not considerably influence the redox responses of the complexes. However, predominant spectral changes were observed in the course of the first reduction and oxidation processes which caused distinct spectral color changes indicating their possible functionality for electrochromic applications. In addition, complex 1 showed antiproliferative activity with GI50 values below 2 µM on all tested cancer cell lines.
PB  - Elsevier
T2  - Journal of Molecular Structure
T1  - Structural, physicochemical and anticancer study of Zn complexes with pyridyl-based thiazolyl-hydrazones
VL  - 1281
SP  - 135157
DO  - 10.1016/j.molstruc.2023.135157
ER  - 
@article{
author = "Rodríguez-Castillo, María and Monge, Miguel and Holló, Berta Barta and Padrón, José M. and Puerta, Adrián and Sousa, Sérgio F. and Fernandes, Henrique S. and Blagojević, Vladimir and Višnjevac, Aleksandar and Olszewski, Mateusz and Maciejewska, Natalia and Araškov, Jovana",
year = "2023",
abstract = "Thiazolyl-hydrazones (THs) exhibit a wide spectrum of biological activity that can be enhanced by complexation with various metal ions. Zn(II) complexes with α-pyridine-1,3-TH ligands may represent an alternative to the standard platinum-based chemotherapeutics. In addition, they show photoluminescence properties and thus can be regarded as multifunctional materials. In this study, we synthesized and characterized three neutral Zn(II) complexes (1–3) with pyridine-based TH ligands HLS1‒3 in order to investigate the influence of the ligands charge on the structure and intermolecular interactions in the solid state, and consequently photophysical properties. The deprotonation of the ligands mainly affects the relative energies of electronic levels in the complexes, compared to cationic counterparts, resulting in similar photoluminescence mechanisms and quantum yields with a small shift in emission energy. The influence of the substitution at the ligands’ periphery on the selected quantum molecular descriptors of the complexes is localized to the substitution site. Also, the substituents did not considerably influence the redox responses of the complexes. However, predominant spectral changes were observed in the course of the first reduction and oxidation processes which caused distinct spectral color changes indicating their possible functionality for electrochromic applications. In addition, complex 1 showed antiproliferative activity with GI50 values below 2 µM on all tested cancer cell lines.",
publisher = "Elsevier",
journal = "Journal of Molecular Structure",
title = "Structural, physicochemical and anticancer study of Zn complexes with pyridyl-based thiazolyl-hydrazones",
volume = "1281",
pages = "135157",
doi = "10.1016/j.molstruc.2023.135157"
}
Rodríguez-Castillo, M., Monge, M., Holló, B. B., Padrón, J. M., Puerta, A., Sousa, S. F., Fernandes, H. S., Blagojević, V., Višnjevac, A., Olszewski, M., Maciejewska, N.,& Araškov, J.. (2023). Structural, physicochemical and anticancer study of Zn complexes with pyridyl-based thiazolyl-hydrazones. in Journal of Molecular Structure
Elsevier., 1281, 135157.
https://doi.org/10.1016/j.molstruc.2023.135157
Rodríguez-Castillo M, Monge M, Holló BB, Padrón JM, Puerta A, Sousa SF, Fernandes HS, Blagojević V, Višnjevac A, Olszewski M, Maciejewska N, Araškov J. Structural, physicochemical and anticancer study of Zn complexes with pyridyl-based thiazolyl-hydrazones. in Journal of Molecular Structure. 2023;1281:135157.
doi:10.1016/j.molstruc.2023.135157 .
Rodríguez-Castillo, María, Monge, Miguel, Holló, Berta Barta, Padrón, José M., Puerta, Adrián, Sousa, Sérgio F., Fernandes, Henrique S., Blagojević, Vladimir, Višnjevac, Aleksandar, Olszewski, Mateusz, Maciejewska, Natalia, Araškov, Jovana, "Structural, physicochemical and anticancer study of Zn complexes with pyridyl-based thiazolyl-hydrazones" in Journal of Molecular Structure, 1281 (2023):135157,
https://doi.org/10.1016/j.molstruc.2023.135157 . .
4
3
3
1

Zn(II) complexes with thiazolyl–hydrazones: structure, intermolecular interactions, photophysical properties, computational study and anticancer activity

Araškov, Jovana; Višnjevac, Aleksandar; Popović, Jasminka; Blagojević, Vladimir A.; Fernandes, Henrique S.; Sousa, Sérgio F.; Novaković, Irena T.; Padrón, José M.; Holló, Berta Barta; Monge, Miguel; Rodríguez-Castillo, María; López-de-Luzuriaga, José M.; Filipović, Nenad R.; Todorović, Tamara

(2022)

TY  - JOUR
AU  - Araškov, Jovana
AU  - Višnjevac, Aleksandar
AU  - Popović, Jasminka
AU  - Blagojević, Vladimir A.
AU  - Fernandes, Henrique S.
AU  - Sousa, Sérgio F.
AU  - Novaković, Irena T.
AU  - Padrón, José M.
AU  - Holló, Berta Barta
AU  - Monge, Miguel
AU  - Rodríguez-Castillo, María
AU  - López-de-Luzuriaga, José M.
AU  - Filipović, Nenad R.
AU  - Todorović, Tamara
PY  - 2022
UR  - https://pubs.rsc.org/en/content/articlelanding/2022/ce/d2ce00443g
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5380
AB  - Earth-abundant, cheap and non-toxic zinc-based coordination compounds are drawing research attention as promising candidates for various applications, such as photoluminescent materials and anticancer agents. In this paper we report six zinc complexes (1–3-NO3 and 1–3-Cl) with pyridyl-based thiazolyl–hydrazone ligands, which differ in the nature of substituents at the ligands' periphery, anion type, and geometry around the metal ion. The complexes were characterized by single-crystal and powder X-ray diffraction analysis, as well as IR and NMR spectroscopy. The symmetrical complexes 2-Cl and 3-Cl, where zinc atoms are located at a two-fold axis, do not exhibit photophysical properties, unlike their asymmetrical analogs 2-NO3 and 3-NO3 with the same complex cation. Asymmetrical pentacoordinated 1-Cl and hexacoordinated 1-NO3 complexes exhibit photophysical properties. An admixture of allowed intra-ligand (1IL) and chloro (X)-to-ligand charge-transfer (1XLCT) electronic transitions is responsible for the fluorescence of the 1-Cl complex. The origin of the emission of the 1-NO3 complex is ascribed to an admixture of 3IL and ligand-to-ligand charge-transfer (3LLCT) forbidden electronic transitions, while for 3-NO3 most electronic excitations are of LLCT character. The thermal stability of the complexes is in accord with the strength of respective intermolecular interactions. The antiproliferative activity of the complexes was in the nanomolar range on some of the investigated cancer cell lines. Contrary to the increase of antiproliferative activity of the complexes in comparison to the free ligands in cancer cell lines, an acute toxicity determined in the brine shrimp assay follows the opposite trend. The overall results suggest that Zn(II) thiazoyl–hydrazone complexes have considerable potential as multifunctional materials.
T2  - CrystEngComm
T1  - Zn(II) complexes with thiazolyl–hydrazones: structure, intermolecular interactions, photophysical properties, computational study and anticancer activity
IS  - 29
DO  - 10.1039/D2CE00443G
ER  - 
@article{
author = "Araškov, Jovana and Višnjevac, Aleksandar and Popović, Jasminka and Blagojević, Vladimir A. and Fernandes, Henrique S. and Sousa, Sérgio F. and Novaković, Irena T. and Padrón, José M. and Holló, Berta Barta and Monge, Miguel and Rodríguez-Castillo, María and López-de-Luzuriaga, José M. and Filipović, Nenad R. and Todorović, Tamara",
year = "2022",
abstract = "Earth-abundant, cheap and non-toxic zinc-based coordination compounds are drawing research attention as promising candidates for various applications, such as photoluminescent materials and anticancer agents. In this paper we report six zinc complexes (1–3-NO3 and 1–3-Cl) with pyridyl-based thiazolyl–hydrazone ligands, which differ in the nature of substituents at the ligands' periphery, anion type, and geometry around the metal ion. The complexes were characterized by single-crystal and powder X-ray diffraction analysis, as well as IR and NMR spectroscopy. The symmetrical complexes 2-Cl and 3-Cl, where zinc atoms are located at a two-fold axis, do not exhibit photophysical properties, unlike their asymmetrical analogs 2-NO3 and 3-NO3 with the same complex cation. Asymmetrical pentacoordinated 1-Cl and hexacoordinated 1-NO3 complexes exhibit photophysical properties. An admixture of allowed intra-ligand (1IL) and chloro (X)-to-ligand charge-transfer (1XLCT) electronic transitions is responsible for the fluorescence of the 1-Cl complex. The origin of the emission of the 1-NO3 complex is ascribed to an admixture of 3IL and ligand-to-ligand charge-transfer (3LLCT) forbidden electronic transitions, while for 3-NO3 most electronic excitations are of LLCT character. The thermal stability of the complexes is in accord with the strength of respective intermolecular interactions. The antiproliferative activity of the complexes was in the nanomolar range on some of the investigated cancer cell lines. Contrary to the increase of antiproliferative activity of the complexes in comparison to the free ligands in cancer cell lines, an acute toxicity determined in the brine shrimp assay follows the opposite trend. The overall results suggest that Zn(II) thiazoyl–hydrazone complexes have considerable potential as multifunctional materials.",
journal = "CrystEngComm",
title = "Zn(II) complexes with thiazolyl–hydrazones: structure, intermolecular interactions, photophysical properties, computational study and anticancer activity",
number = "29",
doi = "10.1039/D2CE00443G"
}
Araškov, J., Višnjevac, A., Popović, J., Blagojević, V. A., Fernandes, H. S., Sousa, S. F., Novaković, I. T., Padrón, J. M., Holló, B. B., Monge, M., Rodríguez-Castillo, M., López-de-Luzuriaga, J. M., Filipović, N. R.,& Todorović, T.. (2022). Zn(II) complexes with thiazolyl–hydrazones: structure, intermolecular interactions, photophysical properties, computational study and anticancer activity. in CrystEngComm(29).
https://doi.org/10.1039/D2CE00443G
Araškov J, Višnjevac A, Popović J, Blagojević VA, Fernandes HS, Sousa SF, Novaković IT, Padrón JM, Holló BB, Monge M, Rodríguez-Castillo M, López-de-Luzuriaga JM, Filipović NR, Todorović T. Zn(II) complexes with thiazolyl–hydrazones: structure, intermolecular interactions, photophysical properties, computational study and anticancer activity. in CrystEngComm. 2022;(29).
doi:10.1039/D2CE00443G .
Araškov, Jovana, Višnjevac, Aleksandar, Popović, Jasminka, Blagojević, Vladimir A., Fernandes, Henrique S., Sousa, Sérgio F., Novaković, Irena T., Padrón, José M., Holló, Berta Barta, Monge, Miguel, Rodríguez-Castillo, María, López-de-Luzuriaga, José M., Filipović, Nenad R., Todorović, Tamara, "Zn(II) complexes with thiazolyl–hydrazones: structure, intermolecular interactions, photophysical properties, computational study and anticancer activity" in CrystEngComm, no. 29 (2022),
https://doi.org/10.1039/D2CE00443G . .
6
7
7
5

Study of the anticancer potential of Cd complexes of selenazoyl-hydrazones and their sulfur isosters

Marković, Sanja B.; Maciejewska, Natalia; Olszewski, Mateusz; Višnjevac, Aleksandar; Puerta, Adrián; Padrón, José M.; Novaković, Irena T.; Kojić, Snežana; Fernandes, Henrique S.; Sousa, Sérgio F.; Ramotowska, Sandra; Chylewska, Agnieszka; Makowski, Mariusz; Todorović, Tamara; Filipović, Nenad R.

(Elsevier, 2022)

TY  - JOUR
AU  - Marković, Sanja B.
AU  - Maciejewska, Natalia
AU  - Olszewski, Mateusz
AU  - Višnjevac, Aleksandar
AU  - Puerta, Adrián
AU  - Padrón, José M.
AU  - Novaković, Irena T.
AU  - Kojić, Snežana
AU  - Fernandes, Henrique S.
AU  - Sousa, Sérgio F.
AU  - Ramotowska, Sandra
AU  - Chylewska, Agnieszka
AU  - Makowski, Mariusz
AU  - Todorović, Tamara
AU  - Filipović, Nenad R.
PY  - 2022
UR  - https://www.sciencedirect.com/science/article/pii/S0223523422003518
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5209
AB  - The biological activity of Cd compounds has been investigated scarce since Cd has been recognized as a human carcinogen. However, the toxicity of cadmium is comparable to the toxicity of noble metals such as Pt and Pd. The paradigm of metal toxicity has been challenged suggesting that metal toxicity is not a constant property, yet it depends on many factors like the presence of appropriate ligands. Studies on anticancer activity of cadmium complexes showed that the complexation of various ligands resulted in complexes that showed better activities than approved drugs. In the present study, cadmium complexes with biologically potent thiazolyl/selenazoyl-hydrazone ligands have been prepared, and tested for their activity against different types of tumor cell models. The complexation of ligands with Cd(II) resulted in a synergistic effect. The antiproliferative activity study revealed that all complexes are more active compared to 5-fluorouracil and cisplatin. The mechanism of tumor cell growth inhibition reveal that selenium-based compounds induce cell death in T-47D (gland carcinoma) cells through apoptosis via caspase-3/7 activation. Additionally, their pro-apoptotic effect was stronger compared to etoposide and cisplatin. Nuclease activity, detected by gel electrophoresis, may be the possible mechanism of anticancer action of investigated complexes.
PB  - Elsevier
T2  - European Journal of Medicinal Chemistry
T1  - Study of the anticancer potential of Cd complexes of selenazoyl-hydrazones and their sulfur isosters
VL  - 238
SP  - 114449
DO  - 10.1016/j.ejmech.2022.114449
ER  - 
@article{
author = "Marković, Sanja B. and Maciejewska, Natalia and Olszewski, Mateusz and Višnjevac, Aleksandar and Puerta, Adrián and Padrón, José M. and Novaković, Irena T. and Kojić, Snežana and Fernandes, Henrique S. and Sousa, Sérgio F. and Ramotowska, Sandra and Chylewska, Agnieszka and Makowski, Mariusz and Todorović, Tamara and Filipović, Nenad R.",
year = "2022",
abstract = "The biological activity of Cd compounds has been investigated scarce since Cd has been recognized as a human carcinogen. However, the toxicity of cadmium is comparable to the toxicity of noble metals such as Pt and Pd. The paradigm of metal toxicity has been challenged suggesting that metal toxicity is not a constant property, yet it depends on many factors like the presence of appropriate ligands. Studies on anticancer activity of cadmium complexes showed that the complexation of various ligands resulted in complexes that showed better activities than approved drugs. In the present study, cadmium complexes with biologically potent thiazolyl/selenazoyl-hydrazone ligands have been prepared, and tested for their activity against different types of tumor cell models. The complexation of ligands with Cd(II) resulted in a synergistic effect. The antiproliferative activity study revealed that all complexes are more active compared to 5-fluorouracil and cisplatin. The mechanism of tumor cell growth inhibition reveal that selenium-based compounds induce cell death in T-47D (gland carcinoma) cells through apoptosis via caspase-3/7 activation. Additionally, their pro-apoptotic effect was stronger compared to etoposide and cisplatin. Nuclease activity, detected by gel electrophoresis, may be the possible mechanism of anticancer action of investigated complexes.",
publisher = "Elsevier",
journal = "European Journal of Medicinal Chemistry",
title = "Study of the anticancer potential of Cd complexes of selenazoyl-hydrazones and their sulfur isosters",
volume = "238",
pages = "114449",
doi = "10.1016/j.ejmech.2022.114449"
}
Marković, S. B., Maciejewska, N., Olszewski, M., Višnjevac, A., Puerta, A., Padrón, J. M., Novaković, I. T., Kojić, S., Fernandes, H. S., Sousa, S. F., Ramotowska, S., Chylewska, A., Makowski, M., Todorović, T.,& Filipović, N. R.. (2022). Study of the anticancer potential of Cd complexes of selenazoyl-hydrazones and their sulfur isosters. in European Journal of Medicinal Chemistry
Elsevier., 238, 114449.
https://doi.org/10.1016/j.ejmech.2022.114449
Marković SB, Maciejewska N, Olszewski M, Višnjevac A, Puerta A, Padrón JM, Novaković IT, Kojić S, Fernandes HS, Sousa SF, Ramotowska S, Chylewska A, Makowski M, Todorović T, Filipović NR. Study of the anticancer potential of Cd complexes of selenazoyl-hydrazones and their sulfur isosters. in European Journal of Medicinal Chemistry. 2022;238:114449.
doi:10.1016/j.ejmech.2022.114449 .
Marković, Sanja B., Maciejewska, Natalia, Olszewski, Mateusz, Višnjevac, Aleksandar, Puerta, Adrián, Padrón, José M., Novaković, Irena T., Kojić, Snežana, Fernandes, Henrique S., Sousa, Sérgio F., Ramotowska, Sandra, Chylewska, Agnieszka, Makowski, Mariusz, Todorović, Tamara, Filipović, Nenad R., "Study of the anticancer potential of Cd complexes of selenazoyl-hydrazones and their sulfur isosters" in European Journal of Medicinal Chemistry, 238 (2022):114449,
https://doi.org/10.1016/j.ejmech.2022.114449 . .
11
10
1
8
6