Simić, Stefan

Link to this page

Authority KeyName Variants
orcid::0000-0002-8226-8881
  • Simić, Stefan (11)

Author's Bibliography

Chemo- and biocatalytic esterification of marchantin A and cytotoxic activity of ester derivatives

Novaković, Miroslav M.; Simić, Stefan; Koračak, Ljiljana; Zlatović, Mario; Ilić-Tomič, Tatjana; Asakawa, Yoshinori; Nikodinović-Runić, Jasmina; Opsenica, Igor

(Elsevier, 2020)

TY  - JOUR
AU  - Novaković, Miroslav M.
AU  - Simić, Stefan
AU  - Koračak, Ljiljana
AU  - Zlatović, Mario
AU  - Ilić-Tomič, Tatjana
AU  - Asakawa, Yoshinori
AU  - Nikodinović-Runić, Jasmina
AU  - Opsenica, Igor
PY  - 2020
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3867
AB  - Chemical and biocatalytic synthesis of seven previously undescribed marchantin A ester derivatives has been presented. Chemical synthesis afforded three peresterified bisbibenzyl products (TE1-TE3), while enzymatic method, using lipase, produced regioselective monoester derivatives (ME1-ME4). The antiproliferative activities of all prepared derivatives of marchantin A were tested on MRC-5 healthy human lung fibroblast, A549 human lung cancer, and MDA-MB-231 human breast cancer cell lines. All tested esters were less cytotoxic in comparison to marchantin A, but they also exhibited lower cytotoxicity against healthy cells. Monoesters displayed higher cytotoxic activities than the corresponding peresterified products, presumably due to the presence of free catechol group. Monohexanoyl ester ME3 displayed the same IC50 like marchantin A against MDA-MB-231 cells, but the selectivity was higher. In this way, regioselective enzymatic monoesterification enhanced selectivity of marchantin A. ME3 was also the most active among all derivatives against lung cancer cells A549 with the slightly lower activity and selectivity in comparison to marchantin A.
PB  - Elsevier
T2  - Fitoterapia
T1  - Chemo- and biocatalytic esterification of marchantin A and cytotoxic activity of ester derivatives
VL  - 142
SP  - 104520
DO  - 10.1016/j.fitote.2020.104520
ER  - 
@article{
author = "Novaković, Miroslav M. and Simić, Stefan and Koračak, Ljiljana and Zlatović, Mario and Ilić-Tomič, Tatjana and Asakawa, Yoshinori and Nikodinović-Runić, Jasmina and Opsenica, Igor",
year = "2020",
abstract = "Chemical and biocatalytic synthesis of seven previously undescribed marchantin A ester derivatives has been presented. Chemical synthesis afforded three peresterified bisbibenzyl products (TE1-TE3), while enzymatic method, using lipase, produced regioselective monoester derivatives (ME1-ME4). The antiproliferative activities of all prepared derivatives of marchantin A were tested on MRC-5 healthy human lung fibroblast, A549 human lung cancer, and MDA-MB-231 human breast cancer cell lines. All tested esters were less cytotoxic in comparison to marchantin A, but they also exhibited lower cytotoxicity against healthy cells. Monoesters displayed higher cytotoxic activities than the corresponding peresterified products, presumably due to the presence of free catechol group. Monohexanoyl ester ME3 displayed the same IC50 like marchantin A against MDA-MB-231 cells, but the selectivity was higher. In this way, regioselective enzymatic monoesterification enhanced selectivity of marchantin A. ME3 was also the most active among all derivatives against lung cancer cells A549 with the slightly lower activity and selectivity in comparison to marchantin A.",
publisher = "Elsevier",
journal = "Fitoterapia",
title = "Chemo- and biocatalytic esterification of marchantin A and cytotoxic activity of ester derivatives",
volume = "142",
pages = "104520",
doi = "10.1016/j.fitote.2020.104520"
}
Novaković, M. M., Simić, S., Koračak, L., Zlatović, M., Ilić-Tomič, T., Asakawa, Y., Nikodinović-Runić, J.,& Opsenica, I.. (2020). Chemo- and biocatalytic esterification of marchantin A and cytotoxic activity of ester derivatives. in Fitoterapia
Elsevier., 142, 104520.
https://doi.org/10.1016/j.fitote.2020.104520
Novaković MM, Simić S, Koračak L, Zlatović M, Ilić-Tomič T, Asakawa Y, Nikodinović-Runić J, Opsenica I. Chemo- and biocatalytic esterification of marchantin A and cytotoxic activity of ester derivatives. in Fitoterapia. 2020;142:104520.
doi:10.1016/j.fitote.2020.104520 .
Novaković, Miroslav M., Simić, Stefan, Koračak, Ljiljana, Zlatović, Mario, Ilić-Tomič, Tatjana, Asakawa, Yoshinori, Nikodinović-Runić, Jasmina, Opsenica, Igor, "Chemo- and biocatalytic esterification of marchantin A and cytotoxic activity of ester derivatives" in Fitoterapia, 142 (2020):104520,
https://doi.org/10.1016/j.fitote.2020.104520 . .
1
1
1
1

Supplementary data for the article: Novakovic, M.; Simić, S.; Koračak, L.; Zlatović, M.; Ilic-Tomic, T.; Asakawa, Y.; Nikodinovic-Runic, J.; Opsenica, I. Chemo- and Biocatalytic Esterification of Marchantin A and Cytotoxic Activity of Ester Derivatives. Fitoterapia 2020, 142. https://doi.org/10.1016/j.fitote.2020.104520.oxic activity of ester derivatives http://cherry.chem.bg.ac.rs/handle/123456789/3867

Novaković, Miroslav M.; Simić, Stefan; Koračak, Ljiljana; Zlatović, Mario; Ilić-Tomič, Tatjana; Asakawa, Yoshinori; Nikodinović-Runić, Jasmina; Opsenica, Igor

(Elsevier, 2020)

TY  - DATA
AU  - Novaković, Miroslav M.
AU  - Simić, Stefan
AU  - Koračak, Ljiljana
AU  - Zlatović, Mario
AU  - Ilić-Tomič, Tatjana
AU  - Asakawa, Yoshinori
AU  - Nikodinović-Runić, Jasmina
AU  - Opsenica, Igor
PY  - 2020
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3889
PB  - Elsevier
T2  - Fitoterapia
T1  - Supplementary data for the article: Novakovic, M.; Simić, S.; Koračak, L.; Zlatović, M.; Ilic-Tomic, T.; Asakawa, Y.; Nikodinovic-Runic, J.; Opsenica, I. Chemo- and Biocatalytic Esterification of Marchantin A and Cytotoxic Activity of Ester Derivatives. Fitoterapia 2020, 142. https://doi.org/10.1016/j.fitote.2020.104520.oxic activity of ester derivatives http://cherry.chem.bg.ac.rs/handle/123456789/3867
ER  - 
@misc{
author = "Novaković, Miroslav M. and Simić, Stefan and Koračak, Ljiljana and Zlatović, Mario and Ilić-Tomič, Tatjana and Asakawa, Yoshinori and Nikodinović-Runić, Jasmina and Opsenica, Igor",
year = "2020",
publisher = "Elsevier",
journal = "Fitoterapia",
title = "Supplementary data for the article: Novakovic, M.; Simić, S.; Koračak, L.; Zlatović, M.; Ilic-Tomic, T.; Asakawa, Y.; Nikodinovic-Runic, J.; Opsenica, I. Chemo- and Biocatalytic Esterification of Marchantin A and Cytotoxic Activity of Ester Derivatives. Fitoterapia 2020, 142. https://doi.org/10.1016/j.fitote.2020.104520.oxic activity of ester derivatives http://cherry.chem.bg.ac.rs/handle/123456789/3867"
}
Novaković, M. M., Simić, S., Koračak, L., Zlatović, M., Ilić-Tomič, T., Asakawa, Y., Nikodinović-Runić, J.,& Opsenica, I.. (2020). Supplementary data for the article: Novakovic, M.; Simić, S.; Koračak, L.; Zlatović, M.; Ilic-Tomic, T.; Asakawa, Y.; Nikodinovic-Runic, J.; Opsenica, I. Chemo- and Biocatalytic Esterification of Marchantin A and Cytotoxic Activity of Ester Derivatives. Fitoterapia 2020, 142. https://doi.org/10.1016/j.fitote.2020.104520.oxic activity of ester derivatives http://cherry.chem.bg.ac.rs/handle/123456789/3867. in Fitoterapia
Elsevier..
Novaković MM, Simić S, Koračak L, Zlatović M, Ilić-Tomič T, Asakawa Y, Nikodinović-Runić J, Opsenica I. Supplementary data for the article: Novakovic, M.; Simić, S.; Koračak, L.; Zlatović, M.; Ilic-Tomic, T.; Asakawa, Y.; Nikodinovic-Runic, J.; Opsenica, I. Chemo- and Biocatalytic Esterification of Marchantin A and Cytotoxic Activity of Ester Derivatives. Fitoterapia 2020, 142. https://doi.org/10.1016/j.fitote.2020.104520.oxic activity of ester derivatives http://cherry.chem.bg.ac.rs/handle/123456789/3867. in Fitoterapia. 2020;..
Novaković, Miroslav M., Simić, Stefan, Koračak, Ljiljana, Zlatović, Mario, Ilić-Tomič, Tatjana, Asakawa, Yoshinori, Nikodinović-Runić, Jasmina, Opsenica, Igor, "Supplementary data for the article: Novakovic, M.; Simić, S.; Koračak, L.; Zlatović, M.; Ilic-Tomic, T.; Asakawa, Y.; Nikodinovic-Runic, J.; Opsenica, I. Chemo- and Biocatalytic Esterification of Marchantin A and Cytotoxic Activity of Ester Derivatives. Fitoterapia 2020, 142. https://doi.org/10.1016/j.fitote.2020.104520.oxic activity of ester derivatives http://cherry.chem.bg.ac.rs/handle/123456789/3867" in Fitoterapia (2020).

Chemo- and biocatalytic esterification of marchantin A and cytotoxic activity of ester derivatives

Novaković, Miroslav M.; Simić, Stefan; Koračak, Ljiljana; Zlatović, Mario; Ilić-Tomič, Tatjana; Asakawa, Yoshinori; Nikodinović-Runić, Jasmina; Opsenica, Igor

(Elsevier, 2020)

TY  - JOUR
AU  - Novaković, Miroslav M.
AU  - Simić, Stefan
AU  - Koračak, Ljiljana
AU  - Zlatović, Mario
AU  - Ilić-Tomič, Tatjana
AU  - Asakawa, Yoshinori
AU  - Nikodinović-Runić, Jasmina
AU  - Opsenica, Igor
PY  - 2020
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3890
AB  - Chemical and biocatalytic synthesis of seven previously undescribed marchantin A ester derivatives has been presented. Chemical synthesis afforded three peresterified bisbibenzyl products (TE1-TE3), while enzymatic method, using lipase, produced regioselective monoester derivatives (ME1-ME4). The antiproliferative activities of all prepared derivatives of marchantin A were tested on MRC-5 healthy human lung fibroblast, A549 human lung cancer, and MDA-MB-231 human breast cancer cell lines. All tested esters were less cytotoxic in comparison to marchantin A, but they also exhibited lower cytotoxicity against healthy cells. Monoesters displayed higher cytotoxic activities than the corresponding peresterified products, presumably due to the presence of free catechol group. Monohexanoyl ester ME3 displayed the same IC50 like marchantin A against MDA-MB-231 cells, but the selectivity was higher. In this way, regioselective enzymatic monoesterification enhanced selectivity of marchantin A. ME3 was also the most active among all derivatives against lung cancer cells A549 with the slightly lower activity and selectivity in comparison to marchantin A.
PB  - Elsevier
T2  - Fitoterapia
T1  - Chemo- and biocatalytic esterification of marchantin A and cytotoxic activity of ester derivatives
VL  - 142
SP  - 104520
DO  - 10.1016/j.fitote.2020.104520
ER  - 
@article{
author = "Novaković, Miroslav M. and Simić, Stefan and Koračak, Ljiljana and Zlatović, Mario and Ilić-Tomič, Tatjana and Asakawa, Yoshinori and Nikodinović-Runić, Jasmina and Opsenica, Igor",
year = "2020",
abstract = "Chemical and biocatalytic synthesis of seven previously undescribed marchantin A ester derivatives has been presented. Chemical synthesis afforded three peresterified bisbibenzyl products (TE1-TE3), while enzymatic method, using lipase, produced regioselective monoester derivatives (ME1-ME4). The antiproliferative activities of all prepared derivatives of marchantin A were tested on MRC-5 healthy human lung fibroblast, A549 human lung cancer, and MDA-MB-231 human breast cancer cell lines. All tested esters were less cytotoxic in comparison to marchantin A, but they also exhibited lower cytotoxicity against healthy cells. Monoesters displayed higher cytotoxic activities than the corresponding peresterified products, presumably due to the presence of free catechol group. Monohexanoyl ester ME3 displayed the same IC50 like marchantin A against MDA-MB-231 cells, but the selectivity was higher. In this way, regioselective enzymatic monoesterification enhanced selectivity of marchantin A. ME3 was also the most active among all derivatives against lung cancer cells A549 with the slightly lower activity and selectivity in comparison to marchantin A.",
publisher = "Elsevier",
journal = "Fitoterapia",
title = "Chemo- and biocatalytic esterification of marchantin A and cytotoxic activity of ester derivatives",
volume = "142",
pages = "104520",
doi = "10.1016/j.fitote.2020.104520"
}
Novaković, M. M., Simić, S., Koračak, L., Zlatović, M., Ilić-Tomič, T., Asakawa, Y., Nikodinović-Runić, J.,& Opsenica, I.. (2020). Chemo- and biocatalytic esterification of marchantin A and cytotoxic activity of ester derivatives. in Fitoterapia
Elsevier., 142, 104520.
https://doi.org/10.1016/j.fitote.2020.104520
Novaković MM, Simić S, Koračak L, Zlatović M, Ilić-Tomič T, Asakawa Y, Nikodinović-Runić J, Opsenica I. Chemo- and biocatalytic esterification of marchantin A and cytotoxic activity of ester derivatives. in Fitoterapia. 2020;142:104520.
doi:10.1016/j.fitote.2020.104520 .
Novaković, Miroslav M., Simić, Stefan, Koračak, Ljiljana, Zlatović, Mario, Ilić-Tomič, Tatjana, Asakawa, Yoshinori, Nikodinović-Runić, Jasmina, Opsenica, Igor, "Chemo- and biocatalytic esterification of marchantin A and cytotoxic activity of ester derivatives" in Fitoterapia, 142 (2020):104520,
https://doi.org/10.1016/j.fitote.2020.104520 . .
1
1
1
1

Development of an efficient biocatalytic system based on bacterial laccase for the oxidation of selected 1,4-dihydropyridines

Simić, Stefan; Jeremić, Sanja; Đokić, Lidija; Božić, Nataša; Vujčić, Zoran; Lončar, Nikola L.; Senthamaraikannan, Ramsankar; Babu, Ramesh P.; Opsenica, Igor; Nikodinović-Runić, Jasmina

(2020)

TY  - JOUR
AU  - Simić, Stefan
AU  - Jeremić, Sanja
AU  - Đokić, Lidija
AU  - Božić, Nataša
AU  - Vujčić, Zoran
AU  - Lončar, Nikola L.
AU  - Senthamaraikannan, Ramsankar
AU  - Babu, Ramesh P.
AU  - Opsenica, Igor
AU  - Nikodinović-Runić, Jasmina
PY  - 2020
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3356
AB  - Biocatalytic oxidations mediated by laccases are gaining importance due to their versatility and beneficial environmental effects. In this study, the oxidation of 1,4-dihydropyridines has been performed using three different types of bacterial laccase-based catalysts: purified laccase from Bacillus licheniformis ATCC 9945a (BliLacc), Escherichia coli whole cells expressing this laccase, and bacterial nanocellulose (BNC) supported BliLacc catalysts. The catalysts based on bacterial laccase were compared to the commercially available Trametes versicolor laccase (TvLacc). The oxidation product of 2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate was obtained within 7–24 h with good yields (70–99%) with all three biocatalysts. The substrate scope was examined with five additional 1,4-dihydropyridines, one of which was oxidized in high yield. Whole-cell biocatalyst was stable when stored for up to 1-month at 4 °C. In addition, evidence has been provided that multicopper oxidase CueO from the E. coli expression host contributed to the oxidation efficiency of the whole-cell biocatalyst. The immobilized whole-cell biocatalyst showed satisfactory activity and retained 37% of its original activity after three biotransformation cycles.
T2  - Enzyme and Microbial Technology
T1  - Development of an efficient biocatalytic system based on bacterial laccase for the oxidation of selected 1,4-dihydropyridines
VL  - 132
DO  - 10.1016/j.enzmictec.2019.109411
ER  - 
@article{
author = "Simić, Stefan and Jeremić, Sanja and Đokić, Lidija and Božić, Nataša and Vujčić, Zoran and Lončar, Nikola L. and Senthamaraikannan, Ramsankar and Babu, Ramesh P. and Opsenica, Igor and Nikodinović-Runić, Jasmina",
year = "2020",
abstract = "Biocatalytic oxidations mediated by laccases are gaining importance due to their versatility and beneficial environmental effects. In this study, the oxidation of 1,4-dihydropyridines has been performed using three different types of bacterial laccase-based catalysts: purified laccase from Bacillus licheniformis ATCC 9945a (BliLacc), Escherichia coli whole cells expressing this laccase, and bacterial nanocellulose (BNC) supported BliLacc catalysts. The catalysts based on bacterial laccase were compared to the commercially available Trametes versicolor laccase (TvLacc). The oxidation product of 2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate was obtained within 7–24 h with good yields (70–99%) with all three biocatalysts. The substrate scope was examined with five additional 1,4-dihydropyridines, one of which was oxidized in high yield. Whole-cell biocatalyst was stable when stored for up to 1-month at 4 °C. In addition, evidence has been provided that multicopper oxidase CueO from the E. coli expression host contributed to the oxidation efficiency of the whole-cell biocatalyst. The immobilized whole-cell biocatalyst showed satisfactory activity and retained 37% of its original activity after three biotransformation cycles.",
journal = "Enzyme and Microbial Technology",
title = "Development of an efficient biocatalytic system based on bacterial laccase for the oxidation of selected 1,4-dihydropyridines",
volume = "132",
doi = "10.1016/j.enzmictec.2019.109411"
}
Simić, S., Jeremić, S., Đokić, L., Božić, N., Vujčić, Z., Lončar, N. L., Senthamaraikannan, R., Babu, R. P., Opsenica, I.,& Nikodinović-Runić, J.. (2020). Development of an efficient biocatalytic system based on bacterial laccase for the oxidation of selected 1,4-dihydropyridines. in Enzyme and Microbial Technology, 132.
https://doi.org/10.1016/j.enzmictec.2019.109411
Simić S, Jeremić S, Đokić L, Božić N, Vujčić Z, Lončar NL, Senthamaraikannan R, Babu RP, Opsenica I, Nikodinović-Runić J. Development of an efficient biocatalytic system based on bacterial laccase for the oxidation of selected 1,4-dihydropyridines. in Enzyme and Microbial Technology. 2020;132.
doi:10.1016/j.enzmictec.2019.109411 .
Simić, Stefan, Jeremić, Sanja, Đokić, Lidija, Božić, Nataša, Vujčić, Zoran, Lončar, Nikola L., Senthamaraikannan, Ramsankar, Babu, Ramesh P., Opsenica, Igor, Nikodinović-Runić, Jasmina, "Development of an efficient biocatalytic system based on bacterial laccase for the oxidation of selected 1,4-dihydropyridines" in Enzyme and Microbial Technology, 132 (2020),
https://doi.org/10.1016/j.enzmictec.2019.109411 . .
6
5
6

Bisaurones – enzymatic production and biological evaluation

Novaković, Miroslav M.; Ilić-Tomić, Tatjana; Tešević, Vele; Simić, Katarina; Ivanović, Stefan; Simić, Stefan; Opsenica, Igor; Nikodinović-Runić, Jasmina

(Royal Society of Chemistry, 2020)

TY  - JOUR
AU  - Novaković, Miroslav M.
AU  - Ilić-Tomić, Tatjana
AU  - Tešević, Vele
AU  - Simić, Katarina
AU  - Ivanović, Stefan
AU  - Simić, Stefan
AU  - Opsenica, Igor
AU  - Nikodinović-Runić, Jasmina
PY  - 2020
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4052
AB  - The Trametes versicolor laccase catalyzed oxidation of chalcone butein afforded four dimers of aurone sulfuretin (i.e. two regioisomeric pairs of diasteromers, 1-4) as the major products. The formation of the dimers was explained by a two step process involving the initial cyclization of butein into aurone sulfuretin, followed by the combination of two molecules of sulfuretin. The coupling process occurred between the 2,10-double bond of one molecule of sulfuretin and the (3′,4′) catechol group of the other to yield a dimeric structure. This was confirmed by the experiment involving the laccase catalyzed oxidation of sulfuretin yielding the same dimeric bisaurones. Compounds 1, 3 and 4, were isolated using semipreparative HPLC and characterized by the detailed analysis of the NMR, MS, IR, and UV-vis data. The structure of compound 2, isolated as a mixture containing ca. 25% of compound 1, was proposed by the comparison of 1H NMR data to compound 1 and by using LC-ESIMS analysis. The starting chalcone butein and the products of the biocatalytic transformation, aurone sulfuretin and sulfuretin dimers 1, 3 and 4, were evaluated for their cytotoxic and antioxidative properties in vitro using a healthy human fibroblast (MRC5) cell line. The biotransformation products showed lower cytotoxicity but higher antioxidative properties. The C. coggygria bark methanol extract rich in butein and sulfuretin was also biotransformed by laccase. The transformed extract exhibited significantly improved antioxidative activities.
PB  - Royal Society of Chemistry
T2  - New Journal of Chemistry
T1  - Bisaurones – enzymatic production and biological evaluation
VL  - 44
IS  - 23
SP  - 9647
EP  - 9655
DO  - 10.1039/d0nj00758g
ER  - 
@article{
author = "Novaković, Miroslav M. and Ilić-Tomić, Tatjana and Tešević, Vele and Simić, Katarina and Ivanović, Stefan and Simić, Stefan and Opsenica, Igor and Nikodinović-Runić, Jasmina",
year = "2020",
abstract = "The Trametes versicolor laccase catalyzed oxidation of chalcone butein afforded four dimers of aurone sulfuretin (i.e. two regioisomeric pairs of diasteromers, 1-4) as the major products. The formation of the dimers was explained by a two step process involving the initial cyclization of butein into aurone sulfuretin, followed by the combination of two molecules of sulfuretin. The coupling process occurred between the 2,10-double bond of one molecule of sulfuretin and the (3′,4′) catechol group of the other to yield a dimeric structure. This was confirmed by the experiment involving the laccase catalyzed oxidation of sulfuretin yielding the same dimeric bisaurones. Compounds 1, 3 and 4, were isolated using semipreparative HPLC and characterized by the detailed analysis of the NMR, MS, IR, and UV-vis data. The structure of compound 2, isolated as a mixture containing ca. 25% of compound 1, was proposed by the comparison of 1H NMR data to compound 1 and by using LC-ESIMS analysis. The starting chalcone butein and the products of the biocatalytic transformation, aurone sulfuretin and sulfuretin dimers 1, 3 and 4, were evaluated for their cytotoxic and antioxidative properties in vitro using a healthy human fibroblast (MRC5) cell line. The biotransformation products showed lower cytotoxicity but higher antioxidative properties. The C. coggygria bark methanol extract rich in butein and sulfuretin was also biotransformed by laccase. The transformed extract exhibited significantly improved antioxidative activities.",
publisher = "Royal Society of Chemistry",
journal = "New Journal of Chemistry",
title = "Bisaurones – enzymatic production and biological evaluation",
volume = "44",
number = "23",
pages = "9647-9655",
doi = "10.1039/d0nj00758g"
}
Novaković, M. M., Ilić-Tomić, T., Tešević, V., Simić, K., Ivanović, S., Simić, S., Opsenica, I.,& Nikodinović-Runić, J.. (2020). Bisaurones – enzymatic production and biological evaluation. in New Journal of Chemistry
Royal Society of Chemistry., 44(23), 9647-9655.
https://doi.org/10.1039/d0nj00758g
Novaković MM, Ilić-Tomić T, Tešević V, Simić K, Ivanović S, Simić S, Opsenica I, Nikodinović-Runić J. Bisaurones – enzymatic production and biological evaluation. in New Journal of Chemistry. 2020;44(23):9647-9655.
doi:10.1039/d0nj00758g .
Novaković, Miroslav M., Ilić-Tomić, Tatjana, Tešević, Vele, Simić, Katarina, Ivanović, Stefan, Simić, Stefan, Opsenica, Igor, Nikodinović-Runić, Jasmina, "Bisaurones – enzymatic production and biological evaluation" in New Journal of Chemistry, 44, no. 23 (2020):9647-9655,
https://doi.org/10.1039/d0nj00758g . .

Supplementary data for the article: Novakovic, M.; Ilic-Tomic, T.; Tesevic, V.; Simic, K.; Ivanovic, S.; Simic, S.; Opsenica, I.; Nikodinovic-Runic, J. Bisaurones – Enzymatic Production and Biological Evaluation. New J. Chem. 2020, 44 (23), 9647–9655. https://doi.org/10.1039/D0NJ00758G

Novaković, Miroslav M.; Ilić-Tomić, Tatjana; Tešević, Vele; Simić, Katarina; Ivanović, Stefan; Simić, Stefan; Opsenica, Igor; Nikodinović-Runić, Jasmina

(Royal Society of Chemistry, 2020)

TY  - DATA
AU  - Novaković, Miroslav M.
AU  - Ilić-Tomić, Tatjana
AU  - Tešević, Vele
AU  - Simić, Katarina
AU  - Ivanović, Stefan
AU  - Simić, Stefan
AU  - Opsenica, Igor
AU  - Nikodinović-Runić, Jasmina
PY  - 2020
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4078
PB  - Royal Society of Chemistry
T2  - New Journal of Chemistry
T1  - Supplementary data for the article: Novakovic, M.; Ilic-Tomic, T.; Tesevic, V.; Simic, K.; Ivanovic, S.; Simic, S.; Opsenica, I.; Nikodinovic-Runic, J. Bisaurones – Enzymatic Production and Biological Evaluation. New J. Chem. 2020, 44 (23), 9647–9655. https://doi.org/10.1039/D0NJ00758G
ER  - 
@misc{
author = "Novaković, Miroslav M. and Ilić-Tomić, Tatjana and Tešević, Vele and Simić, Katarina and Ivanović, Stefan and Simić, Stefan and Opsenica, Igor and Nikodinović-Runić, Jasmina",
year = "2020",
publisher = "Royal Society of Chemistry",
journal = "New Journal of Chemistry",
title = "Supplementary data for the article: Novakovic, M.; Ilic-Tomic, T.; Tesevic, V.; Simic, K.; Ivanovic, S.; Simic, S.; Opsenica, I.; Nikodinovic-Runic, J. Bisaurones – Enzymatic Production and Biological Evaluation. New J. Chem. 2020, 44 (23), 9647–9655. https://doi.org/10.1039/D0NJ00758G"
}
Novaković, M. M., Ilić-Tomić, T., Tešević, V., Simić, K., Ivanović, S., Simić, S., Opsenica, I.,& Nikodinović-Runić, J.. (2020). Supplementary data for the article: Novakovic, M.; Ilic-Tomic, T.; Tesevic, V.; Simic, K.; Ivanovic, S.; Simic, S.; Opsenica, I.; Nikodinovic-Runic, J. Bisaurones – Enzymatic Production and Biological Evaluation. New J. Chem. 2020, 44 (23), 9647–9655. https://doi.org/10.1039/D0NJ00758G. in New Journal of Chemistry
Royal Society of Chemistry..
Novaković MM, Ilić-Tomić T, Tešević V, Simić K, Ivanović S, Simić S, Opsenica I, Nikodinović-Runić J. Supplementary data for the article: Novakovic, M.; Ilic-Tomic, T.; Tesevic, V.; Simic, K.; Ivanovic, S.; Simic, S.; Opsenica, I.; Nikodinovic-Runic, J. Bisaurones – Enzymatic Production and Biological Evaluation. New J. Chem. 2020, 44 (23), 9647–9655. https://doi.org/10.1039/D0NJ00758G. in New Journal of Chemistry. 2020;..
Novaković, Miroslav M., Ilić-Tomić, Tatjana, Tešević, Vele, Simić, Katarina, Ivanović, Stefan, Simić, Stefan, Opsenica, Igor, Nikodinović-Runić, Jasmina, "Supplementary data for the article: Novakovic, M.; Ilic-Tomic, T.; Tesevic, V.; Simic, K.; Ivanovic, S.; Simic, S.; Opsenica, I.; Nikodinovic-Runic, J. Bisaurones – Enzymatic Production and Biological Evaluation. New J. Chem. 2020, 44 (23), 9647–9655. https://doi.org/10.1039/D0NJ00758G" in New Journal of Chemistry (2020).

Supplementary data for article: Simić, S.; Jeremic, S.; Djokic, L.; Božić, N.; Vujčić, Z.; Lončar, N.; Senthamaraikannan, R.; Babu, R.; Opsenica, I. M.; Nikodinovic-Runic, J. Development of an Efficient Biocatalytic System Based on Bacterial Laccase for the Oxidation of Selected 1,4-Dihydropyridines. Enzyme and Microbial Technology 2020, 132. https://doi.org/10.1016/j.enzmictec.2019.109411

Simić, Stefan; Jeremić, Sanja; Đokić, Lidija; Božić, Nataša; Vujčić, Zoran; Lončar, Nikola L.; Senthamaraikannan, Ramsankar; Babu, Ramesh P.; Opsenica, Igor; Nikodinović-Runić, Jasmina

(2020)

TY  - DATA
AU  - Simić, Stefan
AU  - Jeremić, Sanja
AU  - Đokić, Lidija
AU  - Božić, Nataša
AU  - Vujčić, Zoran
AU  - Lončar, Nikola L.
AU  - Senthamaraikannan, Ramsankar
AU  - Babu, Ramesh P.
AU  - Opsenica, Igor
AU  - Nikodinović-Runić, Jasmina
PY  - 2020
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3357
T2  - Enzyme and Microbial Technology
T1  - Supplementary data for article: Simić, S.; Jeremic, S.; Djokic, L.; Božić, N.; Vujčić, Z.; Lončar, N.; Senthamaraikannan, R.; Babu, R.; Opsenica, I. M.; Nikodinovic-Runic, J. Development of an Efficient Biocatalytic System Based on Bacterial Laccase for the Oxidation of Selected 1,4-Dihydropyridines. Enzyme and Microbial Technology 2020, 132. https://doi.org/10.1016/j.enzmictec.2019.109411
ER  - 
@misc{
author = "Simić, Stefan and Jeremić, Sanja and Đokić, Lidija and Božić, Nataša and Vujčić, Zoran and Lončar, Nikola L. and Senthamaraikannan, Ramsankar and Babu, Ramesh P. and Opsenica, Igor and Nikodinović-Runić, Jasmina",
year = "2020",
journal = "Enzyme and Microbial Technology",
title = "Supplementary data for article: Simić, S.; Jeremic, S.; Djokic, L.; Božić, N.; Vujčić, Z.; Lončar, N.; Senthamaraikannan, R.; Babu, R.; Opsenica, I. M.; Nikodinovic-Runic, J. Development of an Efficient Biocatalytic System Based on Bacterial Laccase for the Oxidation of Selected 1,4-Dihydropyridines. Enzyme and Microbial Technology 2020, 132. https://doi.org/10.1016/j.enzmictec.2019.109411"
}
Simić, S., Jeremić, S., Đokić, L., Božić, N., Vujčić, Z., Lončar, N. L., Senthamaraikannan, R., Babu, R. P., Opsenica, I.,& Nikodinović-Runić, J.. (2020). Supplementary data for article: Simić, S.; Jeremic, S.; Djokic, L.; Božić, N.; Vujčić, Z.; Lončar, N.; Senthamaraikannan, R.; Babu, R.; Opsenica, I. M.; Nikodinovic-Runic, J. Development of an Efficient Biocatalytic System Based on Bacterial Laccase for the Oxidation of Selected 1,4-Dihydropyridines. Enzyme and Microbial Technology 2020, 132. https://doi.org/10.1016/j.enzmictec.2019.109411. in Enzyme and Microbial Technology.
Simić S, Jeremić S, Đokić L, Božić N, Vujčić Z, Lončar NL, Senthamaraikannan R, Babu RP, Opsenica I, Nikodinović-Runić J. Supplementary data for article: Simić, S.; Jeremic, S.; Djokic, L.; Božić, N.; Vujčić, Z.; Lončar, N.; Senthamaraikannan, R.; Babu, R.; Opsenica, I. M.; Nikodinovic-Runic, J. Development of an Efficient Biocatalytic System Based on Bacterial Laccase for the Oxidation of Selected 1,4-Dihydropyridines. Enzyme and Microbial Technology 2020, 132. https://doi.org/10.1016/j.enzmictec.2019.109411. in Enzyme and Microbial Technology. 2020;..
Simić, Stefan, Jeremić, Sanja, Đokić, Lidija, Božić, Nataša, Vujčić, Zoran, Lončar, Nikola L., Senthamaraikannan, Ramsankar, Babu, Ramesh P., Opsenica, Igor, Nikodinović-Runić, Jasmina, "Supplementary data for article: Simić, S.; Jeremic, S.; Djokic, L.; Božić, N.; Vujčić, Z.; Lončar, N.; Senthamaraikannan, R.; Babu, R.; Opsenica, I. M.; Nikodinovic-Runic, J. Development of an Efficient Biocatalytic System Based on Bacterial Laccase for the Oxidation of Selected 1,4-Dihydropyridines. Enzyme and Microbial Technology 2020, 132. https://doi.org/10.1016/j.enzmictec.2019.109411" in Enzyme and Microbial Technology (2020).

Expression and characterization of a dye-decolorizing peroxidase from pseudomonas fluorescens Pf0-1

Lončar, Nikola L.; Drašković, Natalija; Božić, Nataša; Romero, Elvira; Simić, Stefan; Opsenica, Igor; Vujčić, Zoran; Fraaije, Marco W.

(MDPI, 2019)

TY  - JOUR
AU  - Lončar, Nikola L.
AU  - Drašković, Natalija
AU  - Božić, Nataša
AU  - Romero, Elvira
AU  - Simić, Stefan
AU  - Opsenica, Igor
AU  - Vujčić, Zoran
AU  - Fraaije, Marco W.
PY  - 2019
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3709
AB  - The consumption of dyes is increasing worldwide in line with the increase of population and demand for clothes and other colored products. However, the efficiency of dyeing processes is still poor and results in large amounts of colored effluents. It is desired to develop a portfolio of enzymes which can be used for the treatment of colored wastewaters. Herein, we used genome sequence information to discover a dye-decolorizing peroxidase (DyP) from Pseudomonas fluorescens Pf-01. Two genes putatively encoding for DyPs were identified in the respective genome and cloned for expression in Escherichia coli, of which one (Pf DyP B2) could be overexpressed as a soluble protein. Pf DyP B2 shows some typical features known for DyPs which includes the ability to convert dyes at the expense of hydrogen peroxide. Interestingly, t-butyl hydroperoxide could be used as an alternative substrate to hydrogen peroxide. Immobilization of Pf DyP B2 in calcium-alginate beads resulted in a significant increase in stability: Pf DyP B2 retains 80% of its initial activity after 2 h incubation at 50◦ C, while the soluble enzyme is inactivated within minutes. Pf DyP B2 was also tested with aniline and ethyl diazoacetate as substrates. Based on GC-MS analyses, 30% conversion of the starting material was achieved after 65 h at 30◦ C. Importantly, this is the first report of a DyP-catalyzed insertion of a carbene into an N-H bond.
PB  - MDPI
T2  - Catalysts
T1  - Expression and characterization of a dye-decolorizing peroxidase from pseudomonas fluorescens Pf0-1
VL  - 9
IS  - 5
DO  - 10.3390/catal9050463
ER  - 
@article{
author = "Lončar, Nikola L. and Drašković, Natalija and Božić, Nataša and Romero, Elvira and Simić, Stefan and Opsenica, Igor and Vujčić, Zoran and Fraaije, Marco W.",
year = "2019",
abstract = "The consumption of dyes is increasing worldwide in line with the increase of population and demand for clothes and other colored products. However, the efficiency of dyeing processes is still poor and results in large amounts of colored effluents. It is desired to develop a portfolio of enzymes which can be used for the treatment of colored wastewaters. Herein, we used genome sequence information to discover a dye-decolorizing peroxidase (DyP) from Pseudomonas fluorescens Pf-01. Two genes putatively encoding for DyPs were identified in the respective genome and cloned for expression in Escherichia coli, of which one (Pf DyP B2) could be overexpressed as a soluble protein. Pf DyP B2 shows some typical features known for DyPs which includes the ability to convert dyes at the expense of hydrogen peroxide. Interestingly, t-butyl hydroperoxide could be used as an alternative substrate to hydrogen peroxide. Immobilization of Pf DyP B2 in calcium-alginate beads resulted in a significant increase in stability: Pf DyP B2 retains 80% of its initial activity after 2 h incubation at 50◦ C, while the soluble enzyme is inactivated within minutes. Pf DyP B2 was also tested with aniline and ethyl diazoacetate as substrates. Based on GC-MS analyses, 30% conversion of the starting material was achieved after 65 h at 30◦ C. Importantly, this is the first report of a DyP-catalyzed insertion of a carbene into an N-H bond.",
publisher = "MDPI",
journal = "Catalysts",
title = "Expression and characterization of a dye-decolorizing peroxidase from pseudomonas fluorescens Pf0-1",
volume = "9",
number = "5",
doi = "10.3390/catal9050463"
}
Lončar, N. L., Drašković, N., Božić, N., Romero, E., Simić, S., Opsenica, I., Vujčić, Z.,& Fraaije, M. W.. (2019). Expression and characterization of a dye-decolorizing peroxidase from pseudomonas fluorescens Pf0-1. in Catalysts
MDPI., 9(5).
https://doi.org/10.3390/catal9050463
Lončar NL, Drašković N, Božić N, Romero E, Simić S, Opsenica I, Vujčić Z, Fraaije MW. Expression and characterization of a dye-decolorizing peroxidase from pseudomonas fluorescens Pf0-1. in Catalysts. 2019;9(5).
doi:10.3390/catal9050463 .
Lončar, Nikola L., Drašković, Natalija, Božić, Nataša, Romero, Elvira, Simić, Stefan, Opsenica, Igor, Vujčić, Zoran, Fraaije, Marco W., "Expression and characterization of a dye-decolorizing peroxidase from pseudomonas fluorescens Pf0-1" in Catalysts, 9, no. 5 (2019),
https://doi.org/10.3390/catal9050463 . .
1
6
5
6

Supplementary data for the article: Lončar, N.; Drašković, N.; Božić, N.; Romero, E.; Simić, S.; Opsenica, I.; Vujčić, Z.; Fraaije, M. W. Expression and Characterization of a Dye-Decolorizing Peroxidase from Pseudomonas Fluorescens Pf0-1. Catalysts 2019, 9 (5). https://doi.org/10.3390/catal9050463

Lončar, Nikola L.; Drašković, Natalija; Božić, Nataša; Romero, Elvira; Simić, Stefan; Opsenica, Igor; Vujčić, Zoran; Fraaije, Marco W.

(MDPI, 2019)

TY  - DATA
AU  - Lončar, Nikola L.
AU  - Drašković, Natalija
AU  - Božić, Nataša
AU  - Romero, Elvira
AU  - Simić, Stefan
AU  - Opsenica, Igor
AU  - Vujčić, Zoran
AU  - Fraaije, Marco W.
PY  - 2019
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3710
PB  - MDPI
T2  - Catalysts
T1  - Supplementary data for the article: Lončar, N.; Drašković, N.; Božić, N.; Romero, E.; Simić, S.; Opsenica, I.; Vujčić, Z.; Fraaije, M. W. Expression and Characterization of a Dye-Decolorizing Peroxidase from Pseudomonas Fluorescens Pf0-1. Catalysts 2019, 9 (5). https://doi.org/10.3390/catal9050463
ER  - 
@misc{
author = "Lončar, Nikola L. and Drašković, Natalija and Božić, Nataša and Romero, Elvira and Simić, Stefan and Opsenica, Igor and Vujčić, Zoran and Fraaije, Marco W.",
year = "2019",
publisher = "MDPI",
journal = "Catalysts",
title = "Supplementary data for the article: Lončar, N.; Drašković, N.; Božić, N.; Romero, E.; Simić, S.; Opsenica, I.; Vujčić, Z.; Fraaije, M. W. Expression and Characterization of a Dye-Decolorizing Peroxidase from Pseudomonas Fluorescens Pf0-1. Catalysts 2019, 9 (5). https://doi.org/10.3390/catal9050463"
}
Lončar, N. L., Drašković, N., Božić, N., Romero, E., Simić, S., Opsenica, I., Vujčić, Z.,& Fraaije, M. W.. (2019). Supplementary data for the article: Lončar, N.; Drašković, N.; Božić, N.; Romero, E.; Simić, S.; Opsenica, I.; Vujčić, Z.; Fraaije, M. W. Expression and Characterization of a Dye-Decolorizing Peroxidase from Pseudomonas Fluorescens Pf0-1. Catalysts 2019, 9 (5). https://doi.org/10.3390/catal9050463. in Catalysts
MDPI..
Lončar NL, Drašković N, Božić N, Romero E, Simić S, Opsenica I, Vujčić Z, Fraaije MW. Supplementary data for the article: Lončar, N.; Drašković, N.; Božić, N.; Romero, E.; Simić, S.; Opsenica, I.; Vujčić, Z.; Fraaije, M. W. Expression and Characterization of a Dye-Decolorizing Peroxidase from Pseudomonas Fluorescens Pf0-1. Catalysts 2019, 9 (5). https://doi.org/10.3390/catal9050463. in Catalysts. 2019;..
Lončar, Nikola L., Drašković, Natalija, Božić, Nataša, Romero, Elvira, Simić, Stefan, Opsenica, Igor, Vujčić, Zoran, Fraaije, Marco W., "Supplementary data for the article: Lončar, N.; Drašković, N.; Božić, N.; Romero, E.; Simić, S.; Opsenica, I.; Vujčić, Z.; Fraaije, M. W. Expression and Characterization of a Dye-Decolorizing Peroxidase from Pseudomonas Fluorescens Pf0-1. Catalysts 2019, 9 (5). https://doi.org/10.3390/catal9050463" in Catalysts (2019).

Decarbonylation of Aromatic Aldehydes and Dehalogenation of Aryl Halides Using Maghemite-Supported Palladium Catalyst

Ajdačić, Vladimir; Nikolić, Andrea; Simić, Stefan; Manojlović, Dragan D.; Stojanović, Zoran; Nikodinović-Runić, Jasmina; Opsenica, Igor

(Georg Thieme Verlag Kg, Stuttgart, 2018)

TY  - JOUR
AU  - Ajdačić, Vladimir
AU  - Nikolić, Andrea
AU  - Simić, Stefan
AU  - Manojlović, Dragan D.
AU  - Stojanović, Zoran
AU  - Nikodinović-Runić, Jasmina
AU  - Opsenica, Igor
PY  - 2018
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/2569
AB  - A facile decarbonylation reaction of a variety of aromatic and heteroaromatic aldehydes using maghemite-supported palladium catalyst has been developed. The magnetic properties of catalyst facilitated an easy and efficient recovery of the catalyst from the reaction mixture using an external magnet. It was found that the catalyst could be reused up to four consecutive catalytic runs without a significant change in activity. In addition, the catalyst was also very effective in the dehalogenation of aryl halides. This is the first report on efficient utilization of directly immobilized Pd on maghemite in decarbonylation and dehalogenation reactions.
PB  - Georg Thieme Verlag Kg, Stuttgart
T2  - Synthesis, Stuttgart
T1  - Decarbonylation of Aromatic Aldehydes and Dehalogenation of Aryl Halides Using Maghemite-Supported Palladium Catalyst
VL  - 50
IS  - 1
SP  - 119
EP  - 126
DO  - 10.1055/s-0036-1590892
UR  - Kon_3385
ER  - 
@article{
author = "Ajdačić, Vladimir and Nikolić, Andrea and Simić, Stefan and Manojlović, Dragan D. and Stojanović, Zoran and Nikodinović-Runić, Jasmina and Opsenica, Igor",
year = "2018",
abstract = "A facile decarbonylation reaction of a variety of aromatic and heteroaromatic aldehydes using maghemite-supported palladium catalyst has been developed. The magnetic properties of catalyst facilitated an easy and efficient recovery of the catalyst from the reaction mixture using an external magnet. It was found that the catalyst could be reused up to four consecutive catalytic runs without a significant change in activity. In addition, the catalyst was also very effective in the dehalogenation of aryl halides. This is the first report on efficient utilization of directly immobilized Pd on maghemite in decarbonylation and dehalogenation reactions.",
publisher = "Georg Thieme Verlag Kg, Stuttgart",
journal = "Synthesis, Stuttgart",
title = "Decarbonylation of Aromatic Aldehydes and Dehalogenation of Aryl Halides Using Maghemite-Supported Palladium Catalyst",
volume = "50",
number = "1",
pages = "119-126",
doi = "10.1055/s-0036-1590892",
url = "Kon_3385"
}
Ajdačić, V., Nikolić, A., Simić, S., Manojlović, D. D., Stojanović, Z., Nikodinović-Runić, J.,& Opsenica, I.. (2018). Decarbonylation of Aromatic Aldehydes and Dehalogenation of Aryl Halides Using Maghemite-Supported Palladium Catalyst. in Synthesis, Stuttgart
Georg Thieme Verlag Kg, Stuttgart., 50(1), 119-126.
https://doi.org/10.1055/s-0036-1590892
Kon_3385
Ajdačić V, Nikolić A, Simić S, Manojlović DD, Stojanović Z, Nikodinović-Runić J, Opsenica I. Decarbonylation of Aromatic Aldehydes and Dehalogenation of Aryl Halides Using Maghemite-Supported Palladium Catalyst. in Synthesis, Stuttgart. 2018;50(1):119-126.
doi:10.1055/s-0036-1590892
Kon_3385 .
Ajdačić, Vladimir, Nikolić, Andrea, Simić, Stefan, Manojlović, Dragan D., Stojanović, Zoran, Nikodinović-Runić, Jasmina, Opsenica, Igor, "Decarbonylation of Aromatic Aldehydes and Dehalogenation of Aryl Halides Using Maghemite-Supported Palladium Catalyst" in Synthesis, Stuttgart, 50, no. 1 (2018):119-126,
https://doi.org/10.1055/s-0036-1590892 .,
Kon_3385 .
5
5
6

Supplementary data for the article: Ajdačić, V.; Nikolić, A.; Simić, S.; Manojlović, D.; Stojanović, Z.; Nikodinovic-Runic, J.; Opsenica, I. M. Decarbonylation of Aromatic Aldehydes and Dehalogenation of Aryl Halides Using Maghemite-Supported Palladium Catalyst. Synthesis (Germany) 2018, 50 (1), 119–126. https://doi.org/10.1055/s-0036-1590892

Ajdačić, Vladimir; Nikolić, Andrea; Simić, Stefan; Manojlović, Dragan D.; Stojanović, Zoran; Nikodinović-Runić, Jasmina; Opsenica, Igor

(Georg Thieme Verlag Kg, Stuttgart, 2018)

TY  - DATA
AU  - Ajdačić, Vladimir
AU  - Nikolić, Andrea
AU  - Simić, Stefan
AU  - Manojlović, Dragan D.
AU  - Stojanović, Zoran
AU  - Nikodinović-Runić, Jasmina
AU  - Opsenica, Igor
PY  - 2018
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/2995
PB  - Georg Thieme Verlag Kg, Stuttgart
T2  - Synthesis, Stuttgart
T1  - Supplementary data for the article:
Ajdačić, V.; Nikolić, A.; Simić, S.; Manojlović, D.; Stojanović, Z.; Nikodinovic-Runic, J.; Opsenica, I. M. Decarbonylation of Aromatic Aldehydes and Dehalogenation of Aryl Halides Using Maghemite-Supported Palladium Catalyst. Synthesis (Germany) 2018, 50 (1), 119–126. https://doi.org/10.1055/s-0036-1590892
UR  - Kon_3385
ER  - 
@misc{
author = "Ajdačić, Vladimir and Nikolić, Andrea and Simić, Stefan and Manojlović, Dragan D. and Stojanović, Zoran and Nikodinović-Runić, Jasmina and Opsenica, Igor",
year = "2018",
publisher = "Georg Thieme Verlag Kg, Stuttgart",
journal = "Synthesis, Stuttgart",
title = "Supplementary data for the article:
Ajdačić, V.; Nikolić, A.; Simić, S.; Manojlović, D.; Stojanović, Z.; Nikodinovic-Runic, J.; Opsenica, I. M. Decarbonylation of Aromatic Aldehydes and Dehalogenation of Aryl Halides Using Maghemite-Supported Palladium Catalyst. Synthesis (Germany) 2018, 50 (1), 119–126. https://doi.org/10.1055/s-0036-1590892",
url = "Kon_3385"
}
Ajdačić, V., Nikolić, A., Simić, S., Manojlović, D. D., Stojanović, Z., Nikodinović-Runić, J.,& Opsenica, I.. (2018). Supplementary data for the article:
Ajdačić, V.; Nikolić, A.; Simić, S.; Manojlović, D.; Stojanović, Z.; Nikodinovic-Runic, J.; Opsenica, I. M. Decarbonylation of Aromatic Aldehydes and Dehalogenation of Aryl Halides Using Maghemite-Supported Palladium Catalyst. Synthesis (Germany) 2018, 50 (1), 119–126. https://doi.org/10.1055/s-0036-1590892. in Synthesis, Stuttgart
Georg Thieme Verlag Kg, Stuttgart..
Kon_3385
Ajdačić V, Nikolić A, Simić S, Manojlović DD, Stojanović Z, Nikodinović-Runić J, Opsenica I. Supplementary data for the article:
Ajdačić, V.; Nikolić, A.; Simić, S.; Manojlović, D.; Stojanović, Z.; Nikodinovic-Runic, J.; Opsenica, I. M. Decarbonylation of Aromatic Aldehydes and Dehalogenation of Aryl Halides Using Maghemite-Supported Palladium Catalyst. Synthesis (Germany) 2018, 50 (1), 119–126. https://doi.org/10.1055/s-0036-1590892. in Synthesis, Stuttgart. 2018;.
Kon_3385 .
Ajdačić, Vladimir, Nikolić, Andrea, Simić, Stefan, Manojlović, Dragan D., Stojanović, Zoran, Nikodinović-Runić, Jasmina, Opsenica, Igor, "Supplementary data for the article:
Ajdačić, V.; Nikolić, A.; Simić, S.; Manojlović, D.; Stojanović, Z.; Nikodinovic-Runic, J.; Opsenica, I. M. Decarbonylation of Aromatic Aldehydes and Dehalogenation of Aryl Halides Using Maghemite-Supported Palladium Catalyst. Synthesis (Germany) 2018, 50 (1), 119–126. https://doi.org/10.1055/s-0036-1590892" in Synthesis, Stuttgart (2018),
Kon_3385 .