Stanković, Vesna

Link to this page

Authority KeyName Variants
3dd5c020-674a-4b47-9751-850a034fedd9
  • Stanković, Vesna (22)
Projects
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200168 (University of Belgrade, Faculty of Chemistry) Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200026 (University of Belgrade, Institute of Chemistry, Technology and Metallurgy - IChTM)
EUREKA project E! 13303 MED-BIO-TEST Application of advanced oxidation processes and nanostructured oxide materials for the removal of pollutants from the environment, development and optimisation of instrumental techniques for efficiency monitoring
Ministry of Science and Higher Education of the Russian Federation (agreement No. 075-15-2022-1135) CEEPUS network: CIII-CZ-0212-12-1819-M-120151
CEEPUS network CIII-CZ-0212-13-1920-M-131892; Education of Modern Analytical and Bioanalytical Methods. CEEPUS network (mobility; CIII-CZ-0212-12-1819-M-120151 )
EUREKA project E!13303. Eureka project E!13303 MED-BIO-TEST
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200161 (University of Belgrade, Faculty of Pharmacy) CEEPUS networkCIII-CZ-0212-12-1819-M-120151 (Education of Modern Analytical and Bioanalytical Methods).
Eureka project E! 13303 MED-BIO-TEST Eureka project E! 13303 MED-BIO-TEST.
LˇS wishes to acknowledge the Grant Agency of the Slovak Republic VEGA (grant no. 1/0159/20). Ministry of Science and Higher Education of the Russian Federation (agreement no. 075-15-2022-1135)
South Ural State University

Author's Bibliography

The environmentally friendly approaches based on the heterojunction interface of the LaFeO3/Fe2O3@g-C3N4 composite for the disposable and laboratory sensing of triclosan

Knežević, Sara; Ostojić, Jelena; Ognjanović, Miloš; Savić, Slađana D.; Kovačević, Aleksandra; Manojlović, Dragan D.; Stanković, Vesna; Stanković, Dalibor

(Elsevier, 2023)

TY  - JOUR
AU  - Knežević, Sara
AU  - Ostojić, Jelena
AU  - Ognjanović, Miloš
AU  - Savić, Slađana D.
AU  - Kovačević, Aleksandra
AU  - Manojlović, Dragan D.
AU  - Stanković, Vesna
AU  - Stanković, Dalibor
PY  - 2023
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5694
AB  - Triclosan (TCS) is a polychlorinated phenoxy phenol (PCPPs) used as a disinfectant and a broad-spectrum antibacterial and antifungal agent in personal hygiene products. TCS easily forms diphenyl ethers and dioxins, which are persistent organic pollutants.

This work used a double approach for the TSC sensing: a) screen-printed (SPE) electrochemical platform for on-site application, modified with lanthanum iron oxide and graphitic carbon nitride composite (LaFeO3/Fe2O3@g-C3N4/SPE); and b) carbon paste electrode (CPE), modified with the same material and used in laboratory conditions. Linear range from 0.1 μM to 10 μM, the limit of detection (LOD) of 29 nM and the limit of quantification (LOQ) of 91 nM were obtained for CP electrode in BRBS pH 8. SPE showed the best analytical parameters in BRBS at pH 3, with a linear range from 0.3 μM to 7 μM, LOD of 0.09 μM and LOQ of 0.28 μM. Furthermore, the influence of potential interferents was investigated and proven to be negligible. Determination of TSC was performed to estimate the environmental impact of this compound as well as the practical usefulness of the proposed sensor in the real sample analysis, confirmed with a HPLC analysis.
PB  - Elsevier
T2  - Science of The Total Environment
T1  - The environmentally friendly approaches based on the heterojunction interface of the LaFeO3/Fe2O3@g-C3N4 composite for the disposable and laboratory sensing of triclosan
IS  - 857
SP  - 159250
DO  - 10.1016/j.scitotenv.2022.159250
ER  - 
@article{
author = "Knežević, Sara and Ostojić, Jelena and Ognjanović, Miloš and Savić, Slađana D. and Kovačević, Aleksandra and Manojlović, Dragan D. and Stanković, Vesna and Stanković, Dalibor",
year = "2023",
abstract = "Triclosan (TCS) is a polychlorinated phenoxy phenol (PCPPs) used as a disinfectant and a broad-spectrum antibacterial and antifungal agent in personal hygiene products. TCS easily forms diphenyl ethers and dioxins, which are persistent organic pollutants.

This work used a double approach for the TSC sensing: a) screen-printed (SPE) electrochemical platform for on-site application, modified with lanthanum iron oxide and graphitic carbon nitride composite (LaFeO3/Fe2O3@g-C3N4/SPE); and b) carbon paste electrode (CPE), modified with the same material and used in laboratory conditions. Linear range from 0.1 μM to 10 μM, the limit of detection (LOD) of 29 nM and the limit of quantification (LOQ) of 91 nM were obtained for CP electrode in BRBS pH 8. SPE showed the best analytical parameters in BRBS at pH 3, with a linear range from 0.3 μM to 7 μM, LOD of 0.09 μM and LOQ of 0.28 μM. Furthermore, the influence of potential interferents was investigated and proven to be negligible. Determination of TSC was performed to estimate the environmental impact of this compound as well as the practical usefulness of the proposed sensor in the real sample analysis, confirmed with a HPLC analysis.",
publisher = "Elsevier",
journal = "Science of The Total Environment",
title = "The environmentally friendly approaches based on the heterojunction interface of the LaFeO3/Fe2O3@g-C3N4 composite for the disposable and laboratory sensing of triclosan",
number = "857",
pages = "159250",
doi = "10.1016/j.scitotenv.2022.159250"
}
Knežević, S., Ostojić, J., Ognjanović, M., Savić, S. D., Kovačević, A., Manojlović, D. D., Stanković, V.,& Stanković, D.. (2023). The environmentally friendly approaches based on the heterojunction interface of the LaFeO3/Fe2O3@g-C3N4 composite for the disposable and laboratory sensing of triclosan. in Science of The Total Environment
Elsevier.(857), 159250.
https://doi.org/10.1016/j.scitotenv.2022.159250
Knežević S, Ostojić J, Ognjanović M, Savić SD, Kovačević A, Manojlović DD, Stanković V, Stanković D. The environmentally friendly approaches based on the heterojunction interface of the LaFeO3/Fe2O3@g-C3N4 composite for the disposable and laboratory sensing of triclosan. in Science of The Total Environment. 2023;(857):159250.
doi:10.1016/j.scitotenv.2022.159250 .
Knežević, Sara, Ostojić, Jelena, Ognjanović, Miloš, Savić, Slađana D., Kovačević, Aleksandra, Manojlović, Dragan D., Stanković, Vesna, Stanković, Dalibor, "The environmentally friendly approaches based on the heterojunction interface of the LaFeO3/Fe2O3@g-C3N4 composite for the disposable and laboratory sensing of triclosan" in Science of The Total Environment, no. 857 (2023):159250,
https://doi.org/10.1016/j.scitotenv.2022.159250 . .
9
9
4

Microspherical Titanium-Phosphorus Double Oxide: Hierarchical Structure Development for Sensing Applications

Korina, Elena; Abramyan, Anton; Bol’shakov, Oleg; Avdin, Vyacheslav V.; Savić, Slađana D.; Manojlović, Dragan D.; Stanković, Vesna; Stanković, Dalibor

(MDPI, 2023)

TY  - JOUR
AU  - Korina, Elena
AU  - Abramyan, Anton
AU  - Bol’shakov, Oleg
AU  - Avdin, Vyacheslav V.
AU  - Savić, Slađana D.
AU  - Manojlović, Dragan D.
AU  - Stanković, Vesna
AU  - Stanković, Dalibor
PY  - 2023
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5770
AB  - Stable, water-soluble titanium complexed with mandelic acid was used as a precursor for titanium phosphorus double oxide obtained in hydrothermal conditions in the presence of phosphoric acid. Surprisingly, hydrolysis of organic complexes provided a microstructured sphere with narrow size distribution, low aggregation and a small fraction of morphological irregularities. Obtained microspheres had a complex structure comprised of flakes, whose size could be manipulated with temperature conditions. Samples were found to be electrochemically active against sulcotrione, a well-recognized herbicide. Electrochemical sensors based on the synthesized microspheres were successfully adapted for natural water reservoir analysis and exhibited low levels of detection of 0.61 µM, limit of quantification of 1.86 µM, wide dynamic linear range from 2 to 200 µM, good selectivity, excellent reproducibility and in-time stability.
PB  - MDPI
T2  - Sensors
T1  - Microspherical Titanium-Phosphorus Double Oxide: Hierarchical Structure Development for Sensing Applications
VL  - 23
IS  - 2
SP  - 933
DO  - 10.3390/s23020933
ER  - 
@article{
author = "Korina, Elena and Abramyan, Anton and Bol’shakov, Oleg and Avdin, Vyacheslav V. and Savić, Slađana D. and Manojlović, Dragan D. and Stanković, Vesna and Stanković, Dalibor",
year = "2023",
abstract = "Stable, water-soluble titanium complexed with mandelic acid was used as a precursor for titanium phosphorus double oxide obtained in hydrothermal conditions in the presence of phosphoric acid. Surprisingly, hydrolysis of organic complexes provided a microstructured sphere with narrow size distribution, low aggregation and a small fraction of morphological irregularities. Obtained microspheres had a complex structure comprised of flakes, whose size could be manipulated with temperature conditions. Samples were found to be electrochemically active against sulcotrione, a well-recognized herbicide. Electrochemical sensors based on the synthesized microspheres were successfully adapted for natural water reservoir analysis and exhibited low levels of detection of 0.61 µM, limit of quantification of 1.86 µM, wide dynamic linear range from 2 to 200 µM, good selectivity, excellent reproducibility and in-time stability.",
publisher = "MDPI",
journal = "Sensors",
title = "Microspherical Titanium-Phosphorus Double Oxide: Hierarchical Structure Development for Sensing Applications",
volume = "23",
number = "2",
pages = "933",
doi = "10.3390/s23020933"
}
Korina, E., Abramyan, A., Bol’shakov, O., Avdin, V. V., Savić, S. D., Manojlović, D. D., Stanković, V.,& Stanković, D.. (2023). Microspherical Titanium-Phosphorus Double Oxide: Hierarchical Structure Development for Sensing Applications. in Sensors
MDPI., 23(2), 933.
https://doi.org/10.3390/s23020933
Korina E, Abramyan A, Bol’shakov O, Avdin VV, Savić SD, Manojlović DD, Stanković V, Stanković D. Microspherical Titanium-Phosphorus Double Oxide: Hierarchical Structure Development for Sensing Applications. in Sensors. 2023;23(2):933.
doi:10.3390/s23020933 .
Korina, Elena, Abramyan, Anton, Bol’shakov, Oleg, Avdin, Vyacheslav V., Savić, Slađana D., Manojlović, Dragan D., Stanković, Vesna, Stanković, Dalibor, "Microspherical Titanium-Phosphorus Double Oxide: Hierarchical Structure Development for Sensing Applications" in Sensors, 23, no. 2 (2023):933,
https://doi.org/10.3390/s23020933 . .

The environmentally friendly approaches based on the heterojunction interface of the LaFeO3/Fe2O3@g-C3N4 composite for the disposable and laboratory sensing of triclosan

Knežević, Sara; Ostojić, Jelena; Ognjanović, Miloš; Savić, Slađana D.; Kovačević, Aleksandra; Manojlović, Dragan D.; Stanković, Vesna; Stanković, Dalibor

(Elsevier, 2023)

TY  - JOUR
AU  - Knežević, Sara
AU  - Ostojić, Jelena
AU  - Ognjanović, Miloš
AU  - Savić, Slađana D.
AU  - Kovačević, Aleksandra
AU  - Manojlović, Dragan D.
AU  - Stanković, Vesna
AU  - Stanković, Dalibor
PY  - 2023
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5775
AB  - Triclosan (TCS) is a polychlorinated phenoxy phenol (PCPPs) used as a disinfectant and a broad-spectrum antibacterial and antifungal agent in personal hygiene products. TCS easily forms diphenyl ethers and dioxins, which are persistent organic pollutants.This work used a double approach for the TSC sensing: a) screen-printed (SPE) electrochemical platform for on-site application, modified with lanthanum iron oxide and graphitic carbon nitride composite (LaFeO3/Fe2O3@g-C3N4/SPE); and b) carbon paste electrode (CPE), modified with the same material and used in laboratory conditions. Linear range from 0.1 μM to 10 μM, the limit of detection (LOD) of 29 nM and the limit of quantification (LOQ) of 91 nM were obtained for CP electrode in BRBS pH 8. SPE showed the best analytical parameters in BRBS at pH 3, with a linear range from 0.3 μM to 7 μM, LOD of 0.09 μM and LOQ of 0.28 μM. Furthermore, the influence of potential interferents was investigated and proven to be negligible. Determination of TSC was performed to estimate the environmental impact of this compound as well as the practical usefulness of the proposed sensor in the real sample analysis, confirmed with a HPLC analysis.
PB  - Elsevier
T2  - Science of The Total Environment
T1  - The environmentally friendly approaches based on the heterojunction interface of the LaFeO3/Fe2O3@g-C3N4 composite for the disposable and laboratory sensing of triclosan
IS  - 857
SP  - 159250
DO  - 10.1016/j.scitotenv.2022.159250
ER  - 
@article{
author = "Knežević, Sara and Ostojić, Jelena and Ognjanović, Miloš and Savić, Slađana D. and Kovačević, Aleksandra and Manojlović, Dragan D. and Stanković, Vesna and Stanković, Dalibor",
year = "2023",
abstract = "Triclosan (TCS) is a polychlorinated phenoxy phenol (PCPPs) used as a disinfectant and a broad-spectrum antibacterial and antifungal agent in personal hygiene products. TCS easily forms diphenyl ethers and dioxins, which are persistent organic pollutants.This work used a double approach for the TSC sensing: a) screen-printed (SPE) electrochemical platform for on-site application, modified with lanthanum iron oxide and graphitic carbon nitride composite (LaFeO3/Fe2O3@g-C3N4/SPE); and b) carbon paste electrode (CPE), modified with the same material and used in laboratory conditions. Linear range from 0.1 μM to 10 μM, the limit of detection (LOD) of 29 nM and the limit of quantification (LOQ) of 91 nM were obtained for CP electrode in BRBS pH 8. SPE showed the best analytical parameters in BRBS at pH 3, with a linear range from 0.3 μM to 7 μM, LOD of 0.09 μM and LOQ of 0.28 μM. Furthermore, the influence of potential interferents was investigated and proven to be negligible. Determination of TSC was performed to estimate the environmental impact of this compound as well as the practical usefulness of the proposed sensor in the real sample analysis, confirmed with a HPLC analysis.",
publisher = "Elsevier",
journal = "Science of The Total Environment",
title = "The environmentally friendly approaches based on the heterojunction interface of the LaFeO3/Fe2O3@g-C3N4 composite for the disposable and laboratory sensing of triclosan",
number = "857",
pages = "159250",
doi = "10.1016/j.scitotenv.2022.159250"
}
Knežević, S., Ostojić, J., Ognjanović, M., Savić, S. D., Kovačević, A., Manojlović, D. D., Stanković, V.,& Stanković, D.. (2023). The environmentally friendly approaches based on the heterojunction interface of the LaFeO3/Fe2O3@g-C3N4 composite for the disposable and laboratory sensing of triclosan. in Science of The Total Environment
Elsevier.(857), 159250.
https://doi.org/10.1016/j.scitotenv.2022.159250
Knežević S, Ostojić J, Ognjanović M, Savić SD, Kovačević A, Manojlović DD, Stanković V, Stanković D. The environmentally friendly approaches based on the heterojunction interface of the LaFeO3/Fe2O3@g-C3N4 composite for the disposable and laboratory sensing of triclosan. in Science of The Total Environment. 2023;(857):159250.
doi:10.1016/j.scitotenv.2022.159250 .
Knežević, Sara, Ostojić, Jelena, Ognjanović, Miloš, Savić, Slađana D., Kovačević, Aleksandra, Manojlović, Dragan D., Stanković, Vesna, Stanković, Dalibor, "The environmentally friendly approaches based on the heterojunction interface of the LaFeO3/Fe2O3@g-C3N4 composite for the disposable and laboratory sensing of triclosan" in Science of The Total Environment, no. 857 (2023):159250,
https://doi.org/10.1016/j.scitotenv.2022.159250 . .
9
9
4

Application of Screen Printed Diamond Electrode, Coupled with “Point-of-Care” Platform, for Nanomolar Quantification of Phytonutrient Pterostilbene in Dietary Supplements: An Experimental Study Supported by Theory

Đurđić, Slađana Z.; Vlahović, Filip; Markićević, Milan; Mutić, Jelena; Manojlović, Dragan D.; Stanković, Vesna; Švorc, Ľubomír; Stanković, Dalibor

(MDPI, 2023)

TY  - JOUR
AU  - Đurđić, Slađana Z.
AU  - Vlahović, Filip
AU  - Markićević, Milan
AU  - Mutić, Jelena
AU  - Manojlović, Dragan D.
AU  - Stanković, Vesna
AU  - Švorc, Ľubomír
AU  - Stanković, Dalibor
PY  - 2023
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5812
AB  - Herein, a screen–printed diamond electrode (SPDE) coupled with a “point-of-care” platform (30 µL-drop concepts, single-drop-detection approach) was successfully applied for the electrochemical determination of pterostilbene (PTS). Cyclic voltammetry identified irreversible oxidation of PTS, where oxidation peak was shown to be strongly dependent on the pH of the working environmental. Although the proposition of the detailed electrochemical oxidation mechanism of PTS goes out of the scope of the present research, we have determined the most probable reactive site of our analyte, by utilizing DFT-based reactivity descriptors (Fukui functions). For electrochemical quantification of PTS, oxidation peak at 0.32 V (vs. Ag/AgCl) was followed in presence of 0.5 mol L−1 of Briton–Robinson buffer solution (pH = 9). Coupled with the optimized parameters of differential pulse voltammetry (DPV), SPDE detected PTS in two linear ranges (first range was from 0.011 to 0.912 µmol L−1; second range was from 0.912 to 4.420 µmol L−1), providing the LOD and LOQ on a nanomolar level (3.1 nmol L−1 and 10.0 nmol L−1, respectively). The selectivity of the optimized DPV method was found to be excellent, with the current changes of less than 7%, in the presence of ten times higher concentrations of the certain interferences. The practical applicability of the SPDE and single-drop-detection approach in dietary supplements (with a declared PTS content of 50 mg/tablet), with the recovery values ranging from 95 to 102%, shows that the developed method has high potential for precise and accurate PTS detection, as well as exceptional miniaturization possibilities of relevant equipment for on-site sensing.
PB  - MDPI
T2  - Chemosensors
T1  - Application of Screen Printed Diamond Electrode, Coupled with “Point-of-Care” Platform, for Nanomolar Quantification of Phytonutrient Pterostilbene in Dietary Supplements: An Experimental Study Supported by Theory
VL  - 11
IS  - 1
SP  - 15
DO  - 10.3390/chemosensors11010015
ER  - 
@article{
author = "Đurđić, Slađana Z. and Vlahović, Filip and Markićević, Milan and Mutić, Jelena and Manojlović, Dragan D. and Stanković, Vesna and Švorc, Ľubomír and Stanković, Dalibor",
year = "2023",
abstract = "Herein, a screen–printed diamond electrode (SPDE) coupled with a “point-of-care” platform (30 µL-drop concepts, single-drop-detection approach) was successfully applied for the electrochemical determination of pterostilbene (PTS). Cyclic voltammetry identified irreversible oxidation of PTS, where oxidation peak was shown to be strongly dependent on the pH of the working environmental. Although the proposition of the detailed electrochemical oxidation mechanism of PTS goes out of the scope of the present research, we have determined the most probable reactive site of our analyte, by utilizing DFT-based reactivity descriptors (Fukui functions). For electrochemical quantification of PTS, oxidation peak at 0.32 V (vs. Ag/AgCl) was followed in presence of 0.5 mol L−1 of Briton–Robinson buffer solution (pH = 9). Coupled with the optimized parameters of differential pulse voltammetry (DPV), SPDE detected PTS in two linear ranges (first range was from 0.011 to 0.912 µmol L−1; second range was from 0.912 to 4.420 µmol L−1), providing the LOD and LOQ on a nanomolar level (3.1 nmol L−1 and 10.0 nmol L−1, respectively). The selectivity of the optimized DPV method was found to be excellent, with the current changes of less than 7%, in the presence of ten times higher concentrations of the certain interferences. The practical applicability of the SPDE and single-drop-detection approach in dietary supplements (with a declared PTS content of 50 mg/tablet), with the recovery values ranging from 95 to 102%, shows that the developed method has high potential for precise and accurate PTS detection, as well as exceptional miniaturization possibilities of relevant equipment for on-site sensing.",
publisher = "MDPI",
journal = "Chemosensors",
title = "Application of Screen Printed Diamond Electrode, Coupled with “Point-of-Care” Platform, for Nanomolar Quantification of Phytonutrient Pterostilbene in Dietary Supplements: An Experimental Study Supported by Theory",
volume = "11",
number = "1",
pages = "15",
doi = "10.3390/chemosensors11010015"
}
Đurđić, S. Z., Vlahović, F., Markićević, M., Mutić, J., Manojlović, D. D., Stanković, V., Švorc, Ľ.,& Stanković, D.. (2023). Application of Screen Printed Diamond Electrode, Coupled with “Point-of-Care” Platform, for Nanomolar Quantification of Phytonutrient Pterostilbene in Dietary Supplements: An Experimental Study Supported by Theory. in Chemosensors
MDPI., 11(1), 15.
https://doi.org/10.3390/chemosensors11010015
Đurđić SZ, Vlahović F, Markićević M, Mutić J, Manojlović DD, Stanković V, Švorc Ľ, Stanković D. Application of Screen Printed Diamond Electrode, Coupled with “Point-of-Care” Platform, for Nanomolar Quantification of Phytonutrient Pterostilbene in Dietary Supplements: An Experimental Study Supported by Theory. in Chemosensors. 2023;11(1):15.
doi:10.3390/chemosensors11010015 .
Đurđić, Slađana Z., Vlahović, Filip, Markićević, Milan, Mutić, Jelena, Manojlović, Dragan D., Stanković, Vesna, Švorc, Ľubomír, Stanković, Dalibor, "Application of Screen Printed Diamond Electrode, Coupled with “Point-of-Care” Platform, for Nanomolar Quantification of Phytonutrient Pterostilbene in Dietary Supplements: An Experimental Study Supported by Theory" in Chemosensors, 11, no. 1 (2023):15,
https://doi.org/10.3390/chemosensors11010015 . .
1
1

Supplementary material for: Đurđić, S., Vlahović, F., Markićević, M., Mutić, J., Manojlović, D., Stanković, V., Švorc, Ľ.,& Stanković, D.. (2023). Application of Screen Printed Diamond Electrode, Coupled with “Point-of-Care” Platform, for Nanomolar Quantification of Phytonutrient Pterostilbene in Dietary Supplements: An Experimental Study Supported by Theory. in Chemosensors MDPI., 11(1), 15. https://doi.org/10.3390/chemosensors11010015

Đurđić, Slađana Z.; Vlahović, Filip; Markićević, Milan; Mutić, Jelena; Manojlović, Dragan D.; Stanković, Vesna; Švorc, Ľubomír; Stanković, Dalibor

(MDPI, 2023)

TY  - DATA
AU  - Đurđić, Slađana Z.
AU  - Vlahović, Filip
AU  - Markićević, Milan
AU  - Mutić, Jelena
AU  - Manojlović, Dragan D.
AU  - Stanković, Vesna
AU  - Švorc, Ľubomír
AU  - Stanković, Dalibor
PY  - 2023
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5812
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5839
AB  - Herein, a screen–printed diamond electrode (SPDE) coupled with a “point-of-care” platform (30 µL-drop concepts, single-drop-detection approach) was successfully applied for the electrochemical determination of pterostilbene (PTS). Cyclic voltammetry identified irreversible oxidation of PTS, where oxidation peak was shown to be strongly dependent on the pH of the working environmental. Although the proposition of the detailed electrochemical oxidation mechanism of PTS goes out of the scope of the present research, we have determined the most probable reactive site of our analyte, by utilizing DFT-based reactivity descriptors (Fukui functions). For electrochemical quantification of PTS, oxidation peak at 0.32 V (vs. Ag/AgCl) was followed in presence of 0.5 mol L−1 of Briton–Robinson buffer solution (pH = 9). Coupled with the optimized parameters of differential pulse voltammetry (DPV), SPDE detected PTS in two linear ranges (first range was from 0.011 to 0.912 µmol L−1; second range was from 0.912 to 4.420 µmol L−1), providing the LOD and LOQ on a nanomolar level (3.1 nmol L−1 and 10.0 nmol L−1, respectively). The selectivity of the optimized DPV method was found to be excellent, with the current changes of less than 7%, in the presence of ten times higher concentrations of the certain interferences. The practical applicability of the SPDE and single-drop-detection approach in dietary supplements (with a declared PTS content of 50 mg/tablet), with the recovery values ranging from 95 to 102%, shows that the developed method has high potential for precise and accurate PTS detection, as well as exceptional miniaturization possibilities of relevant equipment for on-site sensing.
PB  - MDPI
T2  - Chemosensors
T1  - Supplementary material for: Đurđić, S., Vlahović, F., Markićević, M., Mutić, J., Manojlović, D., Stanković, V., Švorc, Ľ.,& Stanković, D.. (2023). Application of Screen Printed Diamond Electrode, Coupled with “Point-of-Care” Platform, for Nanomolar Quantification of Phytonutrient Pterostilbene in Dietary Supplements: An Experimental Study Supported by Theory. in Chemosensors MDPI., 11(1), 15. https://doi.org/10.3390/chemosensors11010015
VL  - 11
IS  - 1
SP  - 15
UR  - https://hdl.handle.net/21.15107/rcub_cherry_5839
ER  - 
@misc{
author = "Đurđić, Slađana Z. and Vlahović, Filip and Markićević, Milan and Mutić, Jelena and Manojlović, Dragan D. and Stanković, Vesna and Švorc, Ľubomír and Stanković, Dalibor",
year = "2023",
abstract = "Herein, a screen–printed diamond electrode (SPDE) coupled with a “point-of-care” platform (30 µL-drop concepts, single-drop-detection approach) was successfully applied for the electrochemical determination of pterostilbene (PTS). Cyclic voltammetry identified irreversible oxidation of PTS, where oxidation peak was shown to be strongly dependent on the pH of the working environmental. Although the proposition of the detailed electrochemical oxidation mechanism of PTS goes out of the scope of the present research, we have determined the most probable reactive site of our analyte, by utilizing DFT-based reactivity descriptors (Fukui functions). For electrochemical quantification of PTS, oxidation peak at 0.32 V (vs. Ag/AgCl) was followed in presence of 0.5 mol L−1 of Briton–Robinson buffer solution (pH = 9). Coupled with the optimized parameters of differential pulse voltammetry (DPV), SPDE detected PTS in two linear ranges (first range was from 0.011 to 0.912 µmol L−1; second range was from 0.912 to 4.420 µmol L−1), providing the LOD and LOQ on a nanomolar level (3.1 nmol L−1 and 10.0 nmol L−1, respectively). The selectivity of the optimized DPV method was found to be excellent, with the current changes of less than 7%, in the presence of ten times higher concentrations of the certain interferences. The practical applicability of the SPDE and single-drop-detection approach in dietary supplements (with a declared PTS content of 50 mg/tablet), with the recovery values ranging from 95 to 102%, shows that the developed method has high potential for precise and accurate PTS detection, as well as exceptional miniaturization possibilities of relevant equipment for on-site sensing.",
publisher = "MDPI",
journal = "Chemosensors",
title = "Supplementary material for: Đurđić, S., Vlahović, F., Markićević, M., Mutić, J., Manojlović, D., Stanković, V., Švorc, Ľ.,& Stanković, D.. (2023). Application of Screen Printed Diamond Electrode, Coupled with “Point-of-Care” Platform, for Nanomolar Quantification of Phytonutrient Pterostilbene in Dietary Supplements: An Experimental Study Supported by Theory. in Chemosensors MDPI., 11(1), 15. https://doi.org/10.3390/chemosensors11010015",
volume = "11",
number = "1",
pages = "15",
url = "https://hdl.handle.net/21.15107/rcub_cherry_5839"
}
Đurđić, S. Z., Vlahović, F., Markićević, M., Mutić, J., Manojlović, D. D., Stanković, V., Švorc, Ľ.,& Stanković, D.. (2023). Supplementary material for: Đurđić, S., Vlahović, F., Markićević, M., Mutić, J., Manojlović, D., Stanković, V., Švorc, Ľ.,& Stanković, D.. (2023). Application of Screen Printed Diamond Electrode, Coupled with “Point-of-Care” Platform, for Nanomolar Quantification of Phytonutrient Pterostilbene in Dietary Supplements: An Experimental Study Supported by Theory. in Chemosensors MDPI., 11(1), 15. https://doi.org/10.3390/chemosensors11010015. in Chemosensors
MDPI., 11(1), 15.
https://hdl.handle.net/21.15107/rcub_cherry_5839
Đurđić SZ, Vlahović F, Markićević M, Mutić J, Manojlović DD, Stanković V, Švorc Ľ, Stanković D. Supplementary material for: Đurđić, S., Vlahović, F., Markićević, M., Mutić, J., Manojlović, D., Stanković, V., Švorc, Ľ.,& Stanković, D.. (2023). Application of Screen Printed Diamond Electrode, Coupled with “Point-of-Care” Platform, for Nanomolar Quantification of Phytonutrient Pterostilbene in Dietary Supplements: An Experimental Study Supported by Theory. in Chemosensors MDPI., 11(1), 15. https://doi.org/10.3390/chemosensors11010015. in Chemosensors. 2023;11(1):15.
https://hdl.handle.net/21.15107/rcub_cherry_5839 .
Đurđić, Slađana Z., Vlahović, Filip, Markićević, Milan, Mutić, Jelena, Manojlović, Dragan D., Stanković, Vesna, Švorc, Ľubomír, Stanković, Dalibor, "Supplementary material for: Đurđić, S., Vlahović, F., Markićević, M., Mutić, J., Manojlović, D., Stanković, V., Švorc, Ľ.,& Stanković, D.. (2023). Application of Screen Printed Diamond Electrode, Coupled with “Point-of-Care” Platform, for Nanomolar Quantification of Phytonutrient Pterostilbene in Dietary Supplements: An Experimental Study Supported by Theory. in Chemosensors MDPI., 11(1), 15. https://doi.org/10.3390/chemosensors11010015" in Chemosensors, 11, no. 1 (2023):15,
https://hdl.handle.net/21.15107/rcub_cherry_5839 .

Eu2O3@Cr2O3 Nanoparticles-Modified Carbon Paste Electrode for Efficient Electrochemical Sensing of Neurotransmitters Precursor L-DOPA

Stanković, Dalibor; Stanković, Vesna; Đurđić, Slađana Z.; Vlahović, Filip; Manojlović, Dragan D.; Ognjanović, Miloš; Mijajlović, Aleksandar

(MDPI, 2023)

TY  - JOUR
AU  - Stanković, Dalibor
AU  - Stanković, Vesna
AU  - Đurđić, Slađana Z.
AU  - Vlahović, Filip
AU  - Manojlović, Dragan D.
AU  - Ognjanović, Miloš
AU  - Mijajlović, Aleksandar
PY  - 2023
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5888
AB  - There are ten million people in the world who have Parkinson’s disease. The most potent
medicine for Parkinson’s disease is levodopa (L-DOPA). However, long-term consumption of L-DOPA
leads to the appearance of side effects, as a result of which the control and monitoring of its concentrations are of great importance. In this work, we have designed a new electrochemical sensor for
detecting L-DOPA using a carbon paste electrode (CPE) modified with Eu2O3@Cr2O3 composite
nanoparticles. Rare earth elements, including Eu, are increasingly used to design new electrode
nanocomposites with enhanced electrocatalytic properties. Europium has been considered a significant lanthanide element with greater redox reaction behavior. We conducted a hydrothermal
synthesis of Eu2O3@Cr2O3 and, for the first time, the acquired nanoparticles were used to modify
CPE. The proposed Eu2O3@Cr2O3/CPE electrode was investigated in terms of its electrocatalytic
properties and then used to develop an analytical method for detecting and quantifying L-DOPA.
The proposed sensor offers a wide linear range (1–100 µM), high sensitivity (1.38 µA µM−1
cm−2
) and
a low detection limit (0.72 µM). The practical application of the proposed sensor was investigated by
analyzing commercially available pharmaceutical tablets of L-DOPA. The corresponding results indicate
the excellent potential of the Eu2O3@Cr2O3/CPE sensor for application in real-time L-DOPA detection
PB  - MDPI
T2  - Biosensors
T1  - Eu2O3@Cr2O3 Nanoparticles-Modified Carbon Paste Electrode for Efficient Electrochemical Sensing of Neurotransmitters Precursor L-DOPA
VL  - 13
IS  - 2
SP  - 201
DO  - 10.3390/bios13020201
ER  - 
@article{
author = "Stanković, Dalibor and Stanković, Vesna and Đurđić, Slađana Z. and Vlahović, Filip and Manojlović, Dragan D. and Ognjanović, Miloš and Mijajlović, Aleksandar",
year = "2023",
abstract = "There are ten million people in the world who have Parkinson’s disease. The most potent
medicine for Parkinson’s disease is levodopa (L-DOPA). However, long-term consumption of L-DOPA
leads to the appearance of side effects, as a result of which the control and monitoring of its concentrations are of great importance. In this work, we have designed a new electrochemical sensor for
detecting L-DOPA using a carbon paste electrode (CPE) modified with Eu2O3@Cr2O3 composite
nanoparticles. Rare earth elements, including Eu, are increasingly used to design new electrode
nanocomposites with enhanced electrocatalytic properties. Europium has been considered a significant lanthanide element with greater redox reaction behavior. We conducted a hydrothermal
synthesis of Eu2O3@Cr2O3 and, for the first time, the acquired nanoparticles were used to modify
CPE. The proposed Eu2O3@Cr2O3/CPE electrode was investigated in terms of its electrocatalytic
properties and then used to develop an analytical method for detecting and quantifying L-DOPA.
The proposed sensor offers a wide linear range (1–100 µM), high sensitivity (1.38 µA µM−1
cm−2
) and
a low detection limit (0.72 µM). The practical application of the proposed sensor was investigated by
analyzing commercially available pharmaceutical tablets of L-DOPA. The corresponding results indicate
the excellent potential of the Eu2O3@Cr2O3/CPE sensor for application in real-time L-DOPA detection",
publisher = "MDPI",
journal = "Biosensors",
title = "Eu2O3@Cr2O3 Nanoparticles-Modified Carbon Paste Electrode for Efficient Electrochemical Sensing of Neurotransmitters Precursor L-DOPA",
volume = "13",
number = "2",
pages = "201",
doi = "10.3390/bios13020201"
}
Stanković, D., Stanković, V., Đurđić, S. Z., Vlahović, F., Manojlović, D. D., Ognjanović, M.,& Mijajlović, A.. (2023). Eu2O3@Cr2O3 Nanoparticles-Modified Carbon Paste Electrode for Efficient Electrochemical Sensing of Neurotransmitters Precursor L-DOPA. in Biosensors
MDPI., 13(2), 201.
https://doi.org/10.3390/bios13020201
Stanković D, Stanković V, Đurđić SZ, Vlahović F, Manojlović DD, Ognjanović M, Mijajlović A. Eu2O3@Cr2O3 Nanoparticles-Modified Carbon Paste Electrode for Efficient Electrochemical Sensing of Neurotransmitters Precursor L-DOPA. in Biosensors. 2023;13(2):201.
doi:10.3390/bios13020201 .
Stanković, Dalibor, Stanković, Vesna, Đurđić, Slađana Z., Vlahović, Filip, Manojlović, Dragan D., Ognjanović, Miloš, Mijajlović, Aleksandar, "Eu2O3@Cr2O3 Nanoparticles-Modified Carbon Paste Electrode for Efficient Electrochemical Sensing of Neurotransmitters Precursor L-DOPA" in Biosensors, 13, no. 2 (2023):201,
https://doi.org/10.3390/bios13020201 . .
1
4
3
2

Synthesis and Application of Domestic Glassy Carbon TiO2 Nanocomposite for Electrocatalytic Triclosan Detection

Stanković, Vesna; Manojlović, Dragan D.; Roglić, Goran; Tolstoguzov, Dmitry S.; Zherebtsov, Dmitry A.; Uchaev, Daniel A.; Avdin, Viacheslav V.; Stanković, Dalibor

(MDPI, 2022)

TY  - JOUR
AU  - Stanković, Vesna
AU  - Manojlović, Dragan D.
AU  - Roglić, Goran
AU  - Tolstoguzov, Dmitry S.
AU  - Zherebtsov, Dmitry A.
AU  - Uchaev, Daniel A.
AU  - Avdin, Viacheslav V.
AU  - Stanković, Dalibor
PY  - 2022
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5783
AB  - : Nanoparticles of TiO2 are suitable for many catalytic and photocatalytic applications due
to their extraordinary properties such as superhydrophobicity, semiconductivity, electron-rich, and
environmental compatibility. The main crystalline phases of TiO2
, anatase, and rutile possess different
crystal structures, crystallinity, crystalline sizes, and specific surface areas, and these characteristics
directly affect the catalytic performance of TiO2
. In the present study, domestic carbon material
enhanced with TiO2 nanoparticles was synthesized and used for the construction of a modified
carbon paste electrode. The electrocatalytic activity of the modified electrodes was investigated
depending on the TiO2 crystalline phases in the electrode material. Furthermore, the obtained
working electrode was utilized for triclosan detection. Under optimized experimental conditions, the
developed electrode showed a submicromolar triclosan detection limit of 0.07 µM and a wide linear
range of 0.1 to 15 µM. The relative standard deviations for repeatability and reproducibility were
lower than 4.1%, and with satisfactory selectivity, the proposed system was successfully applied to
triclosan monitoring in groundwater. All these results confirm that the sustainable production of new
and domestically prepared materials is of great benefit in the field of electrocatalysis and that the
morphology of such produced materials is strongly related to their catalytic properties.
PB  - MDPI
T2  - Catalysts
T1  - Synthesis and Application of Domestic Glassy Carbon TiO2 Nanocomposite for Electrocatalytic Triclosan Detection
VL  - 12
IS  - 12
SP  - 1571
DO  - 10.3390/catal12121571
ER  - 
@article{
author = "Stanković, Vesna and Manojlović, Dragan D. and Roglić, Goran and Tolstoguzov, Dmitry S. and Zherebtsov, Dmitry A. and Uchaev, Daniel A. and Avdin, Viacheslav V. and Stanković, Dalibor",
year = "2022",
abstract = ": Nanoparticles of TiO2 are suitable for many catalytic and photocatalytic applications due
to their extraordinary properties such as superhydrophobicity, semiconductivity, electron-rich, and
environmental compatibility. The main crystalline phases of TiO2
, anatase, and rutile possess different
crystal structures, crystallinity, crystalline sizes, and specific surface areas, and these characteristics
directly affect the catalytic performance of TiO2
. In the present study, domestic carbon material
enhanced with TiO2 nanoparticles was synthesized and used for the construction of a modified
carbon paste electrode. The electrocatalytic activity of the modified electrodes was investigated
depending on the TiO2 crystalline phases in the electrode material. Furthermore, the obtained
working electrode was utilized for triclosan detection. Under optimized experimental conditions, the
developed electrode showed a submicromolar triclosan detection limit of 0.07 µM and a wide linear
range of 0.1 to 15 µM. The relative standard deviations for repeatability and reproducibility were
lower than 4.1%, and with satisfactory selectivity, the proposed system was successfully applied to
triclosan monitoring in groundwater. All these results confirm that the sustainable production of new
and domestically prepared materials is of great benefit in the field of electrocatalysis and that the
morphology of such produced materials is strongly related to their catalytic properties.",
publisher = "MDPI",
journal = "Catalysts",
title = "Synthesis and Application of Domestic Glassy Carbon TiO2 Nanocomposite for Electrocatalytic Triclosan Detection",
volume = "12",
number = "12",
pages = "1571",
doi = "10.3390/catal12121571"
}
Stanković, V., Manojlović, D. D., Roglić, G., Tolstoguzov, D. S., Zherebtsov, D. A., Uchaev, D. A., Avdin, V. V.,& Stanković, D.. (2022). Synthesis and Application of Domestic Glassy Carbon TiO2 Nanocomposite for Electrocatalytic Triclosan Detection. in Catalysts
MDPI., 12(12), 1571.
https://doi.org/10.3390/catal12121571
Stanković V, Manojlović DD, Roglić G, Tolstoguzov DS, Zherebtsov DA, Uchaev DA, Avdin VV, Stanković D. Synthesis and Application of Domestic Glassy Carbon TiO2 Nanocomposite for Electrocatalytic Triclosan Detection. in Catalysts. 2022;12(12):1571.
doi:10.3390/catal12121571 .
Stanković, Vesna, Manojlović, Dragan D., Roglić, Goran, Tolstoguzov, Dmitry S., Zherebtsov, Dmitry A., Uchaev, Daniel A., Avdin, Viacheslav V., Stanković, Dalibor, "Synthesis and Application of Domestic Glassy Carbon TiO2 Nanocomposite for Electrocatalytic Triclosan Detection" in Catalysts, 12, no. 12 (2022):1571,
https://doi.org/10.3390/catal12121571 . .
1

La(OH)3 Multi-Walled Carbon Nanotube/Carbon Paste-Based Sensing Approach for the Detection of Uric Acid—A Product of Environmentally Stressed Cells

Knežević, Sara; Ognjanović, Miloš; Stanković, Vesna; Zlatanova, Milena; Nešić, Andrijana N.; Gavrović-Jankulović, Marija; Stanković, Dalibor

(MDPI, 2022)

TY  - JOUR
AU  - Knežević, Sara
AU  - Ognjanović, Miloš
AU  - Stanković, Vesna
AU  - Zlatanova, Milena
AU  - Nešić, Andrijana N.
AU  - Gavrović-Jankulović, Marija
AU  - Stanković, Dalibor
PY  - 2022
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5622
AB  - This paper aims to develop an amperometric, non-enzymatic sensor for detecting and quantifying UA as an alert signal induced by allergens with protease activity in human cell lines (HEK293 and HeLa). Uric acid (UA) has been classified as a damage-associated molecular pattern (DAMP) molecule that serves a physiological purpose inside the cell, while outside the cell it can be an indicator of cell damage. Cell damage or stress can be caused by different health problems or by environmental irritants, such as allergens. We can act and prevent the events that generate stress by determining the extent to which cells are under stress. Amperometric calibration measurements were performed with a carbon paste electrode modified with La(OH)3@MWCNT, at the potential of 0.3 V. The calibration curve was constructed in a linear operating range from 0.67 μM to 121 μM UA. The proposed sensor displayed good reproducibility with an RSD of 3.65% calculated for five subsequent measurements, and a low detection limit of 64.28 nM, determined using the 3 S/m method. Interference studies and the real sample analysis of allergen-treated cell lines proved that the proposed sensing platform possesses excellent sensitivity, reproducibility, and stability. Therefore, it can potentially be used to evaluate stress factors in medical research and clinical practice.
PB  - MDPI
T2  - Biosensors
T1  - La(OH)3 Multi-Walled Carbon Nanotube/Carbon Paste-Based Sensing Approach for the Detection of Uric Acid—A Product of Environmentally Stressed Cells
VL  - 12
IS  - 9
SP  - 705
DO  - 10.3390/bios12090705
ER  - 
@article{
author = "Knežević, Sara and Ognjanović, Miloš and Stanković, Vesna and Zlatanova, Milena and Nešić, Andrijana N. and Gavrović-Jankulović, Marija and Stanković, Dalibor",
year = "2022",
abstract = "This paper aims to develop an amperometric, non-enzymatic sensor for detecting and quantifying UA as an alert signal induced by allergens with protease activity in human cell lines (HEK293 and HeLa). Uric acid (UA) has been classified as a damage-associated molecular pattern (DAMP) molecule that serves a physiological purpose inside the cell, while outside the cell it can be an indicator of cell damage. Cell damage or stress can be caused by different health problems or by environmental irritants, such as allergens. We can act and prevent the events that generate stress by determining the extent to which cells are under stress. Amperometric calibration measurements were performed with a carbon paste electrode modified with La(OH)3@MWCNT, at the potential of 0.3 V. The calibration curve was constructed in a linear operating range from 0.67 μM to 121 μM UA. The proposed sensor displayed good reproducibility with an RSD of 3.65% calculated for five subsequent measurements, and a low detection limit of 64.28 nM, determined using the 3 S/m method. Interference studies and the real sample analysis of allergen-treated cell lines proved that the proposed sensing platform possesses excellent sensitivity, reproducibility, and stability. Therefore, it can potentially be used to evaluate stress factors in medical research and clinical practice.",
publisher = "MDPI",
journal = "Biosensors",
title = "La(OH)3 Multi-Walled Carbon Nanotube/Carbon Paste-Based Sensing Approach for the Detection of Uric Acid—A Product of Environmentally Stressed Cells",
volume = "12",
number = "9",
pages = "705",
doi = "10.3390/bios12090705"
}
Knežević, S., Ognjanović, M., Stanković, V., Zlatanova, M., Nešić, A. N., Gavrović-Jankulović, M.,& Stanković, D.. (2022). La(OH)3 Multi-Walled Carbon Nanotube/Carbon Paste-Based Sensing Approach for the Detection of Uric Acid—A Product of Environmentally Stressed Cells. in Biosensors
MDPI., 12(9), 705.
https://doi.org/10.3390/bios12090705
Knežević S, Ognjanović M, Stanković V, Zlatanova M, Nešić AN, Gavrović-Jankulović M, Stanković D. La(OH)3 Multi-Walled Carbon Nanotube/Carbon Paste-Based Sensing Approach for the Detection of Uric Acid—A Product of Environmentally Stressed Cells. in Biosensors. 2022;12(9):705.
doi:10.3390/bios12090705 .
Knežević, Sara, Ognjanović, Miloš, Stanković, Vesna, Zlatanova, Milena, Nešić, Andrijana N., Gavrović-Jankulović, Marija, Stanković, Dalibor, "La(OH)3 Multi-Walled Carbon Nanotube/Carbon Paste-Based Sensing Approach for the Detection of Uric Acid—A Product of Environmentally Stressed Cells" in Biosensors, 12, no. 9 (2022):705,
https://doi.org/10.3390/bios12090705 . .
1
6
6
5

Supplementary material for: Knežević, S., Ognjanović, M., Stanković, V., Zlatanova, M., Nešić, A., Gavrović-Jankulović, M.,& Stanković, D.. (2022). La(OH)3 Multi-Walled Carbon Nanotube/Carbon Paste-Based Sensing Approach for the Detection of Uric Acid—A Product of Environmentally Stressed Cells. in Biosensors MDPI., 12(9), 705. https://doi.org/10.3390/bios12090705

Knežević, Sara; Ognjanović, Miloš; Stanković, Vesna; Zlatanova, Milena; Nešić, Andrijana N.; Gavrović-Jankulović, Marija; Stanković, Dalibor

(MDPI, 2022)

TY  - DATA
AU  - Knežević, Sara
AU  - Ognjanović, Miloš
AU  - Stanković, Vesna
AU  - Zlatanova, Milena
AU  - Nešić, Andrijana N.
AU  - Gavrović-Jankulović, Marija
AU  - Stanković, Dalibor
PY  - 2022
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5632
AB  - This paper aims to develop an amperometric, non-enzymatic sensor for detecting and quantifying UA as an alert signal induced by allergens with protease activity in human cell lines (HEK293 and HeLa). Uric acid (UA) has been classified as a damage-associated molecular pattern (DAMP) molecule that serves a physiological purpose inside the cell, while outside the cell it can be an indicator of cell damage. Cell damage or stress can be caused by different health problems or by environmental irritants, such as allergens. We can act and prevent the events that generate stress by determining the extent to which cells are under stress. Amperometric calibration measurements were performed with a carbon paste electrode modified with La(OH)3@MWCNT, at the potential of 0.3 V. The calibration curve was constructed in a linear operating range from 0.67 μM to 121 μM UA. The proposed sensor displayed good reproducibility with an RSD of 3.65% calculated for five subsequent measurements, and a low detection limit of 64.28 nM, determined using the 3 S/m method. Interference studies and the real sample analysis of allergen-treated cell lines proved that the proposed sensing platform possesses excellent sensitivity, reproducibility, and stability. Therefore, it can potentially be used to evaluate stress factors in medical research and clinical practice.
PB  - MDPI
T2  - Biosensors
T1  - Supplementary material for: Knežević, S., Ognjanović, M., Stanković, V., Zlatanova, M., Nešić, A., Gavrović-Jankulović, M.,& Stanković, D.. (2022). La(OH)3 Multi-Walled Carbon Nanotube/Carbon Paste-Based Sensing Approach for the Detection of Uric Acid—A Product of Environmentally Stressed Cells. in Biosensors MDPI., 12(9), 705. https://doi.org/10.3390/bios12090705
VL  - 12
IS  - 9
SP  - 705
UR  - https://hdl.handle.net/21.15107/rcub_cherry_5632
ER  - 
@misc{
author = "Knežević, Sara and Ognjanović, Miloš and Stanković, Vesna and Zlatanova, Milena and Nešić, Andrijana N. and Gavrović-Jankulović, Marija and Stanković, Dalibor",
year = "2022",
abstract = "This paper aims to develop an amperometric, non-enzymatic sensor for detecting and quantifying UA as an alert signal induced by allergens with protease activity in human cell lines (HEK293 and HeLa). Uric acid (UA) has been classified as a damage-associated molecular pattern (DAMP) molecule that serves a physiological purpose inside the cell, while outside the cell it can be an indicator of cell damage. Cell damage or stress can be caused by different health problems or by environmental irritants, such as allergens. We can act and prevent the events that generate stress by determining the extent to which cells are under stress. Amperometric calibration measurements were performed with a carbon paste electrode modified with La(OH)3@MWCNT, at the potential of 0.3 V. The calibration curve was constructed in a linear operating range from 0.67 μM to 121 μM UA. The proposed sensor displayed good reproducibility with an RSD of 3.65% calculated for five subsequent measurements, and a low detection limit of 64.28 nM, determined using the 3 S/m method. Interference studies and the real sample analysis of allergen-treated cell lines proved that the proposed sensing platform possesses excellent sensitivity, reproducibility, and stability. Therefore, it can potentially be used to evaluate stress factors in medical research and clinical practice.",
publisher = "MDPI",
journal = "Biosensors",
title = "Supplementary material for: Knežević, S., Ognjanović, M., Stanković, V., Zlatanova, M., Nešić, A., Gavrović-Jankulović, M.,& Stanković, D.. (2022). La(OH)3 Multi-Walled Carbon Nanotube/Carbon Paste-Based Sensing Approach for the Detection of Uric Acid—A Product of Environmentally Stressed Cells. in Biosensors MDPI., 12(9), 705. https://doi.org/10.3390/bios12090705",
volume = "12",
number = "9",
pages = "705",
url = "https://hdl.handle.net/21.15107/rcub_cherry_5632"
}
Knežević, S., Ognjanović, M., Stanković, V., Zlatanova, M., Nešić, A. N., Gavrović-Jankulović, M.,& Stanković, D.. (2022). Supplementary material for: Knežević, S., Ognjanović, M., Stanković, V., Zlatanova, M., Nešić, A., Gavrović-Jankulović, M.,& Stanković, D.. (2022). La(OH)3 Multi-Walled Carbon Nanotube/Carbon Paste-Based Sensing Approach for the Detection of Uric Acid—A Product of Environmentally Stressed Cells. in Biosensors MDPI., 12(9), 705. https://doi.org/10.3390/bios12090705. in Biosensors
MDPI., 12(9), 705.
https://hdl.handle.net/21.15107/rcub_cherry_5632
Knežević S, Ognjanović M, Stanković V, Zlatanova M, Nešić AN, Gavrović-Jankulović M, Stanković D. Supplementary material for: Knežević, S., Ognjanović, M., Stanković, V., Zlatanova, M., Nešić, A., Gavrović-Jankulović, M.,& Stanković, D.. (2022). La(OH)3 Multi-Walled Carbon Nanotube/Carbon Paste-Based Sensing Approach for the Detection of Uric Acid—A Product of Environmentally Stressed Cells. in Biosensors MDPI., 12(9), 705. https://doi.org/10.3390/bios12090705. in Biosensors. 2022;12(9):705.
https://hdl.handle.net/21.15107/rcub_cherry_5632 .
Knežević, Sara, Ognjanović, Miloš, Stanković, Vesna, Zlatanova, Milena, Nešić, Andrijana N., Gavrović-Jankulović, Marija, Stanković, Dalibor, "Supplementary material for: Knežević, S., Ognjanović, M., Stanković, V., Zlatanova, M., Nešić, A., Gavrović-Jankulović, M.,& Stanković, D.. (2022). La(OH)3 Multi-Walled Carbon Nanotube/Carbon Paste-Based Sensing Approach for the Detection of Uric Acid—A Product of Environmentally Stressed Cells. in Biosensors MDPI., 12(9), 705. https://doi.org/10.3390/bios12090705" in Biosensors, 12, no. 9 (2022):705,
https://hdl.handle.net/21.15107/rcub_cherry_5632 .

Carboxylated single-wall carbon nanotubes decorated with SiO2 coated-Nd2O3 nanoparticles as an electrochemical sensor for L-DOPA detection

Đurđić, Slađana Z.; Stanković, Vesna; Vlahović, Filip; Ognjanović, Miloš; Kalcher, Kurt; Manojlović, Dragan D.; Mutić, Jelena; Stanković, Dalibor

(2021)

TY  - JOUR
AU  - Đurđić, Slađana Z.
AU  - Stanković, Vesna
AU  - Vlahović, Filip
AU  - Ognjanović, Miloš
AU  - Kalcher, Kurt
AU  - Manojlović, Dragan D.
AU  - Mutić, Jelena
AU  - Stanković, Dalibor
PY  - 2021
UR  - https://www.sciencedirect.com/science/article/pii/S0026265X21005002
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4543
AB  - L-DOPA (L-3,4-dihydroxyphenylalanine), the precursor of dopamine, is widely used in the treatment of Parkinson’s disease, thus determining and monitoring the concentration of L-DOPA is of utmost importance for both medical and scientific purposes. Although many analytical approaches, designed for drug detection and quantification, already exist, there is a constant need for modification of old and tailoring of new, faster, and selective methods. Redox active chemical species, such as L-DOPA, can be measured directly by electrochemical means, whereas electrochemical sensors combine sensitivity and selectivity within a small analytical device. This work demonstrates the development of such electrochemical sensor, based on carboxylated single-wall carbon nanotubes (SWCNT-COOH) decorated with SiO2 coated-Nd2O3 nanoparticles, and further application for the detection of L-DOPA. Developed SWCNT-COOH@Nd2O3-SiO2 sensor shows linear response in the range from 2 µmol L−1 to 52 µmol L−1 analyte concentration, and beside the low detection limit, it is characterized by a fast response time, as well as good life-time, reproducibility and repeatability.
T2  - Microchemical Journal
T1  - Carboxylated single-wall carbon nanotubes decorated with SiO2 coated-Nd2O3 nanoparticles as an electrochemical sensor for L-DOPA detection
VL  - 168
SP  - 106416
DO  - 10.1016/j.microc.2021.106416
ER  - 
@article{
author = "Đurđić, Slađana Z. and Stanković, Vesna and Vlahović, Filip and Ognjanović, Miloš and Kalcher, Kurt and Manojlović, Dragan D. and Mutić, Jelena and Stanković, Dalibor",
year = "2021",
abstract = "L-DOPA (L-3,4-dihydroxyphenylalanine), the precursor of dopamine, is widely used in the treatment of Parkinson’s disease, thus determining and monitoring the concentration of L-DOPA is of utmost importance for both medical and scientific purposes. Although many analytical approaches, designed for drug detection and quantification, already exist, there is a constant need for modification of old and tailoring of new, faster, and selective methods. Redox active chemical species, such as L-DOPA, can be measured directly by electrochemical means, whereas electrochemical sensors combine sensitivity and selectivity within a small analytical device. This work demonstrates the development of such electrochemical sensor, based on carboxylated single-wall carbon nanotubes (SWCNT-COOH) decorated with SiO2 coated-Nd2O3 nanoparticles, and further application for the detection of L-DOPA. Developed SWCNT-COOH@Nd2O3-SiO2 sensor shows linear response in the range from 2 µmol L−1 to 52 µmol L−1 analyte concentration, and beside the low detection limit, it is characterized by a fast response time, as well as good life-time, reproducibility and repeatability.",
journal = "Microchemical Journal",
title = "Carboxylated single-wall carbon nanotubes decorated with SiO2 coated-Nd2O3 nanoparticles as an electrochemical sensor for L-DOPA detection",
volume = "168",
pages = "106416",
doi = "10.1016/j.microc.2021.106416"
}
Đurđić, S. Z., Stanković, V., Vlahović, F., Ognjanović, M., Kalcher, K., Manojlović, D. D., Mutić, J.,& Stanković, D.. (2021). Carboxylated single-wall carbon nanotubes decorated with SiO2 coated-Nd2O3 nanoparticles as an electrochemical sensor for L-DOPA detection. in Microchemical Journal, 168, 106416.
https://doi.org/10.1016/j.microc.2021.106416
Đurđić SZ, Stanković V, Vlahović F, Ognjanović M, Kalcher K, Manojlović DD, Mutić J, Stanković D. Carboxylated single-wall carbon nanotubes decorated with SiO2 coated-Nd2O3 nanoparticles as an electrochemical sensor for L-DOPA detection. in Microchemical Journal. 2021;168:106416.
doi:10.1016/j.microc.2021.106416 .
Đurđić, Slađana Z., Stanković, Vesna, Vlahović, Filip, Ognjanović, Miloš, Kalcher, Kurt, Manojlović, Dragan D., Mutić, Jelena, Stanković, Dalibor, "Carboxylated single-wall carbon nanotubes decorated with SiO2 coated-Nd2O3 nanoparticles as an electrochemical sensor for L-DOPA detection" in Microchemical Journal, 168 (2021):106416,
https://doi.org/10.1016/j.microc.2021.106416 . .
32
31
26

Supplementary data for the article: Đurđić, S.; Stanković, V.; Vlahović, F.; Ognjanović, M.; Kalcher, K.; Manojlović, D.; Mutić, J.; Stanković, D. M. Carboxylated Single-Wall Carbon Nanotubes Decorated with SiO2 Coated-Nd2O3 Nanoparticles as an Electrochemical Sensor for L-DOPA Detection. Microchemical Journal 2021, 168, 106416. https://doi.org/10.1016/j.microc.2021.106416.

Đurđić, Slađana Z.; Stanković, Vesna; Vlahović, Filip; Ognjanović, Miloš; Kalcher, Kurt; Manojlović, Dragan D.; Mutić, Jelena; Stanković, Dalibor

(2021)

TY  - DATA
AU  - Đurđić, Slađana Z.
AU  - Stanković, Vesna
AU  - Vlahović, Filip
AU  - Ognjanović, Miloš
AU  - Kalcher, Kurt
AU  - Manojlović, Dragan D.
AU  - Mutić, Jelena
AU  - Stanković, Dalibor
PY  - 2021
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4544
T2  - Microchemical Journal
T1  - Supplementary data for the article: Đurđić, S.; Stanković, V.; Vlahović, F.; Ognjanović, M.; Kalcher, K.; Manojlović, D.; Mutić, J.; Stanković, D. M. Carboxylated Single-Wall Carbon Nanotubes Decorated with SiO2 Coated-Nd2O3 Nanoparticles as an Electrochemical Sensor for L-DOPA Detection. Microchemical Journal 2021, 168, 106416. https://doi.org/10.1016/j.microc.2021.106416.
UR  - https://hdl.handle.net/21.15107/rcub_cherry_4544
ER  - 
@misc{
author = "Đurđić, Slađana Z. and Stanković, Vesna and Vlahović, Filip and Ognjanović, Miloš and Kalcher, Kurt and Manojlović, Dragan D. and Mutić, Jelena and Stanković, Dalibor",
year = "2021",
journal = "Microchemical Journal",
title = "Supplementary data for the article: Đurđić, S.; Stanković, V.; Vlahović, F.; Ognjanović, M.; Kalcher, K.; Manojlović, D.; Mutić, J.; Stanković, D. M. Carboxylated Single-Wall Carbon Nanotubes Decorated with SiO2 Coated-Nd2O3 Nanoparticles as an Electrochemical Sensor for L-DOPA Detection. Microchemical Journal 2021, 168, 106416. https://doi.org/10.1016/j.microc.2021.106416.",
url = "https://hdl.handle.net/21.15107/rcub_cherry_4544"
}
Đurđić, S. Z., Stanković, V., Vlahović, F., Ognjanović, M., Kalcher, K., Manojlović, D. D., Mutić, J.,& Stanković, D.. (2021). Supplementary data for the article: Đurđić, S.; Stanković, V.; Vlahović, F.; Ognjanović, M.; Kalcher, K.; Manojlović, D.; Mutić, J.; Stanković, D. M. Carboxylated Single-Wall Carbon Nanotubes Decorated with SiO2 Coated-Nd2O3 Nanoparticles as an Electrochemical Sensor for L-DOPA Detection. Microchemical Journal 2021, 168, 106416. https://doi.org/10.1016/j.microc.2021.106416.. in Microchemical Journal.
https://hdl.handle.net/21.15107/rcub_cherry_4544
Đurđić SZ, Stanković V, Vlahović F, Ognjanović M, Kalcher K, Manojlović DD, Mutić J, Stanković D. Supplementary data for the article: Đurđić, S.; Stanković, V.; Vlahović, F.; Ognjanović, M.; Kalcher, K.; Manojlović, D.; Mutić, J.; Stanković, D. M. Carboxylated Single-Wall Carbon Nanotubes Decorated with SiO2 Coated-Nd2O3 Nanoparticles as an Electrochemical Sensor for L-DOPA Detection. Microchemical Journal 2021, 168, 106416. https://doi.org/10.1016/j.microc.2021.106416.. in Microchemical Journal. 2021;.
https://hdl.handle.net/21.15107/rcub_cherry_4544 .
Đurđić, Slađana Z., Stanković, Vesna, Vlahović, Filip, Ognjanović, Miloš, Kalcher, Kurt, Manojlović, Dragan D., Mutić, Jelena, Stanković, Dalibor, "Supplementary data for the article: Đurđić, S.; Stanković, V.; Vlahović, F.; Ognjanović, M.; Kalcher, K.; Manojlović, D.; Mutić, J.; Stanković, D. M. Carboxylated Single-Wall Carbon Nanotubes Decorated with SiO2 Coated-Nd2O3 Nanoparticles as an Electrochemical Sensor for L-DOPA Detection. Microchemical Journal 2021, 168, 106416. https://doi.org/10.1016/j.microc.2021.106416." in Microchemical Journal (2021),
https://hdl.handle.net/21.15107/rcub_cherry_4544 .

Is a Lead Isotope Ratios in Wine Good Marker for Origin Assessment?

Đurđić, Slađana Z.; Stanković, Vesna; Ražić, Slavica; Mutić, Jelena

(Frontiers Media, 2021)

TY  - JOUR
AU  - Đurđić, Slađana Z.
AU  - Stanković, Vesna
AU  - Ražić, Slavica
AU  - Mutić, Jelena
PY  - 2021
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4748
AB  - Lead isotope ratio pattern (206Pb/207Pb, 208Pb/206Pb, 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb) was analyzed in 59 samples of Serbian wine, from four geographical regions. By utilization of powerful inductively coupled plasma mass spectrometry (ICP-QMS), lead isotope ratios were used as unique “fingerprint”, when combined with multivariate methods of analysis (Principal Component Analysis), provided information on the geographical origin of wine. In validation of ICP- QMS method and quantitative analysis, the certified reference material NIST SRM 981 was employed to test the mass-bias correction and thallium isotopes 203Tl and 205Tl (NIST SRM 997) as an internal standard. The obtained results were discussed in correlation with the corresponding values of LIRs of different European and Australian wines. In addition, the impact of anthropogenic Pb from different sources on the total Pb isotopic composition in Serbian wines was analyzed too. On the other side, the obtained values of Pb content were compared with the applicable health safety standards, according to the International Code of Oenological Practices.
PB  - Frontiers Media
T2  - Frontiers in Chemistry
T1  - Is a Lead Isotope Ratios in Wine Good Marker for Origin Assessment?
VL  - 9
SP  - 842
DO  - 10.3389/fchem.2021.746695
ER  - 
@article{
author = "Đurđić, Slađana Z. and Stanković, Vesna and Ražić, Slavica and Mutić, Jelena",
year = "2021",
abstract = "Lead isotope ratio pattern (206Pb/207Pb, 208Pb/206Pb, 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb) was analyzed in 59 samples of Serbian wine, from four geographical regions. By utilization of powerful inductively coupled plasma mass spectrometry (ICP-QMS), lead isotope ratios were used as unique “fingerprint”, when combined with multivariate methods of analysis (Principal Component Analysis), provided information on the geographical origin of wine. In validation of ICP- QMS method and quantitative analysis, the certified reference material NIST SRM 981 was employed to test the mass-bias correction and thallium isotopes 203Tl and 205Tl (NIST SRM 997) as an internal standard. The obtained results were discussed in correlation with the corresponding values of LIRs of different European and Australian wines. In addition, the impact of anthropogenic Pb from different sources on the total Pb isotopic composition in Serbian wines was analyzed too. On the other side, the obtained values of Pb content were compared with the applicable health safety standards, according to the International Code of Oenological Practices.",
publisher = "Frontiers Media",
journal = "Frontiers in Chemistry",
title = "Is a Lead Isotope Ratios in Wine Good Marker for Origin Assessment?",
volume = "9",
pages = "842",
doi = "10.3389/fchem.2021.746695"
}
Đurđić, S. Z., Stanković, V., Ražić, S.,& Mutić, J.. (2021). Is a Lead Isotope Ratios in Wine Good Marker for Origin Assessment?. in Frontiers in Chemistry
Frontiers Media., 9, 842.
https://doi.org/10.3389/fchem.2021.746695
Đurđić SZ, Stanković V, Ražić S, Mutić J. Is a Lead Isotope Ratios in Wine Good Marker for Origin Assessment?. in Frontiers in Chemistry. 2021;9:842.
doi:10.3389/fchem.2021.746695 .
Đurđić, Slađana Z., Stanković, Vesna, Ražić, Slavica, Mutić, Jelena, "Is a Lead Isotope Ratios in Wine Good Marker for Origin Assessment?" in Frontiers in Chemistry, 9 (2021):842,
https://doi.org/10.3389/fchem.2021.746695 . .
1
3
3
2

Supplementary data for the article: Đurđić, S.; Stanković, V.; Ražić, S.; Mutić, J. Is a Lead Isotope Ratios in Wine Good Marker for Origin Assessment? Frontiers in Chemistry 2021, 9, 842. https://doi.org/10.3389/fchem.2021.746695.

Đurđić, Slađana Z.; Stanković, Vesna; Ražić, Slavica; Mutić, Jelena

(Frontiers Media, 2021)

TY  - DATA
AU  - Đurđić, Slađana Z.
AU  - Stanković, Vesna
AU  - Ražić, Slavica
AU  - Mutić, Jelena
PY  - 2021
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4749
PB  - Frontiers Media
T2  - Frontiers in Chemistry
T1  - Supplementary data for the article: Đurđić, S.; Stanković, V.; Ražić, S.; Mutić, J. Is a Lead Isotope Ratios in Wine Good Marker for Origin Assessment? Frontiers in Chemistry 2021, 9, 842. https://doi.org/10.3389/fchem.2021.746695.
UR  - https://hdl.handle.net/21.15107/rcub_cherry_4749
ER  - 
@misc{
author = "Đurđić, Slađana Z. and Stanković, Vesna and Ražić, Slavica and Mutić, Jelena",
year = "2021",
publisher = "Frontiers Media",
journal = "Frontiers in Chemistry",
title = "Supplementary data for the article: Đurđić, S.; Stanković, V.; Ražić, S.; Mutić, J. Is a Lead Isotope Ratios in Wine Good Marker for Origin Assessment? Frontiers in Chemistry 2021, 9, 842. https://doi.org/10.3389/fchem.2021.746695.",
url = "https://hdl.handle.net/21.15107/rcub_cherry_4749"
}
Đurđić, S. Z., Stanković, V., Ražić, S.,& Mutić, J.. (2021). Supplementary data for the article: Đurđić, S.; Stanković, V.; Ražić, S.; Mutić, J. Is a Lead Isotope Ratios in Wine Good Marker for Origin Assessment? Frontiers in Chemistry 2021, 9, 842. https://doi.org/10.3389/fchem.2021.746695.. in Frontiers in Chemistry
Frontiers Media..
https://hdl.handle.net/21.15107/rcub_cherry_4749
Đurđić SZ, Stanković V, Ražić S, Mutić J. Supplementary data for the article: Đurđić, S.; Stanković, V.; Ražić, S.; Mutić, J. Is a Lead Isotope Ratios in Wine Good Marker for Origin Assessment? Frontiers in Chemistry 2021, 9, 842. https://doi.org/10.3389/fchem.2021.746695.. in Frontiers in Chemistry. 2021;.
https://hdl.handle.net/21.15107/rcub_cherry_4749 .
Đurđić, Slađana Z., Stanković, Vesna, Ražić, Slavica, Mutić, Jelena, "Supplementary data for the article: Đurđić, S.; Stanković, V.; Ražić, S.; Mutić, J. Is a Lead Isotope Ratios in Wine Good Marker for Origin Assessment? Frontiers in Chemistry 2021, 9, 842. https://doi.org/10.3389/fchem.2021.746695." in Frontiers in Chemistry (2021),
https://hdl.handle.net/21.15107/rcub_cherry_4749 .

Content and distribution of major and trace elements as a tool to assess the genotypes, harvesting time, and cultivation systems of potato

Dramićanin, Aleksandra M.; Andrić, Filip; Mutić, Jelena; Stanković, Vesna; Momirović, Nebojša M.; Milojković-Opsenica, Dušanka

(Elsevier, 2021)

TY  - JOUR
AU  - Dramićanin, Aleksandra M.
AU  - Andrić, Filip
AU  - Mutić, Jelena
AU  - Stanković, Vesna
AU  - Momirović, Nebojša M.
AU  - Milojković-Opsenica, Dušanka
PY  - 2021
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/4823
AB  - The effects of organic versus integral and conventional crop management on content and distribution of major and trace elements in different varieties of potato were investigated in a three year field trial. A set of 48 potato tubers of four varieties with different harvesting times, cultivated in three types of agricultural systems: conventional (C), integral (I), and organic (O) were characterized based on the composition of the elements of their bulk and peel. A total of 16 elements were quantified. In order to determine the source of variation among the types of production, parts of potato and varieties, multivariate analysis of variance (MANOVA) was conducted. The results indicate that Ca, Mg, and K may be considered as important indicators of the type of production, genotypes of potato, and harvesting time. Additionally, the analyses show that ten microelements are able to distinguish between production types and genotypes of potato.
PB  - Elsevier
T2  - Food Chemistry
T1  - Content and distribution of major and trace elements as a tool to assess the genotypes, harvesting time, and cultivation systems of potato
VL  - 354
SP  - 129507
DO  - 10.1016/j.foodchem.2021.129507
ER  - 
@article{
author = "Dramićanin, Aleksandra M. and Andrić, Filip and Mutić, Jelena and Stanković, Vesna and Momirović, Nebojša M. and Milojković-Opsenica, Dušanka",
year = "2021",
abstract = "The effects of organic versus integral and conventional crop management on content and distribution of major and trace elements in different varieties of potato were investigated in a three year field trial. A set of 48 potato tubers of four varieties with different harvesting times, cultivated in three types of agricultural systems: conventional (C), integral (I), and organic (O) were characterized based on the composition of the elements of their bulk and peel. A total of 16 elements were quantified. In order to determine the source of variation among the types of production, parts of potato and varieties, multivariate analysis of variance (MANOVA) was conducted. The results indicate that Ca, Mg, and K may be considered as important indicators of the type of production, genotypes of potato, and harvesting time. Additionally, the analyses show that ten microelements are able to distinguish between production types and genotypes of potato.",
publisher = "Elsevier",
journal = "Food Chemistry",
title = "Content and distribution of major and trace elements as a tool to assess the genotypes, harvesting time, and cultivation systems of potato",
volume = "354",
pages = "129507",
doi = "10.1016/j.foodchem.2021.129507"
}
Dramićanin, A. M., Andrić, F., Mutić, J., Stanković, V., Momirović, N. M.,& Milojković-Opsenica, D.. (2021). Content and distribution of major and trace elements as a tool to assess the genotypes, harvesting time, and cultivation systems of potato. in Food Chemistry
Elsevier., 354, 129507.
https://doi.org/10.1016/j.foodchem.2021.129507
Dramićanin AM, Andrić F, Mutić J, Stanković V, Momirović NM, Milojković-Opsenica D. Content and distribution of major and trace elements as a tool to assess the genotypes, harvesting time, and cultivation systems of potato. in Food Chemistry. 2021;354:129507.
doi:10.1016/j.foodchem.2021.129507 .
Dramićanin, Aleksandra M., Andrić, Filip, Mutić, Jelena, Stanković, Vesna, Momirović, Nebojša M., Milojković-Opsenica, Dušanka, "Content and distribution of major and trace elements as a tool to assess the genotypes, harvesting time, and cultivation systems of potato" in Food Chemistry, 354 (2021):129507,
https://doi.org/10.1016/j.foodchem.2021.129507 . .
3
1
4
3

Supplementary data for the article: Dramićanin, A.; Andrić, F.; Mutić, J.; Stanković, V.; Momirović, N.; Milojković-Opsenica, D. Content and Distribution of Major and Trace Elements as a Tool to Assess the Genotypes, Harvesting Time, and Cultivation Systems of Potato. Food Chemistry 2021, 354, 129507. https://doi.org/10.1016/j.foodchem.2021.129507.

Dramićanin, Aleksandra M.; Andrić, Filip; Mutić, Jelena; Stanković, Vesna; Momirović, Nebojša M.; Milojković-Opsenica, Dušanka

(Elsevier, 2021)

TY  - DATA
AU  - Dramićanin, Aleksandra M.
AU  - Andrić, Filip
AU  - Mutić, Jelena
AU  - Stanković, Vesna
AU  - Momirović, Nebojša M.
AU  - Milojković-Opsenica, Dušanka
PY  - 2021
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/4824
PB  - Elsevier
T2  - Food Chemistry
T1  - Supplementary data for the article: Dramićanin, A.; Andrić, F.; Mutić, J.; Stanković, V.; Momirović, N.; Milojković-Opsenica, D. Content and Distribution of Major and Trace Elements as a Tool to Assess the Genotypes, Harvesting Time, and Cultivation Systems of Potato. Food Chemistry 2021, 354, 129507. https://doi.org/10.1016/j.foodchem.2021.129507.
UR  - https://hdl.handle.net/21.15107/rcub_cherry_4824
ER  - 
@misc{
author = "Dramićanin, Aleksandra M. and Andrić, Filip and Mutić, Jelena and Stanković, Vesna and Momirović, Nebojša M. and Milojković-Opsenica, Dušanka",
year = "2021",
publisher = "Elsevier",
journal = "Food Chemistry",
title = "Supplementary data for the article: Dramićanin, A.; Andrić, F.; Mutić, J.; Stanković, V.; Momirović, N.; Milojković-Opsenica, D. Content and Distribution of Major and Trace Elements as a Tool to Assess the Genotypes, Harvesting Time, and Cultivation Systems of Potato. Food Chemistry 2021, 354, 129507. https://doi.org/10.1016/j.foodchem.2021.129507.",
url = "https://hdl.handle.net/21.15107/rcub_cherry_4824"
}
Dramićanin, A. M., Andrić, F., Mutić, J., Stanković, V., Momirović, N. M.,& Milojković-Opsenica, D.. (2021). Supplementary data for the article: Dramićanin, A.; Andrić, F.; Mutić, J.; Stanković, V.; Momirović, N.; Milojković-Opsenica, D. Content and Distribution of Major and Trace Elements as a Tool to Assess the Genotypes, Harvesting Time, and Cultivation Systems of Potato. Food Chemistry 2021, 354, 129507. https://doi.org/10.1016/j.foodchem.2021.129507.. in Food Chemistry
Elsevier..
https://hdl.handle.net/21.15107/rcub_cherry_4824
Dramićanin AM, Andrić F, Mutić J, Stanković V, Momirović NM, Milojković-Opsenica D. Supplementary data for the article: Dramićanin, A.; Andrić, F.; Mutić, J.; Stanković, V.; Momirović, N.; Milojković-Opsenica, D. Content and Distribution of Major and Trace Elements as a Tool to Assess the Genotypes, Harvesting Time, and Cultivation Systems of Potato. Food Chemistry 2021, 354, 129507. https://doi.org/10.1016/j.foodchem.2021.129507.. in Food Chemistry. 2021;.
https://hdl.handle.net/21.15107/rcub_cherry_4824 .
Dramićanin, Aleksandra M., Andrić, Filip, Mutić, Jelena, Stanković, Vesna, Momirović, Nebojša M., Milojković-Opsenica, Dušanka, "Supplementary data for the article: Dramićanin, A.; Andrić, F.; Mutić, J.; Stanković, V.; Momirović, N.; Milojković-Opsenica, D. Content and Distribution of Major and Trace Elements as a Tool to Assess the Genotypes, Harvesting Time, and Cultivation Systems of Potato. Food Chemistry 2021, 354, 129507. https://doi.org/10.1016/j.foodchem.2021.129507." in Food Chemistry (2021),
https://hdl.handle.net/21.15107/rcub_cherry_4824 .

Screen printed diamond electrode as efficient “point-of-care” platform for submicromolar determination of cytostatic drug in biological fluids and pharmaceutical product

Stanković, Dalibor; Milanović, Zorana; Švorc, Ljubomir; Stanković, Vesna; Janković, Drina; Mirković, Marija D.; Vranješ-Đurić, Sanja

(2021)

TY  - JOUR
AU  - Stanković, Dalibor
AU  - Milanović, Zorana
AU  - Švorc, Ljubomir
AU  - Stanković, Vesna
AU  - Janković, Drina
AU  - Mirković, Marija D.
AU  - Vranješ-Đurić, Sanja
PY  - 2021
UR  - https://www.sciencedirect.com/science/article/pii/S0925963521000406
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4450
AB  - This work presents advanced electrochemical platform based on screen printed diamond electrode (SPDE) system for the single drop “point-of-care” testing. Proposed approach was applied for the quantification of doxorubicin hydrochloride (DOX) in biological fluids and pharmaceutical product. Using a single drop (~30 μL) of the tested solution at the electrode surface, DOX showed high electroactivity over a wide range of pHs. In these conditions, single oval shaped, well-defined and pH dependent oxidation peak was observed in the potential range from 0.5 V to 1.3 V. In the reverse scan, two cathodic peaks, were noted – around 0.3 V and – 0.5 V. Similarly, first reduction peak was pH dependent, while second one was independent in the studied range. Experimental conditions for DOX quantification were optimized and natures of the electrode reactions were investigated. Working linear range obtained for DOX detection was from 0.1 to 2.5 μM. Diffusion controlled electrode reaction reveal long life time of the proposed electrode as well high potential for practical application. Developed procedure was successfully applied for the DOX analysis in biological fluids – urine and pharmaceutical formulation. Obtained results clearly indicated that given procedure can be easily implemented for pharmaceutical control and medical analysis, in both, laboratory and field conditions.
T2  - Diamond and Related Materials
T1  - Screen printed diamond electrode as efficient “point-of-care” platform for submicromolar determination of cytostatic drug in biological fluids and pharmaceutical product
VL  - 113
SP  - 108277
DO  - 10.1016/j.diamond.2021.108277
ER  - 
@article{
author = "Stanković, Dalibor and Milanović, Zorana and Švorc, Ljubomir and Stanković, Vesna and Janković, Drina and Mirković, Marija D. and Vranješ-Đurić, Sanja",
year = "2021",
abstract = "This work presents advanced electrochemical platform based on screen printed diamond electrode (SPDE) system for the single drop “point-of-care” testing. Proposed approach was applied for the quantification of doxorubicin hydrochloride (DOX) in biological fluids and pharmaceutical product. Using a single drop (~30 μL) of the tested solution at the electrode surface, DOX showed high electroactivity over a wide range of pHs. In these conditions, single oval shaped, well-defined and pH dependent oxidation peak was observed in the potential range from 0.5 V to 1.3 V. In the reverse scan, two cathodic peaks, were noted – around 0.3 V and – 0.5 V. Similarly, first reduction peak was pH dependent, while second one was independent in the studied range. Experimental conditions for DOX quantification were optimized and natures of the electrode reactions were investigated. Working linear range obtained for DOX detection was from 0.1 to 2.5 μM. Diffusion controlled electrode reaction reveal long life time of the proposed electrode as well high potential for practical application. Developed procedure was successfully applied for the DOX analysis in biological fluids – urine and pharmaceutical formulation. Obtained results clearly indicated that given procedure can be easily implemented for pharmaceutical control and medical analysis, in both, laboratory and field conditions.",
journal = "Diamond and Related Materials",
title = "Screen printed diamond electrode as efficient “point-of-care” platform for submicromolar determination of cytostatic drug in biological fluids and pharmaceutical product",
volume = "113",
pages = "108277",
doi = "10.1016/j.diamond.2021.108277"
}
Stanković, D., Milanović, Z., Švorc, L., Stanković, V., Janković, D., Mirković, M. D.,& Vranješ-Đurić, S.. (2021). Screen printed diamond electrode as efficient “point-of-care” platform for submicromolar determination of cytostatic drug in biological fluids and pharmaceutical product. in Diamond and Related Materials, 113, 108277.
https://doi.org/10.1016/j.diamond.2021.108277
Stanković D, Milanović Z, Švorc L, Stanković V, Janković D, Mirković MD, Vranješ-Đurić S. Screen printed diamond electrode as efficient “point-of-care” platform for submicromolar determination of cytostatic drug in biological fluids and pharmaceutical product. in Diamond and Related Materials. 2021;113:108277.
doi:10.1016/j.diamond.2021.108277 .
Stanković, Dalibor, Milanović, Zorana, Švorc, Ljubomir, Stanković, Vesna, Janković, Drina, Mirković, Marija D., Vranješ-Đurić, Sanja, "Screen printed diamond electrode as efficient “point-of-care” platform for submicromolar determination of cytostatic drug in biological fluids and pharmaceutical product" in Diamond and Related Materials, 113 (2021):108277,
https://doi.org/10.1016/j.diamond.2021.108277 . .
12
2
12
10

Anti-human albumin monoclonal antibody immobilized on EDC-NHS functionalized carboxylic graphene/AuNPs composite as promising electrochemical HSA immunosensor

Stanković, Vesna; Đurđić, Slađana Z.; Ognjanović, Miloš; Antić, Bratislav; Kalcher, Kurt; Mutić, Jelena; Stanković, Dalibor

(Elsevier, 2020)

TY  - JOUR
AU  - Stanković, Vesna
AU  - Đurđić, Slađana Z.
AU  - Ognjanović, Miloš
AU  - Antić, Bratislav
AU  - Kalcher, Kurt
AU  - Mutić, Jelena
AU  - Stanković, Dalibor
PY  - 2020
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3881
AB  - Diagnosis and treatment of some important diseased and metabolic disorders is based on successful detection of albumin. In this work, we aim to develop a simple immunosensor for the detection of human serum albumin in biological fluids. Anti-human albumin antibody was covalently attached to the activated surface of screen-printed carbon electrodes enriched with carboxyl graphene/gold nanoparticles composite. Microstructure (TEM, FE-SEM, XRD) and electrochemical (CV, EIS) characterization methods were used to investigate composite properties and to confirm the successful modification of the electrodes. Under the optimal conditions, linear working range and limit of detection were 2.5–500 μg/mL and 1.55 μg/mL, respectively. Additionally, the effect of some possibly interfering compounds was investigated and the immunosensor was used for real sample analysis. The results showed that the sensor exhibited accurate, precise and sensitive characteristics and can be promising replacement to the convention methods for albumin detection in clinical practice.
PB  - Elsevier
T2  - Journal of Electroanalytical Chemistry
T1  - Anti-human albumin monoclonal antibody immobilized on EDC-NHS functionalized carboxylic graphene/AuNPs composite as promising electrochemical HSA immunosensor
VL  - 860
DO  - 10.1016/j.jelechem.2020.113928
ER  - 
@article{
author = "Stanković, Vesna and Đurđić, Slađana Z. and Ognjanović, Miloš and Antić, Bratislav and Kalcher, Kurt and Mutić, Jelena and Stanković, Dalibor",
year = "2020",
abstract = "Diagnosis and treatment of some important diseased and metabolic disorders is based on successful detection of albumin. In this work, we aim to develop a simple immunosensor for the detection of human serum albumin in biological fluids. Anti-human albumin antibody was covalently attached to the activated surface of screen-printed carbon electrodes enriched with carboxyl graphene/gold nanoparticles composite. Microstructure (TEM, FE-SEM, XRD) and electrochemical (CV, EIS) characterization methods were used to investigate composite properties and to confirm the successful modification of the electrodes. Under the optimal conditions, linear working range and limit of detection were 2.5–500 μg/mL and 1.55 μg/mL, respectively. Additionally, the effect of some possibly interfering compounds was investigated and the immunosensor was used for real sample analysis. The results showed that the sensor exhibited accurate, precise and sensitive characteristics and can be promising replacement to the convention methods for albumin detection in clinical practice.",
publisher = "Elsevier",
journal = "Journal of Electroanalytical Chemistry",
title = "Anti-human albumin monoclonal antibody immobilized on EDC-NHS functionalized carboxylic graphene/AuNPs composite as promising electrochemical HSA immunosensor",
volume = "860",
doi = "10.1016/j.jelechem.2020.113928"
}
Stanković, V., Đurđić, S. Z., Ognjanović, M., Antić, B., Kalcher, K., Mutić, J.,& Stanković, D.. (2020). Anti-human albumin monoclonal antibody immobilized on EDC-NHS functionalized carboxylic graphene/AuNPs composite as promising electrochemical HSA immunosensor. in Journal of Electroanalytical Chemistry
Elsevier., 860.
https://doi.org/10.1016/j.jelechem.2020.113928
Stanković V, Đurđić SZ, Ognjanović M, Antić B, Kalcher K, Mutić J, Stanković D. Anti-human albumin monoclonal antibody immobilized on EDC-NHS functionalized carboxylic graphene/AuNPs composite as promising electrochemical HSA immunosensor. in Journal of Electroanalytical Chemistry. 2020;860.
doi:10.1016/j.jelechem.2020.113928 .
Stanković, Vesna, Đurđić, Slađana Z., Ognjanović, Miloš, Antić, Bratislav, Kalcher, Kurt, Mutić, Jelena, Stanković, Dalibor, "Anti-human albumin monoclonal antibody immobilized on EDC-NHS functionalized carboxylic graphene/AuNPs composite as promising electrochemical HSA immunosensor" in Journal of Electroanalytical Chemistry, 860 (2020),
https://doi.org/10.1016/j.jelechem.2020.113928 . .
42
15
35
33

Anti-human albumin monoclonal antibody immobilized on EDC-NHS functionalized carboxylic graphene/AuNPs composite as promising electrochemical HSA immunosensor

Stanković, Vesna; Đurđić, Slađana Z.; Ognjanović, Miloš; Antić, Bratislav; Kalcher, Kurt; Mutić, Jelena; Stanković, Dalibor

(Elsevier, 2020)

TY  - JOUR
AU  - Stanković, Vesna
AU  - Đurđić, Slađana Z.
AU  - Ognjanović, Miloš
AU  - Antić, Bratislav
AU  - Kalcher, Kurt
AU  - Mutić, Jelena
AU  - Stanković, Dalibor
PY  - 2020
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3891
AB  - Diagnosis and treatment of some important diseased and metabolic disorders is based on successful detection of albumin. In this work, we aim to develop a simple immunosensor for the detection of human serum albumin in biological fluids. Anti-human albumin antibody was covalently attached to the activated surface of screen-printed carbon electrodes enriched with carboxyl graphene/gold nanoparticles composite. Microstructure (TEM, FE-SEM, XRD) and electrochemical (CV, EIS) characterization methods were used to investigate composite properties and to confirm the successful modification of the electrodes. Under the optimal conditions, linear working range and limit of detection were 2.5–500 μg/mL and 1.55 μg/mL, respectively. Additionally, the effect of some possibly interfering compounds was investigated and the immunosensor was used for real sample analysis. The results showed that the sensor exhibited accurate, precise and sensitive characteristics and can be promising replacement to the convention methods for albumin detection in clinical practice.
PB  - Elsevier
T2  - Journal of Electroanalytical Chemistry
T1  - Anti-human albumin monoclonal antibody immobilized on EDC-NHS functionalized carboxylic graphene/AuNPs composite as promising electrochemical HSA immunosensor
VL  - 860
SP  - 113928
DO  - 10.1016/j.jelechem.2020.113928
ER  - 
@article{
author = "Stanković, Vesna and Đurđić, Slađana Z. and Ognjanović, Miloš and Antić, Bratislav and Kalcher, Kurt and Mutić, Jelena and Stanković, Dalibor",
year = "2020",
abstract = "Diagnosis and treatment of some important diseased and metabolic disorders is based on successful detection of albumin. In this work, we aim to develop a simple immunosensor for the detection of human serum albumin in biological fluids. Anti-human albumin antibody was covalently attached to the activated surface of screen-printed carbon electrodes enriched with carboxyl graphene/gold nanoparticles composite. Microstructure (TEM, FE-SEM, XRD) and electrochemical (CV, EIS) characterization methods were used to investigate composite properties and to confirm the successful modification of the electrodes. Under the optimal conditions, linear working range and limit of detection were 2.5–500 μg/mL and 1.55 μg/mL, respectively. Additionally, the effect of some possibly interfering compounds was investigated and the immunosensor was used for real sample analysis. The results showed that the sensor exhibited accurate, precise and sensitive characteristics and can be promising replacement to the convention methods for albumin detection in clinical practice.",
publisher = "Elsevier",
journal = "Journal of Electroanalytical Chemistry",
title = "Anti-human albumin monoclonal antibody immobilized on EDC-NHS functionalized carboxylic graphene/AuNPs composite as promising electrochemical HSA immunosensor",
volume = "860",
pages = "113928",
doi = "10.1016/j.jelechem.2020.113928"
}
Stanković, V., Đurđić, S. Z., Ognjanović, M., Antić, B., Kalcher, K., Mutić, J.,& Stanković, D.. (2020). Anti-human albumin monoclonal antibody immobilized on EDC-NHS functionalized carboxylic graphene/AuNPs composite as promising electrochemical HSA immunosensor. in Journal of Electroanalytical Chemistry
Elsevier., 860, 113928.
https://doi.org/10.1016/j.jelechem.2020.113928
Stanković V, Đurđić SZ, Ognjanović M, Antić B, Kalcher K, Mutić J, Stanković D. Anti-human albumin monoclonal antibody immobilized on EDC-NHS functionalized carboxylic graphene/AuNPs composite as promising electrochemical HSA immunosensor. in Journal of Electroanalytical Chemistry. 2020;860:113928.
doi:10.1016/j.jelechem.2020.113928 .
Stanković, Vesna, Đurđić, Slađana Z., Ognjanović, Miloš, Antić, Bratislav, Kalcher, Kurt, Mutić, Jelena, Stanković, Dalibor, "Anti-human albumin monoclonal antibody immobilized on EDC-NHS functionalized carboxylic graphene/AuNPs composite as promising electrochemical HSA immunosensor" in Journal of Electroanalytical Chemistry, 860 (2020):113928,
https://doi.org/10.1016/j.jelechem.2020.113928 . .
42
15
35
33

Supplementary data for the article: Stanković, V.; Đurđić, S.; Ognjanović, M.; Antić, B.; Kalcher, K.; Mutić, J.; Stanković, D. M. Anti-Human Albumin Monoclonal Antibody Immobilized on EDC-NHS Functionalized Carboxylic Graphene/AuNPs Composite as Promising Electrochemical HSA Immunosensor. Journal of Electroanalytical Chemistry 2020, 860. https://doi.org/10.1016/j.jelechem.2020.113928

Stanković, Vesna; Đurđić, Slađana Z.; Ognjanović, Miloš; Antić, Bratislav; Kalcher, Kurt; Mutić, Jelena; Stanković, Dalibor

(Elsevier, 2020)

TY  - DATA
AU  - Stanković, Vesna
AU  - Đurđić, Slađana Z.
AU  - Ognjanović, Miloš
AU  - Antić, Bratislav
AU  - Kalcher, Kurt
AU  - Mutić, Jelena
AU  - Stanković, Dalibor
PY  - 2020
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3892
PB  - Elsevier
T2  - Journal of Electroanalytical Chemistry
T1  - Supplementary data for the article: Stanković, V.; Đurđić, S.; Ognjanović, M.; Antić, B.; Kalcher, K.; Mutić, J.; Stanković, D. M. Anti-Human Albumin Monoclonal Antibody Immobilized on EDC-NHS Functionalized Carboxylic Graphene/AuNPs Composite as Promising Electrochemical HSA Immunosensor. Journal of Electroanalytical Chemistry 2020, 860. https://doi.org/10.1016/j.jelechem.2020.113928
UR  - https://hdl.handle.net/21.15107/rcub_cherry_3892
ER  - 
@misc{
author = "Stanković, Vesna and Đurđić, Slađana Z. and Ognjanović, Miloš and Antić, Bratislav and Kalcher, Kurt and Mutić, Jelena and Stanković, Dalibor",
year = "2020",
publisher = "Elsevier",
journal = "Journal of Electroanalytical Chemistry",
title = "Supplementary data for the article: Stanković, V.; Đurđić, S.; Ognjanović, M.; Antić, B.; Kalcher, K.; Mutić, J.; Stanković, D. M. Anti-Human Albumin Monoclonal Antibody Immobilized on EDC-NHS Functionalized Carboxylic Graphene/AuNPs Composite as Promising Electrochemical HSA Immunosensor. Journal of Electroanalytical Chemistry 2020, 860. https://doi.org/10.1016/j.jelechem.2020.113928",
url = "https://hdl.handle.net/21.15107/rcub_cherry_3892"
}
Stanković, V., Đurđić, S. Z., Ognjanović, M., Antić, B., Kalcher, K., Mutić, J.,& Stanković, D.. (2020). Supplementary data for the article: Stanković, V.; Đurđić, S.; Ognjanović, M.; Antić, B.; Kalcher, K.; Mutić, J.; Stanković, D. M. Anti-Human Albumin Monoclonal Antibody Immobilized on EDC-NHS Functionalized Carboxylic Graphene/AuNPs Composite as Promising Electrochemical HSA Immunosensor. Journal of Electroanalytical Chemistry 2020, 860. https://doi.org/10.1016/j.jelechem.2020.113928. in Journal of Electroanalytical Chemistry
Elsevier..
https://hdl.handle.net/21.15107/rcub_cherry_3892
Stanković V, Đurđić SZ, Ognjanović M, Antić B, Kalcher K, Mutić J, Stanković D. Supplementary data for the article: Stanković, V.; Đurđić, S.; Ognjanović, M.; Antić, B.; Kalcher, K.; Mutić, J.; Stanković, D. M. Anti-Human Albumin Monoclonal Antibody Immobilized on EDC-NHS Functionalized Carboxylic Graphene/AuNPs Composite as Promising Electrochemical HSA Immunosensor. Journal of Electroanalytical Chemistry 2020, 860. https://doi.org/10.1016/j.jelechem.2020.113928. in Journal of Electroanalytical Chemistry. 2020;.
https://hdl.handle.net/21.15107/rcub_cherry_3892 .
Stanković, Vesna, Đurđić, Slađana Z., Ognjanović, Miloš, Antić, Bratislav, Kalcher, Kurt, Mutić, Jelena, Stanković, Dalibor, "Supplementary data for the article: Stanković, V.; Đurđić, S.; Ognjanović, M.; Antić, B.; Kalcher, K.; Mutić, J.; Stanković, D. M. Anti-Human Albumin Monoclonal Antibody Immobilized on EDC-NHS Functionalized Carboxylic Graphene/AuNPs Composite as Promising Electrochemical HSA Immunosensor. Journal of Electroanalytical Chemistry 2020, 860. https://doi.org/10.1016/j.jelechem.2020.113928" in Journal of Electroanalytical Chemistry (2020),
https://hdl.handle.net/21.15107/rcub_cherry_3892 .

A novel nonenzymatic hydrogen peroxide amperometric sensor based on AgNp@GNR nanocomposites modified screen-printed carbon electrode

Stanković, Vesna; Đurđić, Slađana Z.; Ognjanović, Miloš; Mutić, Jelena; Kalcher, Kurt; Stanković, Dalibor

(Elsevier, 2020)

TY  - JOUR
AU  - Stanković, Vesna
AU  - Đurđić, Slađana Z.
AU  - Ognjanović, Miloš
AU  - Mutić, Jelena
AU  - Kalcher, Kurt
AU  - Stanković, Dalibor
PY  - 2020
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4033
AB  - A nonenzymatic hydrogen-peroxide sensor was developed by utilization of silver nanoparticles and graphene nanoribbons. The mentioned composite was inflicted on a screen-printed carbon electrode which provides disposable, ready-to-use sensor. The structure and morphology of the nanocomposite were analyzed by scanning electron microscopy and X-ray diffraction. The sensor has excellent performance toward H2O2 amperometric detection. Figures of merit include dynamic response range from 0.05 to 5 mM and detection limit of 20 μM (at S/N = 3). The fabricated sensor was used for the determination of H2O2 in milk samples. The obtained results showed that the proposed AgNp@GNR/SPCE sensor can be used for the determination of hydrogen peroxide in real samples.
PB  - Elsevier
T2  - Journal of Electroanalytical Chemistry
T1  - A novel nonenzymatic hydrogen peroxide amperometric sensor based on AgNp@GNR nanocomposites modified screen-printed carbon electrode
VL  - 876
SP  - 114487
DO  - 10.1016/j.jelechem.2020.114487
ER  - 
@article{
author = "Stanković, Vesna and Đurđić, Slađana Z. and Ognjanović, Miloš and Mutić, Jelena and Kalcher, Kurt and Stanković, Dalibor",
year = "2020",
abstract = "A nonenzymatic hydrogen-peroxide sensor was developed by utilization of silver nanoparticles and graphene nanoribbons. The mentioned composite was inflicted on a screen-printed carbon electrode which provides disposable, ready-to-use sensor. The structure and morphology of the nanocomposite were analyzed by scanning electron microscopy and X-ray diffraction. The sensor has excellent performance toward H2O2 amperometric detection. Figures of merit include dynamic response range from 0.05 to 5 mM and detection limit of 20 μM (at S/N = 3). The fabricated sensor was used for the determination of H2O2 in milk samples. The obtained results showed that the proposed AgNp@GNR/SPCE sensor can be used for the determination of hydrogen peroxide in real samples.",
publisher = "Elsevier",
journal = "Journal of Electroanalytical Chemistry",
title = "A novel nonenzymatic hydrogen peroxide amperometric sensor based on AgNp@GNR nanocomposites modified screen-printed carbon electrode",
volume = "876",
pages = "114487",
doi = "10.1016/j.jelechem.2020.114487"
}
Stanković, V., Đurđić, S. Z., Ognjanović, M., Mutić, J., Kalcher, K.,& Stanković, D.. (2020). A novel nonenzymatic hydrogen peroxide amperometric sensor based on AgNp@GNR nanocomposites modified screen-printed carbon electrode. in Journal of Electroanalytical Chemistry
Elsevier., 876, 114487.
https://doi.org/10.1016/j.jelechem.2020.114487
Stanković V, Đurđić SZ, Ognjanović M, Mutić J, Kalcher K, Stanković D. A novel nonenzymatic hydrogen peroxide amperometric sensor based on AgNp@GNR nanocomposites modified screen-printed carbon electrode. in Journal of Electroanalytical Chemistry. 2020;876:114487.
doi:10.1016/j.jelechem.2020.114487 .
Stanković, Vesna, Đurđić, Slađana Z., Ognjanović, Miloš, Mutić, Jelena, Kalcher, Kurt, Stanković, Dalibor, "A novel nonenzymatic hydrogen peroxide amperometric sensor based on AgNp@GNR nanocomposites modified screen-printed carbon electrode" in Journal of Electroanalytical Chemistry, 876 (2020):114487,
https://doi.org/10.1016/j.jelechem.2020.114487 . .
35
14
33
30

Supplementary data for the article: Stanković, V.; Đurđić, S.; Ognjanović, M.; Mutić, J.; Kalcher, K.; Stanković, D. M. A Novel Nonenzymatic Hydrogen Peroxide Amperometric Sensor Based on AgNp@GNR Nanocomposites Modified Screen-Printed Carbon Electrode. Journal of Electroanalytical Chemistry 2020, 876, 114487. https://doi.org/10.1016/j.jelechem.2020.114487

Stanković, Vesna; Đurđić, Slađana Z.; Ognjanović, Miloš; Mutić, Jelena; Kalcher, Kurt; Stanković, Dalibor

(Elsevier, 2020)

TY  - DATA
AU  - Stanković, Vesna
AU  - Đurđić, Slađana Z.
AU  - Ognjanović, Miloš
AU  - Mutić, Jelena
AU  - Kalcher, Kurt
AU  - Stanković, Dalibor
PY  - 2020
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4034
PB  - Elsevier
T2  - Journal of Electroanalytical Chemistry
T1  - Supplementary data for the article: Stanković, V.; Đurđić, S.; Ognjanović, M.; Mutić, J.; Kalcher, K.; Stanković, D. M. A Novel Nonenzymatic Hydrogen Peroxide Amperometric Sensor Based on AgNp@GNR Nanocomposites Modified Screen-Printed Carbon Electrode. Journal of Electroanalytical Chemistry 2020, 876, 114487. https://doi.org/10.1016/j.jelechem.2020.114487
UR  - https://hdl.handle.net/21.15107/rcub_cherry_4034
ER  - 
@misc{
author = "Stanković, Vesna and Đurđić, Slađana Z. and Ognjanović, Miloš and Mutić, Jelena and Kalcher, Kurt and Stanković, Dalibor",
year = "2020",
publisher = "Elsevier",
journal = "Journal of Electroanalytical Chemistry",
title = "Supplementary data for the article: Stanković, V.; Đurđić, S.; Ognjanović, M.; Mutić, J.; Kalcher, K.; Stanković, D. M. A Novel Nonenzymatic Hydrogen Peroxide Amperometric Sensor Based on AgNp@GNR Nanocomposites Modified Screen-Printed Carbon Electrode. Journal of Electroanalytical Chemistry 2020, 876, 114487. https://doi.org/10.1016/j.jelechem.2020.114487",
url = "https://hdl.handle.net/21.15107/rcub_cherry_4034"
}
Stanković, V., Đurđić, S. Z., Ognjanović, M., Mutić, J., Kalcher, K.,& Stanković, D.. (2020). Supplementary data for the article: Stanković, V.; Đurđić, S.; Ognjanović, M.; Mutić, J.; Kalcher, K.; Stanković, D. M. A Novel Nonenzymatic Hydrogen Peroxide Amperometric Sensor Based on AgNp@GNR Nanocomposites Modified Screen-Printed Carbon Electrode. Journal of Electroanalytical Chemistry 2020, 876, 114487. https://doi.org/10.1016/j.jelechem.2020.114487. in Journal of Electroanalytical Chemistry
Elsevier..
https://hdl.handle.net/21.15107/rcub_cherry_4034
Stanković V, Đurđić SZ, Ognjanović M, Mutić J, Kalcher K, Stanković D. Supplementary data for the article: Stanković, V.; Đurđić, S.; Ognjanović, M.; Mutić, J.; Kalcher, K.; Stanković, D. M. A Novel Nonenzymatic Hydrogen Peroxide Amperometric Sensor Based on AgNp@GNR Nanocomposites Modified Screen-Printed Carbon Electrode. Journal of Electroanalytical Chemistry 2020, 876, 114487. https://doi.org/10.1016/j.jelechem.2020.114487. in Journal of Electroanalytical Chemistry. 2020;.
https://hdl.handle.net/21.15107/rcub_cherry_4034 .
Stanković, Vesna, Đurđić, Slađana Z., Ognjanović, Miloš, Mutić, Jelena, Kalcher, Kurt, Stanković, Dalibor, "Supplementary data for the article: Stanković, V.; Đurđić, S.; Ognjanović, M.; Mutić, J.; Kalcher, K.; Stanković, D. M. A Novel Nonenzymatic Hydrogen Peroxide Amperometric Sensor Based on AgNp@GNR Nanocomposites Modified Screen-Printed Carbon Electrode. Journal of Electroanalytical Chemistry 2020, 876, 114487. https://doi.org/10.1016/j.jelechem.2020.114487" in Journal of Electroanalytical Chemistry (2020),
https://hdl.handle.net/21.15107/rcub_cherry_4034 .

TiO2/APTES cross-linked to carboxylic graphene based impedimetric glucose biosensor

Ognjanović, Miloš; Stanković, Vesna; Knežević, Sara; Antić, Bratislav; Vranješ-Đurić, Sanja; Stanković, Dalibor

(Elsevier, 2020)

TY  - JOUR
AU  - Ognjanović, Miloš
AU  - Stanković, Vesna
AU  - Knežević, Sara
AU  - Antić, Bratislav
AU  - Vranješ-Đurić, Sanja
AU  - Stanković, Dalibor
PY  - 2020
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4023
AB  - Herein, we proposed a novel approach and state-of-the-art technology for the improvement of the materials and enzyme immobilization at the electrode surface and construction of impedimetric glucose biosensor. We silanized titanium dioxide nanoparticles using (3-aminopropyl)triethoxysilane (APTES), for the preparation of cross-linked material nanoparticles, with carboxylic graphene. The silanization of titanium dioxide nanoparticles and an increase in electron shuttle was proven feasible when this composite was able to achieve about 30% higher current than non-silanized material. The proposed approach was used for the modification of the printed three-electrode system and the development of the impedimetric glucose biosensor. The material morphology and electrochemical characteristics were confirmed by spectroscopic and electrochemical methods. The present combination effectively modified the electrode surface and serve as a promising basis for the construction of Point-of-Care devices. Developed biosensor possesses wide operating linear range toward glucose detection from 50 µmol to 1000 µmol, with the limit of detection of 24 µmol. Finally, negligible interference effect and application in the real sample indicate that the proposed mechanism can be successfully applied to the assessment of glucose level in only one drop of real sample.
PB  - Elsevier
T2  - Microchemical Journal
T1  - TiO2/APTES cross-linked to carboxylic graphene based impedimetric glucose biosensor
VL  - 158
DO  - 10.1016/j.microc.2020.105150
ER  - 
@article{
author = "Ognjanović, Miloš and Stanković, Vesna and Knežević, Sara and Antić, Bratislav and Vranješ-Đurić, Sanja and Stanković, Dalibor",
year = "2020",
abstract = "Herein, we proposed a novel approach and state-of-the-art technology for the improvement of the materials and enzyme immobilization at the electrode surface and construction of impedimetric glucose biosensor. We silanized titanium dioxide nanoparticles using (3-aminopropyl)triethoxysilane (APTES), for the preparation of cross-linked material nanoparticles, with carboxylic graphene. The silanization of titanium dioxide nanoparticles and an increase in electron shuttle was proven feasible when this composite was able to achieve about 30% higher current than non-silanized material. The proposed approach was used for the modification of the printed three-electrode system and the development of the impedimetric glucose biosensor. The material morphology and electrochemical characteristics were confirmed by spectroscopic and electrochemical methods. The present combination effectively modified the electrode surface and serve as a promising basis for the construction of Point-of-Care devices. Developed biosensor possesses wide operating linear range toward glucose detection from 50 µmol to 1000 µmol, with the limit of detection of 24 µmol. Finally, negligible interference effect and application in the real sample indicate that the proposed mechanism can be successfully applied to the assessment of glucose level in only one drop of real sample.",
publisher = "Elsevier",
journal = "Microchemical Journal",
title = "TiO2/APTES cross-linked to carboxylic graphene based impedimetric glucose biosensor",
volume = "158",
doi = "10.1016/j.microc.2020.105150"
}
Ognjanović, M., Stanković, V., Knežević, S., Antić, B., Vranješ-Đurić, S.,& Stanković, D.. (2020). TiO2/APTES cross-linked to carboxylic graphene based impedimetric glucose biosensor. in Microchemical Journal
Elsevier., 158.
https://doi.org/10.1016/j.microc.2020.105150
Ognjanović M, Stanković V, Knežević S, Antić B, Vranješ-Đurić S, Stanković D. TiO2/APTES cross-linked to carboxylic graphene based impedimetric glucose biosensor. in Microchemical Journal. 2020;158.
doi:10.1016/j.microc.2020.105150 .
Ognjanović, Miloš, Stanković, Vesna, Knežević, Sara, Antić, Bratislav, Vranješ-Đurić, Sanja, Stanković, Dalibor, "TiO2/APTES cross-linked to carboxylic graphene based impedimetric glucose biosensor" in Microchemical Journal, 158 (2020),
https://doi.org/10.1016/j.microc.2020.105150 . .
18
7
16
15