Gojgić-Cvijović, Gordana D.

Link to this page

Authority KeyName Variants
orcid::0000-0001-5598-0585
  • Gojgić-Cvijović, Gordana D. (58)
  • Gojgić-Cvijović, Gordana (17)
Projects
Simultaneous Bioremediation and Soilification of Degraded Areas to Preserve Natural Resources of Biologically Active Substances, and Development and Production of Biomaterials and Dietetic Products Geochemical investigations of sedimentary rocks - fossil fuels and environmental pollutants
Dynamics of nonlinear physicochemical and biochemical systems with modeling and predicting of their behavior under nonequilibrium conditions Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200026 (University of Belgrade, Institute of Chemistry, Technology and Metallurgy - IChTM)
Japan International Cooperation Agency (JICA) Japan International Cooperation Agency (JICA) grassroot project “Capacity building for analysis and reduction measures of persistent organic pollutants in Serbia”
Natural products of wild, cultivated and edible plants: structure and bioactivity determination Synthesis and characterization of novel functional polymers and polymeric nanocomposites
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200168 (University of Belgrade, Faculty of Chemistry) Biomasa i metabolizam nekih mikroorganizama kao izvor široko upotrebljivih proizvoda i biohemijskih reakcija
FCUB ERA The study of physicochemical and biochemical processes in living environment that have impacts on pollution and the investigation of possibilities for minimizing the consequences
Design, synthesis and investigations of fullerene based nanomolecular machines Microbial diversity study and characterization of beneficial environmental microorganisms
info:eu-repo/grantAgreement/MESTD/inst-2020/200168/RS/ Synthesis, processing and characterization of nanostructured materials for application in the field of energy, mechanical engineering, environmental protection and biomedicine
Proizvodni mobilni bioreaktor i dobijanje biomase mikroorganizama za bioremedijaciju JGI, Project CSP 741
Agência Regional para o Desenvolvimento da Investigação, Tecnologia e Inovação (M1420-01-0145-FEDER-000005) ALBA Synchrotron (Grant No. 2019093770)
BREM GROUP Ltd. and NRK Engineering Ltd. from Belgrade (Serbia). FP7 project FCUB ERA
Fundação para a Ciência e a Tecnologia (INNOINDIGO/0001/2015) Fundação para a Ciência e a Tecnologia (PEstOE/QUI/UI0674/2019)
Fundação para a Ciência e a Tecnologia (UID/MAT/00006/2019) Diagnostics and Optimization of Plasma Sources Important for Applications
Structure-properties relationships of natural and synthetic molecules and their metal complexes Application of advanced oxidation processes and nanostructured oxide materials for the removal of pollutants from the environment, development and optimisation of instrumental techniques for efficiency monitoring
Geologic and ecotoxicologic research in identification of geopathogen zones of toxic elements in drinking water reservoirs- research into methods and procedures for reduction of biochemical anomalies Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200017 (University of Belgrade, Institute of Nuclear Sciences 'Vinča', Belgrade-Vinča)

Author's Bibliography

Novel polyurethane network/organoclay nanocomposites: Microstructure and physicochemical properties

Pergal, Marija V.; Gojgić-Cvijović, Gordana; Steinhart, Miloš; Manojlović, Dragan D.; Ostojić, Sanja B.; Pezo, Lato; Špírková, Milena

(Elsevier, 2022)

TY  - JOUR
AU  - Pergal, Marija V.
AU  - Gojgić-Cvijović, Gordana
AU  - Steinhart, Miloš
AU  - Manojlović, Dragan D.
AU  - Ostojić, Sanja B.
AU  - Pezo, Lato
AU  - Špírková, Milena
PY  - 2022
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5005
AB  - A series of novel polyurethane network/organoclay nanocomposites (PUN-NCs) with different soft segment contents (30–60 wt%) was prepared by in situ polymerization in solution and characterized. PU network (PUN) was made from poly(dimethylsiloxane)-based macrodiol as the soft segment and 4,4′-methylenediphenyldiisocyanate and hyperbranched polyester of the third pseudo generation as the hard segment. Nanocomposites were obtained by dispersion of organically modified montmorillonite (Cloisite 30B) nanofiller (0.5 wt%). The influence of the soft segment content on the functional properties of PUN-NCs was studied by Fourier transform infrared (FTIR), small-angle and near wide-angle X-ray scattering (SWAXS), thermogravimetric analysis (TGA), dynamic mechanical thermal analyses (DMTA), differential scanning calorimetry (DSC), nanoindentation, atomic force microscopy (AFM), scanning electron microscopy (SEM), and swelling behavior, water absorption and contact angle measurements. The biodegradation process was evaluated using mixed cultures of microorganisms that originated from soil. Mechanically strong PUN-NC materials in the form of films were obtained, pointing to good dispersion and the existence of exfoliated morphology of Cloisite 30B within the PUN matrix, and the nanocomposites with the abovementioned characteristics were obtained as a function of the soft segment content. The decrease of the soft segment content induced a higher degree of phase separated microstructure, increase of Young's modulus, hardness, plasticity, storage modulus, glass transition temperature, surface free energy and swelling ability in tetrahydrofuran, but at the same time, it is responsible for the decrease of crosslinking density and hydrophobicity of PUN-NCs. By choosing adequate soft segment content, the prepared materials can potentially be designed for coating applications, such as top coating materials in environmental conditions.
PB  - Elsevier
T2  - Progress in Organic Coatings
T1  - Novel polyurethane network/organoclay nanocomposites: Microstructure and physicochemical properties
VL  - 163
IS  - 106664
DO  - 10.1016/j.porgcoat.2021.106664
ER  - 
@article{
author = "Pergal, Marija V. and Gojgić-Cvijović, Gordana and Steinhart, Miloš and Manojlović, Dragan D. and Ostojić, Sanja B. and Pezo, Lato and Špírková, Milena",
year = "2022",
abstract = "A series of novel polyurethane network/organoclay nanocomposites (PUN-NCs) with different soft segment contents (30–60 wt%) was prepared by in situ polymerization in solution and characterized. PU network (PUN) was made from poly(dimethylsiloxane)-based macrodiol as the soft segment and 4,4′-methylenediphenyldiisocyanate and hyperbranched polyester of the third pseudo generation as the hard segment. Nanocomposites were obtained by dispersion of organically modified montmorillonite (Cloisite 30B) nanofiller (0.5 wt%). The influence of the soft segment content on the functional properties of PUN-NCs was studied by Fourier transform infrared (FTIR), small-angle and near wide-angle X-ray scattering (SWAXS), thermogravimetric analysis (TGA), dynamic mechanical thermal analyses (DMTA), differential scanning calorimetry (DSC), nanoindentation, atomic force microscopy (AFM), scanning electron microscopy (SEM), and swelling behavior, water absorption and contact angle measurements. The biodegradation process was evaluated using mixed cultures of microorganisms that originated from soil. Mechanically strong PUN-NC materials in the form of films were obtained, pointing to good dispersion and the existence of exfoliated morphology of Cloisite 30B within the PUN matrix, and the nanocomposites with the abovementioned characteristics were obtained as a function of the soft segment content. The decrease of the soft segment content induced a higher degree of phase separated microstructure, increase of Young's modulus, hardness, plasticity, storage modulus, glass transition temperature, surface free energy and swelling ability in tetrahydrofuran, but at the same time, it is responsible for the decrease of crosslinking density and hydrophobicity of PUN-NCs. By choosing adequate soft segment content, the prepared materials can potentially be designed for coating applications, such as top coating materials in environmental conditions.",
publisher = "Elsevier",
journal = "Progress in Organic Coatings",
title = "Novel polyurethane network/organoclay nanocomposites: Microstructure and physicochemical properties",
volume = "163",
number = "106664",
doi = "10.1016/j.porgcoat.2021.106664"
}
Pergal, M. V., Gojgić-Cvijović, G., Steinhart, M., Manojlović, D. D., Ostojić, S. B., Pezo, L.,& Špírková, M.. (2022). Novel polyurethane network/organoclay nanocomposites: Microstructure and physicochemical properties. in Progress in Organic Coatings
Elsevier., 163(106664).
https://doi.org/10.1016/j.porgcoat.2021.106664
Pergal MV, Gojgić-Cvijović G, Steinhart M, Manojlović DD, Ostojić SB, Pezo L, Špírková M. Novel polyurethane network/organoclay nanocomposites: Microstructure and physicochemical properties. in Progress in Organic Coatings. 2022;163(106664).
doi:10.1016/j.porgcoat.2021.106664 .
Pergal, Marija V., Gojgić-Cvijović, Gordana, Steinhart, Miloš, Manojlović, Dragan D., Ostojić, Sanja B., Pezo, Lato, Špírková, Milena, "Novel polyurethane network/organoclay nanocomposites: Microstructure and physicochemical properties" in Progress in Organic Coatings, 163, no. 106664 (2022),
https://doi.org/10.1016/j.porgcoat.2021.106664 . .
1

Supplementary data for the article: Pergal, M. V.; Gojgić-Cvijović, G.; Steinhart, M.; Manojlović, D. D.; Ostojić, S. B.; Pezo, L.; Špírková, M. Novel Polyurethane Network/Organoclay Nanocomposites: Microstructure and Physicochemical Properties. Progress in Organic Coatings 2022, 163 (106664). https://doi.org/10.1016/j.porgcoat.2021.106664.

Pergal, Marija V.; Gojgić-Cvijović, Gordana; Steinhart, Miloš; Manojlović, Dragan D.; Ostojić, Sanja B.; Pezo, Lato; Špírková, Milena

(Elsevier, 2022)

TY  - DATA
AU  - Pergal, Marija V.
AU  - Gojgić-Cvijović, Gordana
AU  - Steinhart, Miloš
AU  - Manojlović, Dragan D.
AU  - Ostojić, Sanja B.
AU  - Pezo, Lato
AU  - Špírková, Milena
PY  - 2022
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5006
PB  - Elsevier
T2  - Progress in Organic Coatings
T1  - Supplementary data for the article: Pergal, M. V.; Gojgić-Cvijović, G.; Steinhart, M.; Manojlović, D. D.; Ostojić, S. B.; Pezo, L.; Špírková, M. Novel Polyurethane Network/Organoclay Nanocomposites: Microstructure and Physicochemical Properties. Progress in Organic Coatings 2022, 163 (106664). https://doi.org/10.1016/j.porgcoat.2021.106664.
UR  - https://hdl.handle.net/21.15107/rcub_cherry_5006
ER  - 
@misc{
author = "Pergal, Marija V. and Gojgić-Cvijović, Gordana and Steinhart, Miloš and Manojlović, Dragan D. and Ostojić, Sanja B. and Pezo, Lato and Špírková, Milena",
year = "2022",
publisher = "Elsevier",
journal = "Progress in Organic Coatings",
title = "Supplementary data for the article: Pergal, M. V.; Gojgić-Cvijović, G.; Steinhart, M.; Manojlović, D. D.; Ostojić, S. B.; Pezo, L.; Špírková, M. Novel Polyurethane Network/Organoclay Nanocomposites: Microstructure and Physicochemical Properties. Progress in Organic Coatings 2022, 163 (106664). https://doi.org/10.1016/j.porgcoat.2021.106664.",
url = "https://hdl.handle.net/21.15107/rcub_cherry_5006"
}
Pergal, M. V., Gojgić-Cvijović, G., Steinhart, M., Manojlović, D. D., Ostojić, S. B., Pezo, L.,& Špírková, M.. (2022). Supplementary data for the article: Pergal, M. V.; Gojgić-Cvijović, G.; Steinhart, M.; Manojlović, D. D.; Ostojić, S. B.; Pezo, L.; Špírková, M. Novel Polyurethane Network/Organoclay Nanocomposites: Microstructure and Physicochemical Properties. Progress in Organic Coatings 2022, 163 (106664). https://doi.org/10.1016/j.porgcoat.2021.106664.. in Progress in Organic Coatings
Elsevier..
https://hdl.handle.net/21.15107/rcub_cherry_5006
Pergal MV, Gojgić-Cvijović G, Steinhart M, Manojlović DD, Ostojić SB, Pezo L, Špírková M. Supplementary data for the article: Pergal, M. V.; Gojgić-Cvijović, G.; Steinhart, M.; Manojlović, D. D.; Ostojić, S. B.; Pezo, L.; Špírková, M. Novel Polyurethane Network/Organoclay Nanocomposites: Microstructure and Physicochemical Properties. Progress in Organic Coatings 2022, 163 (106664). https://doi.org/10.1016/j.porgcoat.2021.106664.. in Progress in Organic Coatings. 2022;.
https://hdl.handle.net/21.15107/rcub_cherry_5006 .
Pergal, Marija V., Gojgić-Cvijović, Gordana, Steinhart, Miloš, Manojlović, Dragan D., Ostojić, Sanja B., Pezo, Lato, Špírková, Milena, "Supplementary data for the article: Pergal, M. V.; Gojgić-Cvijović, G.; Steinhart, M.; Manojlović, D. D.; Ostojić, S. B.; Pezo, L.; Špírková, M. Novel Polyurethane Network/Organoclay Nanocomposites: Microstructure and Physicochemical Properties. Progress in Organic Coatings 2022, 163 (106664). https://doi.org/10.1016/j.porgcoat.2021.106664." in Progress in Organic Coatings (2022),
https://hdl.handle.net/21.15107/rcub_cherry_5006 .

Biodegradation Assessment of Poly(Urethane-Dimethylsiloxane)/Organoclay Nanocomposites under Environmental Conditions

Pergal, M.V.; Gojgić-Cvijović, Gordana; Kodranov, Igor; Manojlović, Dragan D.; Špírková, M.

(Belgrade : Serbian Chemical Society, 2021)

TY  - CONF
AU  - Pergal, M.V.
AU  - Gojgić-Cvijović, Gordana
AU  - Kodranov, Igor
AU  - Manojlović, Dragan D.
AU  - Špírková, M.
PY  - 2021
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/4926
AB  - The first series of polyurethane network nanocomposites (PUNN) was prepared by in situ polymerization [1,2] from poly(dimethylsiloxane)-based prepolymer as the soft segment and 4,4’-methylene diphenyldiisocyanate and hyperbranched polyester of the third pseudo generation as the hard segment, in the presence of organically modified montmorillonite nanofiller (Cloisite 30B; 0.5 wt.%). The second series of pure polyurethane networks (PUN) without organoclay was also prepared. The composition of prepared materials in both series was varied through variation of soft segment content from 30 to 60 wt.%. Biodegradability of prepared materials was measured using mixed cultures of microorganisms that originated from soil. This test used soil bacteria and fungi to assess the impact of the environment on polymer compounds. This test is intended to determine which polymer compositions are best suited for coating other materials that must endure lengthy exposure to harsh environmental conditions while retaining their principal functionalities. The biodegradation test was performed under aerobic conditions in the dark condition and in a thermostat at 28 °C. Bacterial and fungal mixed cultures were alternated monthly. After 3 and 6 months of the test, the materials were washed with water, dried in a vacuum oven to constant weight, and used for gravimetric measurements of weight loss. The prepared materials before and after biodegradation test were characterized by FTIR spectroscopy. The results showed that pure PUNs (18.35-18.66 wt.% after six months) possess the highest weight loss as compared to PUNNs (from 7.53 to 14.78 wt.% after six months) after incubation of up to six months. PUNN films had lower biodegradation degree as compared the pure PUN films. Biodegradability was lower for materials with lower soft segment content. In FTIR spectra of PUNN after biodegradation differences were noted at approximately 1700-1735 and 3324 cm-1. The structures contributing to strong hydrogen bonds were partially destroyed during the biodegradation process. The results showed that PUNN with 40 wt.% of soft segment (PUNN-40) is the most resistance material to biodegradation. The reason was probably due to more hydrogen bonding between the polymer and Cloisite 30B organoclay and its better mechanical properties of PUNN-40 sample as compared to other prepared PUNN materials. The obtained materials are good candidate as top coating materials exposed to the environmental conditions.
PB  - Belgrade : Serbian Chemical Society
C3  - Book of Abstracts 21st; European Meeting on Environmental Chemistry
T1  - Biodegradation Assessment of Poly(Urethane-Dimethylsiloxane)/Organoclay Nanocomposites under Environmental Conditions
SP  - 154
EP  - 154
UR  - https://hdl.handle.net/21.15107/rcub_cherry_4926
ER  - 
@conference{
author = "Pergal, M.V. and Gojgić-Cvijović, Gordana and Kodranov, Igor and Manojlović, Dragan D. and Špírková, M.",
year = "2021",
abstract = "The first series of polyurethane network nanocomposites (PUNN) was prepared by in situ polymerization [1,2] from poly(dimethylsiloxane)-based prepolymer as the soft segment and 4,4’-methylene diphenyldiisocyanate and hyperbranched polyester of the third pseudo generation as the hard segment, in the presence of organically modified montmorillonite nanofiller (Cloisite 30B; 0.5 wt.%). The second series of pure polyurethane networks (PUN) without organoclay was also prepared. The composition of prepared materials in both series was varied through variation of soft segment content from 30 to 60 wt.%. Biodegradability of prepared materials was measured using mixed cultures of microorganisms that originated from soil. This test used soil bacteria and fungi to assess the impact of the environment on polymer compounds. This test is intended to determine which polymer compositions are best suited for coating other materials that must endure lengthy exposure to harsh environmental conditions while retaining their principal functionalities. The biodegradation test was performed under aerobic conditions in the dark condition and in a thermostat at 28 °C. Bacterial and fungal mixed cultures were alternated monthly. After 3 and 6 months of the test, the materials were washed with water, dried in a vacuum oven to constant weight, and used for gravimetric measurements of weight loss. The prepared materials before and after biodegradation test were characterized by FTIR spectroscopy. The results showed that pure PUNs (18.35-18.66 wt.% after six months) possess the highest weight loss as compared to PUNNs (from 7.53 to 14.78 wt.% after six months) after incubation of up to six months. PUNN films had lower biodegradation degree as compared the pure PUN films. Biodegradability was lower for materials with lower soft segment content. In FTIR spectra of PUNN after biodegradation differences were noted at approximately 1700-1735 and 3324 cm-1. The structures contributing to strong hydrogen bonds were partially destroyed during the biodegradation process. The results showed that PUNN with 40 wt.% of soft segment (PUNN-40) is the most resistance material to biodegradation. The reason was probably due to more hydrogen bonding between the polymer and Cloisite 30B organoclay and its better mechanical properties of PUNN-40 sample as compared to other prepared PUNN materials. The obtained materials are good candidate as top coating materials exposed to the environmental conditions.",
publisher = "Belgrade : Serbian Chemical Society",
journal = "Book of Abstracts 21st; European Meeting on Environmental Chemistry",
title = "Biodegradation Assessment of Poly(Urethane-Dimethylsiloxane)/Organoclay Nanocomposites under Environmental Conditions",
pages = "154-154",
url = "https://hdl.handle.net/21.15107/rcub_cherry_4926"
}
Pergal, M.V., Gojgić-Cvijović, G., Kodranov, I., Manojlović, D. D.,& Špírková, M.. (2021). Biodegradation Assessment of Poly(Urethane-Dimethylsiloxane)/Organoclay Nanocomposites under Environmental Conditions. in Book of Abstracts 21st; European Meeting on Environmental Chemistry
Belgrade : Serbian Chemical Society., 154-154.
https://hdl.handle.net/21.15107/rcub_cherry_4926
Pergal M, Gojgić-Cvijović G, Kodranov I, Manojlović DD, Špírková M. Biodegradation Assessment of Poly(Urethane-Dimethylsiloxane)/Organoclay Nanocomposites under Environmental Conditions. in Book of Abstracts 21st; European Meeting on Environmental Chemistry. 2021;:154-154.
https://hdl.handle.net/21.15107/rcub_cherry_4926 .
Pergal, M.V., Gojgić-Cvijović, Gordana, Kodranov, Igor, Manojlović, Dragan D., Špírková, M., "Biodegradation Assessment of Poly(Urethane-Dimethylsiloxane)/Organoclay Nanocomposites under Environmental Conditions" in Book of Abstracts 21st; European Meeting on Environmental Chemistry (2021):154-154,
https://hdl.handle.net/21.15107/rcub_cherry_4926 .

The Effects of Microbial Polysaccharides on the Copper Accumulation in Daphnia magna

Lončarević, B.; Lješević, M.; Marković, M.; Gojgić-Cvijović, Gordana; Anđelković, I.; Beškoski, Vladimir

(Belgrade : Serbian Chemical Society, 2021)

TY  - CONF
AU  - Lončarević, B.
AU  - Lješević, M.
AU  - Marković, M.
AU  - Gojgić-Cvijović, Gordana
AU  - Anđelković, I.
AU  - Beškoski, Vladimir
PY  - 2021
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/4929
AB  - Copper is one of the leading metal pollutants in the water, which can cause adverse effects when present in high concentrations. The Daphnia magna is a model organism usually used for the determination of ecotoxicological effects of various compounds since it is highly sensitive to toxic compounds [1]. The aim of this work was to investigate the potential application of microbial extracellular polysaccharides (EPS), levan and pullulan, as agents for reducing the copper toxicity to D. magna. The protective effects of EPS were estimated based on the accumulation of copper in the D. magna cells. Levan is a branched fructane EPS [2] and the one used in this study was produced by Bacillus licheniformis NS032. Pullulan, a linear glucan EPS [3], was produced by Aureobasidium pullulans CH-1. The D. magna were exposed to 50 µg/dm3  of Cu (II) or a combination with 50 mg/dm3  and 100 mg/dm3  of levan or pullulan for 48h in the acute test. Additionally, the prolonged test was performed, where the daphnia were exposed to a 10 µg/dm3  of Cu (II) with or without 50 mg/ dm3  of levan or pullulan for 5 days. After the exposure period, the samples were digested and the accumulation of copper in D. magna was analysed using the iCAP Qc ICP-MS (Thermo Scientific, United Kingdom). The results showed that animals exposed to Cu (II) only, accumulated Cu (II) in a greater amount after the prolonged test compared to the acute one, despite the lower concentration. The treatment with EPS during the acute test increased the copper accumulation for both EPS concentrations tested, whereas during the prolonged exposure test, the Cu (II) accumulation was inhibited. Considering that protective effects of levan and pullulan were observed only with lower copper concentrations and 5 days of exposure, additional experiments are necessary to determine the mechanism of EPS action in order to confirm their possible use as protective agents.
PB  - Belgrade : Serbian Chemical Society
C3  - Book of Abstracts 21st; European Meeting on Environmental Chemistry
T1  - The Effects of Microbial Polysaccharides on the Copper Accumulation in Daphnia magna
SP  - 159
EP  - 159
UR  - https://hdl.handle.net/21.15107/rcub_cherry_4929
ER  - 
@conference{
author = "Lončarević, B. and Lješević, M. and Marković, M. and Gojgić-Cvijović, Gordana and Anđelković, I. and Beškoski, Vladimir",
year = "2021",
abstract = "Copper is one of the leading metal pollutants in the water, which can cause adverse effects when present in high concentrations. The Daphnia magna is a model organism usually used for the determination of ecotoxicological effects of various compounds since it is highly sensitive to toxic compounds [1]. The aim of this work was to investigate the potential application of microbial extracellular polysaccharides (EPS), levan and pullulan, as agents for reducing the copper toxicity to D. magna. The protective effects of EPS were estimated based on the accumulation of copper in the D. magna cells. Levan is a branched fructane EPS [2] and the one used in this study was produced by Bacillus licheniformis NS032. Pullulan, a linear glucan EPS [3], was produced by Aureobasidium pullulans CH-1. The D. magna were exposed to 50 µg/dm3  of Cu (II) or a combination with 50 mg/dm3  and 100 mg/dm3  of levan or pullulan for 48h in the acute test. Additionally, the prolonged test was performed, where the daphnia were exposed to a 10 µg/dm3  of Cu (II) with or without 50 mg/ dm3  of levan or pullulan for 5 days. After the exposure period, the samples were digested and the accumulation of copper in D. magna was analysed using the iCAP Qc ICP-MS (Thermo Scientific, United Kingdom). The results showed that animals exposed to Cu (II) only, accumulated Cu (II) in a greater amount after the prolonged test compared to the acute one, despite the lower concentration. The treatment with EPS during the acute test increased the copper accumulation for both EPS concentrations tested, whereas during the prolonged exposure test, the Cu (II) accumulation was inhibited. Considering that protective effects of levan and pullulan were observed only with lower copper concentrations and 5 days of exposure, additional experiments are necessary to determine the mechanism of EPS action in order to confirm their possible use as protective agents.",
publisher = "Belgrade : Serbian Chemical Society",
journal = "Book of Abstracts 21st; European Meeting on Environmental Chemistry",
title = "The Effects of Microbial Polysaccharides on the Copper Accumulation in Daphnia magna",
pages = "159-159",
url = "https://hdl.handle.net/21.15107/rcub_cherry_4929"
}
Lončarević, B., Lješević, M., Marković, M., Gojgić-Cvijović, G., Anđelković, I.,& Beškoski, V.. (2021). The Effects of Microbial Polysaccharides on the Copper Accumulation in Daphnia magna. in Book of Abstracts 21st; European Meeting on Environmental Chemistry
Belgrade : Serbian Chemical Society., 159-159.
https://hdl.handle.net/21.15107/rcub_cherry_4929
Lončarević B, Lješević M, Marković M, Gojgić-Cvijović G, Anđelković I, Beškoski V. The Effects of Microbial Polysaccharides on the Copper Accumulation in Daphnia magna. in Book of Abstracts 21st; European Meeting on Environmental Chemistry. 2021;:159-159.
https://hdl.handle.net/21.15107/rcub_cherry_4929 .
Lončarević, B., Lješević, M., Marković, M., Gojgić-Cvijović, Gordana, Anđelković, I., Beškoski, Vladimir, "The Effects of Microbial Polysaccharides on the Copper Accumulation in Daphnia magna" in Book of Abstracts 21st; European Meeting on Environmental Chemistry (2021):159-159,
https://hdl.handle.net/21.15107/rcub_cherry_4929 .

Polysaccharide-fullerene supramolecular hybrids: Synthesis, characterization and antioxidant activity

Kop, Tatjana; Jakovljević, Dragica M.; Živković, Ljiljana S.; Žekić, Andrijana; Beškoski, Vladimir; Milić, Dragana; Gojgić-Cvijović, Gordana D.; Bjelaković, Mira S.

(Elsevier, 2020)

TY  - JOUR
AU  - Kop, Tatjana
AU  - Jakovljević, Dragica M.
AU  - Živković, Ljiljana S.
AU  - Žekić, Andrijana
AU  - Beškoski, Vladimir
AU  - Milić, Dragana
AU  - Gojgić-Cvijović, Gordana D.
AU  - Bjelaković, Mira S.
PY  - 2020
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3803
AB  - An efficient encapsulation of the fullerene into two hydrophobized and one native polysaccharide provided water soluble supramolecular hybrids. After covalent modification of polysaccharides by cholesterol, noncovalent hybrids were prepared by a three-step procedure, including mixing of individual aqueous solutions of hydrophobized, as well as native sugar with solution of the fullerene in pyridine, dialysis and lyophilization. Although the degree of the fullerene incorporation into hydrophobized substrates, cholesterol-levan and cholesterol-pullulan, was lower in comparison to the native polysaccharide levan, hydrophobization provided nanoparticles with improved properties. The particle size distribution, studied by dynamic light scattering and scanning electron microscopy revealed formation of moderately polydisperse aggregates, with the diameter contraction in comparison to the corresponding free polysaccharide, especially in the case of hydrophobized substrates. The morphological examination, done by scanning electron microscopy indicated the self-organization of the fullerene-native polysaccharide to round individual structures, while fullerene-hydrophobized polysaccharide hybrids tend to form networks. The antioxidant activity of the synthesized polysaccharide-C60 noncovalent hybrids versus starting polysaccharides was investigated by the DPPH radical scavenging and the β-carotene-linoleic acid bleaching methods. In all three complexes, the radical scavenging ability of the fullerene remained preserved, and a positive effect of levan hydrophobization was observed.
PB  - Elsevier
T2  - European Polymer Journal
T1  - Polysaccharide-fullerene supramolecular hybrids: Synthesis, characterization and antioxidant activity
VL  - 123
IS  - 109461
DO  - 10.1016/j.eurpolymj.2019.109461
ER  - 
@article{
author = "Kop, Tatjana and Jakovljević, Dragica M. and Živković, Ljiljana S. and Žekić, Andrijana and Beškoski, Vladimir and Milić, Dragana and Gojgić-Cvijović, Gordana D. and Bjelaković, Mira S.",
year = "2020",
abstract = "An efficient encapsulation of the fullerene into two hydrophobized and one native polysaccharide provided water soluble supramolecular hybrids. After covalent modification of polysaccharides by cholesterol, noncovalent hybrids were prepared by a three-step procedure, including mixing of individual aqueous solutions of hydrophobized, as well as native sugar with solution of the fullerene in pyridine, dialysis and lyophilization. Although the degree of the fullerene incorporation into hydrophobized substrates, cholesterol-levan and cholesterol-pullulan, was lower in comparison to the native polysaccharide levan, hydrophobization provided nanoparticles with improved properties. The particle size distribution, studied by dynamic light scattering and scanning electron microscopy revealed formation of moderately polydisperse aggregates, with the diameter contraction in comparison to the corresponding free polysaccharide, especially in the case of hydrophobized substrates. The morphological examination, done by scanning electron microscopy indicated the self-organization of the fullerene-native polysaccharide to round individual structures, while fullerene-hydrophobized polysaccharide hybrids tend to form networks. The antioxidant activity of the synthesized polysaccharide-C60 noncovalent hybrids versus starting polysaccharides was investigated by the DPPH radical scavenging and the β-carotene-linoleic acid bleaching methods. In all three complexes, the radical scavenging ability of the fullerene remained preserved, and a positive effect of levan hydrophobization was observed.",
publisher = "Elsevier",
journal = "European Polymer Journal",
title = "Polysaccharide-fullerene supramolecular hybrids: Synthesis, characterization and antioxidant activity",
volume = "123",
number = "109461",
doi = "10.1016/j.eurpolymj.2019.109461"
}
Kop, T., Jakovljević, D. M., Živković, L. S., Žekić, A., Beškoski, V., Milić, D., Gojgić-Cvijović, G. D.,& Bjelaković, M. S.. (2020). Polysaccharide-fullerene supramolecular hybrids: Synthesis, characterization and antioxidant activity. in European Polymer Journal
Elsevier., 123(109461).
https://doi.org/10.1016/j.eurpolymj.2019.109461
Kop T, Jakovljević DM, Živković LS, Žekić A, Beškoski V, Milić D, Gojgić-Cvijović GD, Bjelaković MS. Polysaccharide-fullerene supramolecular hybrids: Synthesis, characterization and antioxidant activity. in European Polymer Journal. 2020;123(109461).
doi:10.1016/j.eurpolymj.2019.109461 .
Kop, Tatjana, Jakovljević, Dragica M., Živković, Ljiljana S., Žekić, Andrijana, Beškoski, Vladimir, Milić, Dragana, Gojgić-Cvijović, Gordana D., Bjelaković, Mira S., "Polysaccharide-fullerene supramolecular hybrids: Synthesis, characterization and antioxidant activity" in European Polymer Journal, 123, no. 109461 (2020),
https://doi.org/10.1016/j.eurpolymj.2019.109461 . .
8
1
5

Polysaccharide-fullerene supramolecular hybrids: Synthesis, characterization and antioxidant activity

Kop, Tatjana; Jakovljević, Dragica M.; Živković, Ljiljana S.; Žekić, Andrijana; Beškoski, Vladimir; Milić, Dragana; Gojgić-Cvijović, Gordana D.; Bjelaković, Mira

(Elsevier, 2020)

TY  - JOUR
AU  - Kop, Tatjana
AU  - Jakovljević, Dragica M.
AU  - Živković, Ljiljana S.
AU  - Žekić, Andrijana
AU  - Beškoski, Vladimir
AU  - Milić, Dragana
AU  - Gojgić-Cvijović, Gordana D.
AU  - Bjelaković, Mira
PY  - 2020
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3830
AB  - An efficient encapsulation of the fullerene into two hydrophobized and one native polysaccharide provided water soluble supramolecular hybrids. After covalent modification of polysaccharides by cholesterol, noncovalent hybrids were prepared by a three-step procedure, including mixing of individual aqueous solutions of hydrophobized, as well as native sugar with solution of the fullerene in pyridine, dialysis and lyophilization. Although the degree of the fullerene incorporation into hydrophobized substrates, cholesterol-levan and cholesterol-pullulan, was lower in comparison to the native polysaccharide levan, hydrophobization provided nanoparticles with improved properties. The particle size distribution, studied by dynamic light scattering and scanning electron microscopy revealed formation of moderately polydisperse aggregates, with the diameter contraction in comparison to the corresponding free polysaccharide, especially in the case of hydrophobized substrates. The morphological examination, done by scanning electron microscopy indicated the self-organization of the fullerene-native polysaccharide to round individual structures, while fullerene-hydrophobized polysaccharide hybrids tend to form networks. The antioxidant activity of the synthesized polysaccharide-C60 noncovalent hybrids versus starting polysaccharides was investigated by the DPPH radical scavenging and the β-carotene-linoleic acid bleaching methods. In all three complexes, the radical scavenging ability of the fullerene remained preserved, and a positive effect of levan hydrophobization was observed.
PB  - Elsevier
T2  - European Polymer Journal
T1  - Polysaccharide-fullerene supramolecular hybrids: Synthesis, characterization and antioxidant activity
VL  - 123
SP  - 109461
DO  - 10.1016/j.eurpolymj.2019.109461
ER  - 
@article{
author = "Kop, Tatjana and Jakovljević, Dragica M. and Živković, Ljiljana S. and Žekić, Andrijana and Beškoski, Vladimir and Milić, Dragana and Gojgić-Cvijović, Gordana D. and Bjelaković, Mira",
year = "2020",
abstract = "An efficient encapsulation of the fullerene into two hydrophobized and one native polysaccharide provided water soluble supramolecular hybrids. After covalent modification of polysaccharides by cholesterol, noncovalent hybrids were prepared by a three-step procedure, including mixing of individual aqueous solutions of hydrophobized, as well as native sugar with solution of the fullerene in pyridine, dialysis and lyophilization. Although the degree of the fullerene incorporation into hydrophobized substrates, cholesterol-levan and cholesterol-pullulan, was lower in comparison to the native polysaccharide levan, hydrophobization provided nanoparticles with improved properties. The particle size distribution, studied by dynamic light scattering and scanning electron microscopy revealed formation of moderately polydisperse aggregates, with the diameter contraction in comparison to the corresponding free polysaccharide, especially in the case of hydrophobized substrates. The morphological examination, done by scanning electron microscopy indicated the self-organization of the fullerene-native polysaccharide to round individual structures, while fullerene-hydrophobized polysaccharide hybrids tend to form networks. The antioxidant activity of the synthesized polysaccharide-C60 noncovalent hybrids versus starting polysaccharides was investigated by the DPPH radical scavenging and the β-carotene-linoleic acid bleaching methods. In all three complexes, the radical scavenging ability of the fullerene remained preserved, and a positive effect of levan hydrophobization was observed.",
publisher = "Elsevier",
journal = "European Polymer Journal",
title = "Polysaccharide-fullerene supramolecular hybrids: Synthesis, characterization and antioxidant activity",
volume = "123",
pages = "109461",
doi = "10.1016/j.eurpolymj.2019.109461"
}
Kop, T., Jakovljević, D. M., Živković, L. S., Žekić, A., Beškoski, V., Milić, D., Gojgić-Cvijović, G. D.,& Bjelaković, M.. (2020). Polysaccharide-fullerene supramolecular hybrids: Synthesis, characterization and antioxidant activity. in European Polymer Journal
Elsevier., 123, 109461.
https://doi.org/10.1016/j.eurpolymj.2019.109461
Kop T, Jakovljević DM, Živković LS, Žekić A, Beškoski V, Milić D, Gojgić-Cvijović GD, Bjelaković M. Polysaccharide-fullerene supramolecular hybrids: Synthesis, characterization and antioxidant activity. in European Polymer Journal. 2020;123:109461.
doi:10.1016/j.eurpolymj.2019.109461 .
Kop, Tatjana, Jakovljević, Dragica M., Živković, Ljiljana S., Žekić, Andrijana, Beškoski, Vladimir, Milić, Dragana, Gojgić-Cvijović, Gordana D., Bjelaković, Mira, "Polysaccharide-fullerene supramolecular hybrids: Synthesis, characterization and antioxidant activity" in European Polymer Journal, 123 (2020):109461,
https://doi.org/10.1016/j.eurpolymj.2019.109461 . .
8
1
5

Optimization of microbial fuel cell operation using Danube River sediment

Joksimović, Kristina; Žerađanin, Aleksandra; Ranđelović, Danijela; Avdalović, Jelena; Miletić, Srđan B.; Gojgić-Cvijović, Gordana D.; Beškoski, Vladimir

(Elsevier, 2020)

TY  - JOUR
AU  - Joksimović, Kristina
AU  - Žerađanin, Aleksandra
AU  - Ranđelović, Danijela
AU  - Avdalović, Jelena
AU  - Miletić, Srđan B.
AU  - Gojgić-Cvijović, Gordana D.
AU  - Beškoski, Vladimir
PY  - 2020
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4019
AB  - One of the main global focuses of mankind today is the required switch to new energy sources. Generating energy from waste is one of the potential solutions that can be achieved using microbial fuel cells (MFCs). Microorganisms, thanks to their ability to degrade organic substrates in contaminated environments, could contribute to solving our pollution challenge. The aim of this study was to investigate the potential of sediment with its natural microbiota from the River Danube to optimize electricity generation using MFCs. 16S rRNA gene analysis identified the main bacterial genera in the river sediment, Clostridium, Bacillus and Tepidibacter, which were isolated and cultured in the laboratory. Addition of these cultured microorganisms to the MFC resulted in current density of 192 mA/m3, while the power density was about 8.80 mW/m3. Our study confirms proper selection and enrichment of the microbial community can optimize the amount of current obtainable from river sediment by MFCs.
PB  - Elsevier
T2  - Journal of Power Sources
T2  - Journal of Power SourcesJournal of Power Sources
T1  - Optimization of microbial fuel cell operation using Danube River sediment
VL  - 476
SP  - 228739
DO  - 10.1016/j.jpowsour.2020.228739
ER  - 
@article{
author = "Joksimović, Kristina and Žerađanin, Aleksandra and Ranđelović, Danijela and Avdalović, Jelena and Miletić, Srđan B. and Gojgić-Cvijović, Gordana D. and Beškoski, Vladimir",
year = "2020",
abstract = "One of the main global focuses of mankind today is the required switch to new energy sources. Generating energy from waste is one of the potential solutions that can be achieved using microbial fuel cells (MFCs). Microorganisms, thanks to their ability to degrade organic substrates in contaminated environments, could contribute to solving our pollution challenge. The aim of this study was to investigate the potential of sediment with its natural microbiota from the River Danube to optimize electricity generation using MFCs. 16S rRNA gene analysis identified the main bacterial genera in the river sediment, Clostridium, Bacillus and Tepidibacter, which were isolated and cultured in the laboratory. Addition of these cultured microorganisms to the MFC resulted in current density of 192 mA/m3, while the power density was about 8.80 mW/m3. Our study confirms proper selection and enrichment of the microbial community can optimize the amount of current obtainable from river sediment by MFCs.",
publisher = "Elsevier",
journal = "Journal of Power Sources, Journal of Power SourcesJournal of Power Sources",
title = "Optimization of microbial fuel cell operation using Danube River sediment",
volume = "476",
pages = "228739",
doi = "10.1016/j.jpowsour.2020.228739"
}
Joksimović, K., Žerađanin, A., Ranđelović, D., Avdalović, J., Miletić, S. B., Gojgić-Cvijović, G. D.,& Beškoski, V.. (2020). Optimization of microbial fuel cell operation using Danube River sediment. in Journal of Power Sources
Elsevier., 476, 228739.
https://doi.org/10.1016/j.jpowsour.2020.228739
Joksimović K, Žerađanin A, Ranđelović D, Avdalović J, Miletić SB, Gojgić-Cvijović GD, Beškoski V. Optimization of microbial fuel cell operation using Danube River sediment. in Journal of Power Sources. 2020;476:228739.
doi:10.1016/j.jpowsour.2020.228739 .
Joksimović, Kristina, Žerađanin, Aleksandra, Ranđelović, Danijela, Avdalović, Jelena, Miletić, Srđan B., Gojgić-Cvijović, Gordana D., Beškoski, Vladimir, "Optimization of microbial fuel cell operation using Danube River sediment" in Journal of Power Sources, 476 (2020):228739,
https://doi.org/10.1016/j.jpowsour.2020.228739 . .
3
1
1

Optimization of microbial fuel cell operation using Danube River sediment

Joksimović, Kristina; Žerađanin, Aleksandra; Ranđelović, Danijela; Avdalović, Jelena; Miletić, Srđan B.; Gojgić-Cvijović, Gordana D.; Beškoski, Vladimir

(Elsevier, 2020)

TY  - JOUR
AU  - Joksimović, Kristina
AU  - Žerađanin, Aleksandra
AU  - Ranđelović, Danijela
AU  - Avdalović, Jelena
AU  - Miletić, Srđan B.
AU  - Gojgić-Cvijović, Gordana D.
AU  - Beškoski, Vladimir
PY  - 2020
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4020
AB  - One of the main global focuses of mankind today is the required switch to new energy sources. Generating energy from waste is one of the potential solutions that can be achieved using microbial fuel cells (MFCs). Microorganisms, thanks to their ability to degrade organic substrates in contaminated environments, could contribute to solving our pollution challenge. The aim of this study was to investigate the potential of sediment with its natural microbiota from the River Danube to optimize electricity generation using MFCs. 16S rRNA gene analysis identified the main bacterial genera in the river sediment, Clostridium, Bacillus and Tepidibacter, which were isolated and cultured in the laboratory. Addition of these cultured microorganisms to the MFC resulted in current density of 192 mA/m3, while the power density was about 8.80 mW/m3. Our study confirms proper selection and enrichment of the microbial community can optimize the amount of current obtainable from river sediment by MFCs.
PB  - Elsevier
T2  - Journal of Power Sources
T2  - Journal of Power SourcesJournal of Power Sources
T1  - Optimization of microbial fuel cell operation using Danube River sediment
VL  - 476
SP  - 228739
DO  - 10.1016/j.jpowsour.2020.228739
ER  - 
@article{
author = "Joksimović, Kristina and Žerađanin, Aleksandra and Ranđelović, Danijela and Avdalović, Jelena and Miletić, Srđan B. and Gojgić-Cvijović, Gordana D. and Beškoski, Vladimir",
year = "2020",
abstract = "One of the main global focuses of mankind today is the required switch to new energy sources. Generating energy from waste is one of the potential solutions that can be achieved using microbial fuel cells (MFCs). Microorganisms, thanks to their ability to degrade organic substrates in contaminated environments, could contribute to solving our pollution challenge. The aim of this study was to investigate the potential of sediment with its natural microbiota from the River Danube to optimize electricity generation using MFCs. 16S rRNA gene analysis identified the main bacterial genera in the river sediment, Clostridium, Bacillus and Tepidibacter, which were isolated and cultured in the laboratory. Addition of these cultured microorganisms to the MFC resulted in current density of 192 mA/m3, while the power density was about 8.80 mW/m3. Our study confirms proper selection and enrichment of the microbial community can optimize the amount of current obtainable from river sediment by MFCs.",
publisher = "Elsevier",
journal = "Journal of Power Sources, Journal of Power SourcesJournal of Power Sources",
title = "Optimization of microbial fuel cell operation using Danube River sediment",
volume = "476",
pages = "228739",
doi = "10.1016/j.jpowsour.2020.228739"
}
Joksimović, K., Žerađanin, A., Ranđelović, D., Avdalović, J., Miletić, S. B., Gojgić-Cvijović, G. D.,& Beškoski, V.. (2020). Optimization of microbial fuel cell operation using Danube River sediment. in Journal of Power Sources
Elsevier., 476, 228739.
https://doi.org/10.1016/j.jpowsour.2020.228739
Joksimović K, Žerađanin A, Ranđelović D, Avdalović J, Miletić SB, Gojgić-Cvijović GD, Beškoski V. Optimization of microbial fuel cell operation using Danube River sediment. in Journal of Power Sources. 2020;476:228739.
doi:10.1016/j.jpowsour.2020.228739 .
Joksimović, Kristina, Žerađanin, Aleksandra, Ranđelović, Danijela, Avdalović, Jelena, Miletić, Srđan B., Gojgić-Cvijović, Gordana D., Beškoski, Vladimir, "Optimization of microbial fuel cell operation using Danube River sediment" in Journal of Power Sources, 476 (2020):228739,
https://doi.org/10.1016/j.jpowsour.2020.228739 . .
3
1
1

SR-FTIR spectro-microscopic interaction study of biochemical changes in HeLa cells induced by Levan-C60, Pullulan-C60, and their cholesterol-derivatives

Nešić, Maja D.; Dučić, Tanja; Liang, Xinyue; Algarra, Manuel; Mi, Lan; Korićanac, Lela; Žakula, Jelena; Kop, Tatjana; Bjelaković, Mira; Mitrović, Aleksandra; Gojgić-Cvijović, Gordana D.; Stepić, Milutin; Petković, Marijana

(Elsevier, 2020)

TY  - JOUR
AU  - Nešić, Maja D.
AU  - Dučić, Tanja
AU  - Liang, Xinyue
AU  - Algarra, Manuel
AU  - Mi, Lan
AU  - Korićanac, Lela
AU  - Žakula, Jelena
AU  - Kop, Tatjana
AU  - Bjelaković, Mira
AU  - Mitrović, Aleksandra
AU  - Gojgić-Cvijović, Gordana D.
AU  - Stepić, Milutin
AU  - Petković, Marijana
PY  - 2020
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4268
AB  - Objects of the present study are improved fullerene C60 drug carrier properties trough encapsulation by microbial polysaccharides, levan (LEV), pullulan (PUL), and their hydrophobized cholesterol-derivatives (CHL and CHP), that show better interaction with cancer cells. The zeta potential, polydispersity index, and the diameter of particles were determined, and their cytotoxicity against three cancer cell lines were tested. Biochemical changes in HeLa cells are analyzed by synchrotron radiation (SR) FTIR spectro-microscopy combined with the principal component analysis (PCA). The most significant changes occur in HeLa cells treated with LEV-C60 and correspond to the changes in the protein region, i.e. Amide Iband, and the changes in the structure of lipid bodies and membrane fluidity are evident. The highest cytotoxicity was also induced by LEV-C60. In HeLa cells, cytotoxicity could not be strictly associated with biochemical changes in lipids, proteins and nucleic acids, but these findings are significant contribution to the study of the mechanism of interaction of C60-based nanoparticles with cellular biomolecules. In conclusion, LEV, PUL, CHL, and CHP enhanced fullerene C60potential to be used as target drug delivery system with the ability to induce specific intracellular changes in HeLa cancer cells.
PB  - Elsevier
T2  - International Journal of Biological Macromolecules
T1  - SR-FTIR spectro-microscopic interaction study of biochemical changes in HeLa cells induced by Levan-C60, Pullulan-C60, and their cholesterol-derivatives
VL  - 165
IS  - B
SP  - 2541
EP  - 2549
DO  - 10.1016/j.ijbiomac.2020.10.141
ER  - 
@article{
author = "Nešić, Maja D. and Dučić, Tanja and Liang, Xinyue and Algarra, Manuel and Mi, Lan and Korićanac, Lela and Žakula, Jelena and Kop, Tatjana and Bjelaković, Mira and Mitrović, Aleksandra and Gojgić-Cvijović, Gordana D. and Stepić, Milutin and Petković, Marijana",
year = "2020",
abstract = "Objects of the present study are improved fullerene C60 drug carrier properties trough encapsulation by microbial polysaccharides, levan (LEV), pullulan (PUL), and their hydrophobized cholesterol-derivatives (CHL and CHP), that show better interaction with cancer cells. The zeta potential, polydispersity index, and the diameter of particles were determined, and their cytotoxicity against three cancer cell lines were tested. Biochemical changes in HeLa cells are analyzed by synchrotron radiation (SR) FTIR spectro-microscopy combined with the principal component analysis (PCA). The most significant changes occur in HeLa cells treated with LEV-C60 and correspond to the changes in the protein region, i.e. Amide Iband, and the changes in the structure of lipid bodies and membrane fluidity are evident. The highest cytotoxicity was also induced by LEV-C60. In HeLa cells, cytotoxicity could not be strictly associated with biochemical changes in lipids, proteins and nucleic acids, but these findings are significant contribution to the study of the mechanism of interaction of C60-based nanoparticles with cellular biomolecules. In conclusion, LEV, PUL, CHL, and CHP enhanced fullerene C60potential to be used as target drug delivery system with the ability to induce specific intracellular changes in HeLa cancer cells.",
publisher = "Elsevier",
journal = "International Journal of Biological Macromolecules",
title = "SR-FTIR spectro-microscopic interaction study of biochemical changes in HeLa cells induced by Levan-C60, Pullulan-C60, and their cholesterol-derivatives",
volume = "165",
number = "B",
pages = "2541-2549",
doi = "10.1016/j.ijbiomac.2020.10.141"
}
Nešić, M. D., Dučić, T., Liang, X., Algarra, M., Mi, L., Korićanac, L., Žakula, J., Kop, T., Bjelaković, M., Mitrović, A., Gojgić-Cvijović, G. D., Stepić, M.,& Petković, M.. (2020). SR-FTIR spectro-microscopic interaction study of biochemical changes in HeLa cells induced by Levan-C60, Pullulan-C60, and their cholesterol-derivatives. in International Journal of Biological Macromolecules
Elsevier., 165(B), 2541-2549.
https://doi.org/10.1016/j.ijbiomac.2020.10.141
Nešić MD, Dučić T, Liang X, Algarra M, Mi L, Korićanac L, Žakula J, Kop T, Bjelaković M, Mitrović A, Gojgić-Cvijović GD, Stepić M, Petković M. SR-FTIR spectro-microscopic interaction study of biochemical changes in HeLa cells induced by Levan-C60, Pullulan-C60, and their cholesterol-derivatives. in International Journal of Biological Macromolecules. 2020;165(B):2541-2549.
doi:10.1016/j.ijbiomac.2020.10.141 .
Nešić, Maja D., Dučić, Tanja, Liang, Xinyue, Algarra, Manuel, Mi, Lan, Korićanac, Lela, Žakula, Jelena, Kop, Tatjana, Bjelaković, Mira, Mitrović, Aleksandra, Gojgić-Cvijović, Gordana D., Stepić, Milutin, Petković, Marijana, "SR-FTIR spectro-microscopic interaction study of biochemical changes in HeLa cells induced by Levan-C60, Pullulan-C60, and their cholesterol-derivatives" in International Journal of Biological Macromolecules, 165, no. B (2020):2541-2549,
https://doi.org/10.1016/j.ijbiomac.2020.10.141 . .
1
4
1
3

Production of levan by Bacillus licheniformis NS032 in sugar beet molasses-based medium

Gojgić-Cvijović, Gordana D.; Jakovljević, Dragica M.; Lončarević, Branka D.; Todorović, Nevena M.; Pergal, Marija V.; Ćirić, J.; Loos, K.; Beškoski, Vladimir; Vrvić, Miroslav M.

(2019)

TY  - JOUR
AU  - Gojgić-Cvijović, Gordana D.
AU  - Jakovljević, Dragica M.
AU  - Lončarević, Branka D.
AU  - Todorović, Nevena M.
AU  - Pergal, Marija V.
AU  - Ćirić, J.
AU  - Loos, K.
AU  - Beškoski, Vladimir
AU  - Vrvić, Miroslav M.
PY  - 2019
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/350
AB  - The production of levan by Bacillus licheniformis NS032 in a medium based on sugar beet molasses was studied. High polysaccharide yields were produced by using diluted molasses (100–140 g/L of total sugars) with the addition of commercial sucrose up to 200 g/L of total sugars, as well as K2HPO4. A levan yield of 53.2 g/L was obtained on a medium optimized by response surface methodology, containing 62.6% of sugar originating from molasses, and 4.66 g/L of phosphate, with initial pH value of 7.2. In comparison to the media with 200 and 400 g/L sucrose, in the molasses optimized medium, the observed bacterial growth was faster, while the maximum production of polysaccharide was achieved over a shorter time interval (48 h). The polysaccharide produced in molasses medium had a weight average molecular weight of 5.82 × 106 Da, degree of branching 12.68%, viscosity of 0.24 dL/g, and based on methylation analysis and NMR data, it did not significantly differ from levan obtained in the medium with 200 g/L sucrose. © 2018 Elsevier B.V.
T2  - International Journal of Biological Macromolecules
T1  - Production of levan by Bacillus licheniformis NS032 in sugar beet molasses-based medium
VL  - 121
SP  - 142
EP  - 151
DO  - 10.1016/j.ijbiomac.2018.10.019
UR  - Kon_1321
ER  - 
@article{
author = "Gojgić-Cvijović, Gordana D. and Jakovljević, Dragica M. and Lončarević, Branka D. and Todorović, Nevena M. and Pergal, Marija V. and Ćirić, J. and Loos, K. and Beškoski, Vladimir and Vrvić, Miroslav M.",
year = "2019",
abstract = "The production of levan by Bacillus licheniformis NS032 in a medium based on sugar beet molasses was studied. High polysaccharide yields were produced by using diluted molasses (100–140 g/L of total sugars) with the addition of commercial sucrose up to 200 g/L of total sugars, as well as K2HPO4. A levan yield of 53.2 g/L was obtained on a medium optimized by response surface methodology, containing 62.6% of sugar originating from molasses, and 4.66 g/L of phosphate, with initial pH value of 7.2. In comparison to the media with 200 and 400 g/L sucrose, in the molasses optimized medium, the observed bacterial growth was faster, while the maximum production of polysaccharide was achieved over a shorter time interval (48 h). The polysaccharide produced in molasses medium had a weight average molecular weight of 5.82 × 106 Da, degree of branching 12.68%, viscosity of 0.24 dL/g, and based on methylation analysis and NMR data, it did not significantly differ from levan obtained in the medium with 200 g/L sucrose. © 2018 Elsevier B.V.",
journal = "International Journal of Biological Macromolecules",
title = "Production of levan by Bacillus licheniformis NS032 in sugar beet molasses-based medium",
volume = "121",
pages = "142-151",
doi = "10.1016/j.ijbiomac.2018.10.019",
url = "Kon_1321"
}
Gojgić-Cvijović, G. D., Jakovljević, D. M., Lončarević, B. D., Todorović, N. M., Pergal, M. V., Ćirić, J., Loos, K., Beškoski, V.,& Vrvić, M. M.. (2019). Production of levan by Bacillus licheniformis NS032 in sugar beet molasses-based medium. in International Journal of Biological Macromolecules, 121, 142-151.
https://doi.org/10.1016/j.ijbiomac.2018.10.019
Kon_1321
Gojgić-Cvijović GD, Jakovljević DM, Lončarević BD, Todorović NM, Pergal MV, Ćirić J, Loos K, Beškoski V, Vrvić MM. Production of levan by Bacillus licheniformis NS032 in sugar beet molasses-based medium. in International Journal of Biological Macromolecules. 2019;121:142-151.
doi:10.1016/j.ijbiomac.2018.10.019
Kon_1321 .
Gojgić-Cvijović, Gordana D., Jakovljević, Dragica M., Lončarević, Branka D., Todorović, Nevena M., Pergal, Marija V., Ćirić, J., Loos, K., Beškoski, Vladimir, Vrvić, Miroslav M., "Production of levan by Bacillus licheniformis NS032 in sugar beet molasses-based medium" in International Journal of Biological Macromolecules, 121 (2019):142-151,
https://doi.org/10.1016/j.ijbiomac.2018.10.019 .,
Kon_1321 .
31
26
31

Production of levan by Bacillus licheniformis NS032 in sugar beet molasses-based medium

Gojgić-Cvijović, Gordana D.; Jakovljević, Dragica M.; Lončarević, Branka D.; Todorović, Nevena M.; Pergal, Marija V.; Ćirić, J.; Loos, K.; Beškoski, Vladimir; Vrvić, Miroslav M.

(2019)

TY  - JOUR
AU  - Gojgić-Cvijović, Gordana D.
AU  - Jakovljević, Dragica M.
AU  - Lončarević, Branka D.
AU  - Todorović, Nevena M.
AU  - Pergal, Marija V.
AU  - Ćirić, J.
AU  - Loos, K.
AU  - Beškoski, Vladimir
AU  - Vrvić, Miroslav M.
PY  - 2019
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/2799
AB  - The production of levan by Bacillus licheniformis NS032 in a medium based on sugar beet molasses was studied. High polysaccharide yields were produced by using diluted molasses (100–140 g/L of total sugars) with the addition of commercial sucrose up to 200 g/L of total sugars, as well as K2HPO4. A levan yield of 53.2 g/L was obtained on a medium optimized by response surface methodology, containing 62.6% of sugar originating from molasses, and 4.66 g/L of phosphate, with initial pH value of 7.2. In comparison to the media with 200 and 400 g/L sucrose, in the molasses optimized medium, the observed bacterial growth was faster, while the maximum production of polysaccharide was achieved over a shorter time interval (48 h). The polysaccharide produced in molasses medium had a weight average molecular weight of 5.82 × 106 Da, degree of branching 12.68%, viscosity of 0.24 dL/g, and based on methylation analysis and NMR data, it did not significantly differ from levan obtained in the medium with 200 g/L sucrose. © 2018 Elsevier B.V.
T2  - International Journal of Biological Macromolecules
T1  - Production of levan by Bacillus licheniformis NS032 in sugar beet molasses-based medium
VL  - 121
SP  - 142
EP  - 151
DO  - 10.1016/j.ijbiomac.2018.10.019
ER  - 
@article{
author = "Gojgić-Cvijović, Gordana D. and Jakovljević, Dragica M. and Lončarević, Branka D. and Todorović, Nevena M. and Pergal, Marija V. and Ćirić, J. and Loos, K. and Beškoski, Vladimir and Vrvić, Miroslav M.",
year = "2019",
abstract = "The production of levan by Bacillus licheniformis NS032 in a medium based on sugar beet molasses was studied. High polysaccharide yields were produced by using diluted molasses (100–140 g/L of total sugars) with the addition of commercial sucrose up to 200 g/L of total sugars, as well as K2HPO4. A levan yield of 53.2 g/L was obtained on a medium optimized by response surface methodology, containing 62.6% of sugar originating from molasses, and 4.66 g/L of phosphate, with initial pH value of 7.2. In comparison to the media with 200 and 400 g/L sucrose, in the molasses optimized medium, the observed bacterial growth was faster, while the maximum production of polysaccharide was achieved over a shorter time interval (48 h). The polysaccharide produced in molasses medium had a weight average molecular weight of 5.82 × 106 Da, degree of branching 12.68%, viscosity of 0.24 dL/g, and based on methylation analysis and NMR data, it did not significantly differ from levan obtained in the medium with 200 g/L sucrose. © 2018 Elsevier B.V.",
journal = "International Journal of Biological Macromolecules",
title = "Production of levan by Bacillus licheniformis NS032 in sugar beet molasses-based medium",
volume = "121",
pages = "142-151",
doi = "10.1016/j.ijbiomac.2018.10.019"
}
Gojgić-Cvijović, G. D., Jakovljević, D. M., Lončarević, B. D., Todorović, N. M., Pergal, M. V., Ćirić, J., Loos, K., Beškoski, V.,& Vrvić, M. M.. (2019). Production of levan by Bacillus licheniformis NS032 in sugar beet molasses-based medium. in International Journal of Biological Macromolecules, 121, 142-151.
https://doi.org/10.1016/j.ijbiomac.2018.10.019
Gojgić-Cvijović GD, Jakovljević DM, Lončarević BD, Todorović NM, Pergal MV, Ćirić J, Loos K, Beškoski V, Vrvić MM. Production of levan by Bacillus licheniformis NS032 in sugar beet molasses-based medium. in International Journal of Biological Macromolecules. 2019;121:142-151.
doi:10.1016/j.ijbiomac.2018.10.019 .
Gojgić-Cvijović, Gordana D., Jakovljević, Dragica M., Lončarević, Branka D., Todorović, Nevena M., Pergal, Marija V., Ćirić, J., Loos, K., Beškoski, Vladimir, Vrvić, Miroslav M., "Production of levan by Bacillus licheniformis NS032 in sugar beet molasses-based medium" in International Journal of Biological Macromolecules, 121 (2019):142-151,
https://doi.org/10.1016/j.ijbiomac.2018.10.019 . .
31
26
30

Supplementary data for the article: Gojgic-Cvijovic, G. D.; Jakovljevic, D. M.; Loncarevic, B. D.; Todorovic, N. M.; Pergal, M. V.; Ciric, J.; Loos, K.; Beškoski, V.; Vrvić, M. M. Production of Levan by Bacillus Licheniformis NS032 in Sugar Beet Molasses-Based Medium. International Journal of Biological Macromolecules 2019, 121, 142–151. https://doi.org/10.1016/j.ijbiomac.2018.10.019

Gojgić-Cvijović, Gordana D.; Jakovljević, Dragica M.; Lončarević, Branka D.; Todorović, Nevena M.; Pergal, Marija V.; Ćirić, J.; Loos, K.; Beškoski, Vladimir; Vrvić, Miroslav M.

(2019)

TY  - DATA
AU  - Gojgić-Cvijović, Gordana D.
AU  - Jakovljević, Dragica M.
AU  - Lončarević, Branka D.
AU  - Todorović, Nevena M.
AU  - Pergal, Marija V.
AU  - Ćirić, J.
AU  - Loos, K.
AU  - Beškoski, Vladimir
AU  - Vrvić, Miroslav M.
PY  - 2019
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/2943
T2  - International Journal of Biological Macromolecules
T1  - Supplementary data for the article: Gojgic-Cvijovic, G. D.; Jakovljevic, D. M.; Loncarevic, B. D.; Todorovic, N. M.; Pergal, M. V.; Ciric, J.; Loos, K.; Beškoski, V.; Vrvić, M. M. Production of Levan by Bacillus Licheniformis NS032 in Sugar Beet Molasses-Based Medium. International Journal of Biological Macromolecules 2019, 121, 142–151. https://doi.org/10.1016/j.ijbiomac.2018.10.019
UR  - https://hdl.handle.net/21.15107/rcub_cherry_2943
ER  - 
@misc{
author = "Gojgić-Cvijović, Gordana D. and Jakovljević, Dragica M. and Lončarević, Branka D. and Todorović, Nevena M. and Pergal, Marija V. and Ćirić, J. and Loos, K. and Beškoski, Vladimir and Vrvić, Miroslav M.",
year = "2019",
journal = "International Journal of Biological Macromolecules",
title = "Supplementary data for the article: Gojgic-Cvijovic, G. D.; Jakovljevic, D. M.; Loncarevic, B. D.; Todorovic, N. M.; Pergal, M. V.; Ciric, J.; Loos, K.; Beškoski, V.; Vrvić, M. M. Production of Levan by Bacillus Licheniformis NS032 in Sugar Beet Molasses-Based Medium. International Journal of Biological Macromolecules 2019, 121, 142–151. https://doi.org/10.1016/j.ijbiomac.2018.10.019",
url = "https://hdl.handle.net/21.15107/rcub_cherry_2943"
}
Gojgić-Cvijović, G. D., Jakovljević, D. M., Lončarević, B. D., Todorović, N. M., Pergal, M. V., Ćirić, J., Loos, K., Beškoski, V.,& Vrvić, M. M.. (2019). Supplementary data for the article: Gojgic-Cvijovic, G. D.; Jakovljevic, D. M.; Loncarevic, B. D.; Todorovic, N. M.; Pergal, M. V.; Ciric, J.; Loos, K.; Beškoski, V.; Vrvić, M. M. Production of Levan by Bacillus Licheniformis NS032 in Sugar Beet Molasses-Based Medium. International Journal of Biological Macromolecules 2019, 121, 142–151. https://doi.org/10.1016/j.ijbiomac.2018.10.019. in International Journal of Biological Macromolecules.
https://hdl.handle.net/21.15107/rcub_cherry_2943
Gojgić-Cvijović GD, Jakovljević DM, Lončarević BD, Todorović NM, Pergal MV, Ćirić J, Loos K, Beškoski V, Vrvić MM. Supplementary data for the article: Gojgic-Cvijovic, G. D.; Jakovljevic, D. M.; Loncarevic, B. D.; Todorovic, N. M.; Pergal, M. V.; Ciric, J.; Loos, K.; Beškoski, V.; Vrvić, M. M. Production of Levan by Bacillus Licheniformis NS032 in Sugar Beet Molasses-Based Medium. International Journal of Biological Macromolecules 2019, 121, 142–151. https://doi.org/10.1016/j.ijbiomac.2018.10.019. in International Journal of Biological Macromolecules. 2019;.
https://hdl.handle.net/21.15107/rcub_cherry_2943 .
Gojgić-Cvijović, Gordana D., Jakovljević, Dragica M., Lončarević, Branka D., Todorović, Nevena M., Pergal, Marija V., Ćirić, J., Loos, K., Beškoski, Vladimir, Vrvić, Miroslav M., "Supplementary data for the article: Gojgic-Cvijovic, G. D.; Jakovljevic, D. M.; Loncarevic, B. D.; Todorovic, N. M.; Pergal, M. V.; Ciric, J.; Loos, K.; Beškoski, V.; Vrvić, M. M. Production of Levan by Bacillus Licheniformis NS032 in Sugar Beet Molasses-Based Medium. International Journal of Biological Macromolecules 2019, 121, 142–151. https://doi.org/10.1016/j.ijbiomac.2018.10.019" in International Journal of Biological Macromolecules (2019),
https://hdl.handle.net/21.15107/rcub_cherry_2943 .

Biodegradation of the aromatic fraction from petroleum diesel fuel by Oerskovia sp. followed by comprehensive GC×GC-TOF MS

Lješević, Marija; Gojgić-Cvijović, Gordana D.; Ieda, T.; Hashimoto, S.; Nakano, Takeshi; Bulatović, S.; Ilić, Mila V.; Beškoski, Vladimir

(2019)

TY  - JOUR
AU  - Lješević, Marija
AU  - Gojgić-Cvijović, Gordana D.
AU  - Ieda, T.
AU  - Hashimoto, S.
AU  - Nakano, Takeshi
AU  - Bulatović, S.
AU  - Ilić, Mila V.
AU  - Beškoski, Vladimir
PY  - 2019
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/2800
AB  - Polycyclic aromatic hydrocarbons (PAHs) from petroleum and fossil fuels are one of the most dominant pollutants in the environment. Since aromatic fraction from petroleum diesel fuel is mainly composed of PAHs, it is important to discover new microorganisms that can biodegrade these compounds. This article describes the biodegradation of the aromatic fraction separated from petroleum diesel fuel using the strain Oerskovia sp. CHP-ZH25 isolated from petroleum oil-contaminated soil. The biodegradation was monitored by gravimetry and GC × GC-TOF MS. An innovative method was applied to visualize degraded compounds in the data provided by a GC × GC-TOF MS. It was shown that Oerskovia sp. CHP-ZH25 degraded 77.4% based on gravimetric analysis within 30 days. Average rate of degradation was 14.4 mg/L/day, 10.5 mg/l/day and 4.0 mg/l/day from 0 to 10 day, 10–20 and 20–30 day, respectively. The order of PAH degradation based on decrease in peak volume after 30 days of incubation was as follows: dibenzothiophene derivatives  gt  benzo[b]thiophene derivatives  gt  naphthalene derivatives  gt  acenaphthene derivatives  gt  acenaphthylene/biphenyl derivatives  gt  fluorene derivatives  gt  phenanthrene/anthracene derivatives. Here we demonstrated that Oerskovia sp. CHP-ZH25 could potentially be a suitable candidate for use in bioremediation of environments polluted with different PAHs. © 2018 Elsevier B.V.
T2  - Journal of Hazardous Materials
T1  - Biodegradation of the aromatic fraction from petroleum diesel fuel by Oerskovia sp. followed by comprehensive GC×GC-TOF MS
VL  - 363
SP  - 227
EP  - 232
DO  - 10.1016/j.jhazmat.2018.10.005
ER  - 
@article{
author = "Lješević, Marija and Gojgić-Cvijović, Gordana D. and Ieda, T. and Hashimoto, S. and Nakano, Takeshi and Bulatović, S. and Ilić, Mila V. and Beškoski, Vladimir",
year = "2019",
abstract = "Polycyclic aromatic hydrocarbons (PAHs) from petroleum and fossil fuels are one of the most dominant pollutants in the environment. Since aromatic fraction from petroleum diesel fuel is mainly composed of PAHs, it is important to discover new microorganisms that can biodegrade these compounds. This article describes the biodegradation of the aromatic fraction separated from petroleum diesel fuel using the strain Oerskovia sp. CHP-ZH25 isolated from petroleum oil-contaminated soil. The biodegradation was monitored by gravimetry and GC × GC-TOF MS. An innovative method was applied to visualize degraded compounds in the data provided by a GC × GC-TOF MS. It was shown that Oerskovia sp. CHP-ZH25 degraded 77.4% based on gravimetric analysis within 30 days. Average rate of degradation was 14.4 mg/L/day, 10.5 mg/l/day and 4.0 mg/l/day from 0 to 10 day, 10–20 and 20–30 day, respectively. The order of PAH degradation based on decrease in peak volume after 30 days of incubation was as follows: dibenzothiophene derivatives  gt  benzo[b]thiophene derivatives  gt  naphthalene derivatives  gt  acenaphthene derivatives  gt  acenaphthylene/biphenyl derivatives  gt  fluorene derivatives  gt  phenanthrene/anthracene derivatives. Here we demonstrated that Oerskovia sp. CHP-ZH25 could potentially be a suitable candidate for use in bioremediation of environments polluted with different PAHs. © 2018 Elsevier B.V.",
journal = "Journal of Hazardous Materials",
title = "Biodegradation of the aromatic fraction from petroleum diesel fuel by Oerskovia sp. followed by comprehensive GC×GC-TOF MS",
volume = "363",
pages = "227-232",
doi = "10.1016/j.jhazmat.2018.10.005"
}
Lješević, M., Gojgić-Cvijović, G. D., Ieda, T., Hashimoto, S., Nakano, T., Bulatović, S., Ilić, M. V.,& Beškoski, V.. (2019). Biodegradation of the aromatic fraction from petroleum diesel fuel by Oerskovia sp. followed by comprehensive GC×GC-TOF MS. in Journal of Hazardous Materials, 363, 227-232.
https://doi.org/10.1016/j.jhazmat.2018.10.005
Lješević M, Gojgić-Cvijović GD, Ieda T, Hashimoto S, Nakano T, Bulatović S, Ilić MV, Beškoski V. Biodegradation of the aromatic fraction from petroleum diesel fuel by Oerskovia sp. followed by comprehensive GC×GC-TOF MS. in Journal of Hazardous Materials. 2019;363:227-232.
doi:10.1016/j.jhazmat.2018.10.005 .
Lješević, Marija, Gojgić-Cvijović, Gordana D., Ieda, T., Hashimoto, S., Nakano, Takeshi, Bulatović, S., Ilić, Mila V., Beškoski, Vladimir, "Biodegradation of the aromatic fraction from petroleum diesel fuel by Oerskovia sp. followed by comprehensive GC×GC-TOF MS" in Journal of Hazardous Materials, 363 (2019):227-232,
https://doi.org/10.1016/j.jhazmat.2018.10.005 . .
10
9
9

Supplementary data for the article: Lješević, M.; Gojgić-Cvijović, G.; Ieda, T.; Hashimoto, S.; Nakano, T.; Bulatović, S.; Ilić, M.; Beškoski, V. Biodegradation of the Aromatic Fraction from Petroleum Diesel Fuel by Oerskovia Sp. Followed by Comprehensive GC×GC-TOF MS. Journal of Hazardous Materials 2019, 363, 227–232. https://doi.org/10.1016/j.jhazmat.2018.10.005

Lješević, Marija; Gojgić-Cvijović, Gordana D.; Ieda, T.; Hashimoto, S.; Nakano, Takeshi; Bulatović, S.; Ilić, Mila V.; Beškoski, Vladimir

(2019)

TY  - DATA
AU  - Lješević, Marija
AU  - Gojgić-Cvijović, Gordana D.
AU  - Ieda, T.
AU  - Hashimoto, S.
AU  - Nakano, Takeshi
AU  - Bulatović, S.
AU  - Ilić, Mila V.
AU  - Beškoski, Vladimir
PY  - 2019
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/2950
T2  - Journal of Hazardous Materials
T1  - Supplementary data for the article: Lješević, M.; Gojgić-Cvijović, G.; Ieda, T.; Hashimoto, S.; Nakano, T.; Bulatović, S.; Ilić, M.; Beškoski, V. Biodegradation of the Aromatic Fraction from Petroleum Diesel Fuel by Oerskovia Sp. Followed by Comprehensive GC×GC-TOF MS. Journal of Hazardous Materials 2019, 363, 227–232. https://doi.org/10.1016/j.jhazmat.2018.10.005
UR  - https://hdl.handle.net/21.15107/rcub_cherry_2950
ER  - 
@misc{
author = "Lješević, Marija and Gojgić-Cvijović, Gordana D. and Ieda, T. and Hashimoto, S. and Nakano, Takeshi and Bulatović, S. and Ilić, Mila V. and Beškoski, Vladimir",
year = "2019",
journal = "Journal of Hazardous Materials",
title = "Supplementary data for the article: Lješević, M.; Gojgić-Cvijović, G.; Ieda, T.; Hashimoto, S.; Nakano, T.; Bulatović, S.; Ilić, M.; Beškoski, V. Biodegradation of the Aromatic Fraction from Petroleum Diesel Fuel by Oerskovia Sp. Followed by Comprehensive GC×GC-TOF MS. Journal of Hazardous Materials 2019, 363, 227–232. https://doi.org/10.1016/j.jhazmat.2018.10.005",
url = "https://hdl.handle.net/21.15107/rcub_cherry_2950"
}
Lješević, M., Gojgić-Cvijović, G. D., Ieda, T., Hashimoto, S., Nakano, T., Bulatović, S., Ilić, M. V.,& Beškoski, V.. (2019). Supplementary data for the article: Lješević, M.; Gojgić-Cvijović, G.; Ieda, T.; Hashimoto, S.; Nakano, T.; Bulatović, S.; Ilić, M.; Beškoski, V. Biodegradation of the Aromatic Fraction from Petroleum Diesel Fuel by Oerskovia Sp. Followed by Comprehensive GC×GC-TOF MS. Journal of Hazardous Materials 2019, 363, 227–232. https://doi.org/10.1016/j.jhazmat.2018.10.005. in Journal of Hazardous Materials.
https://hdl.handle.net/21.15107/rcub_cherry_2950
Lješević M, Gojgić-Cvijović GD, Ieda T, Hashimoto S, Nakano T, Bulatović S, Ilić MV, Beškoski V. Supplementary data for the article: Lješević, M.; Gojgić-Cvijović, G.; Ieda, T.; Hashimoto, S.; Nakano, T.; Bulatović, S.; Ilić, M.; Beškoski, V. Biodegradation of the Aromatic Fraction from Petroleum Diesel Fuel by Oerskovia Sp. Followed by Comprehensive GC×GC-TOF MS. Journal of Hazardous Materials 2019, 363, 227–232. https://doi.org/10.1016/j.jhazmat.2018.10.005. in Journal of Hazardous Materials. 2019;.
https://hdl.handle.net/21.15107/rcub_cherry_2950 .
Lješević, Marija, Gojgić-Cvijović, Gordana D., Ieda, T., Hashimoto, S., Nakano, Takeshi, Bulatović, S., Ilić, Mila V., Beškoski, Vladimir, "Supplementary data for the article: Lješević, M.; Gojgić-Cvijović, G.; Ieda, T.; Hashimoto, S.; Nakano, T.; Bulatović, S.; Ilić, M.; Beškoski, V. Biodegradation of the Aromatic Fraction from Petroleum Diesel Fuel by Oerskovia Sp. Followed by Comprehensive GC×GC-TOF MS. Journal of Hazardous Materials 2019, 363, 227–232. https://doi.org/10.1016/j.jhazmat.2018.10.005" in Journal of Hazardous Materials (2019),
https://hdl.handle.net/21.15107/rcub_cherry_2950 .

Microbial levan and pullulan as potential protective agents for reducing adverse effects of copper on Daphnia magna and Vibrio fischeri

Lončarević, Branka D.; Lješević, Marija; Marković, Marijana; Anđelković, Ivan; Gojgić-Cvijović, Gordana D.; Jakovljević, Dragica M.; Beškoski, Vladimir

(Elsevier, 2019)

TY  - JOUR
AU  - Lončarević, Branka D.
AU  - Lješević, Marija
AU  - Marković, Marijana
AU  - Anđelković, Ivan
AU  - Gojgić-Cvijović, Gordana D.
AU  - Jakovljević, Dragica M.
AU  - Beškoski, Vladimir
PY  - 2019
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3158
AB  - Microbial polysaccharides, due to their unique physiochemical properties, have found application in the food industry, cosmetics, pharmacy and medicine. In the environment, microbes can use polysaccharides to alleviate the adverse effects of heavy metals in their close proximity. This adaptive property shows interesting potential for bioremediation. Herein, the effects of the exopolysaccharides (EPS) levan, produced by the bacterium Bacillus licheniformis NS032 and pullulan, produced by the fungus Aureobasidium pullulans CH-1 in the presence of copper (Cu2+) have been investigated for the first time on antioxidant enzyme activity, respiration and Cu2+ bioaccumulation of Daphnia magna as well as the bioluminescence of Vibrio fischeri. Both EPS decreased toxicity of Cu2+ in the acute test with D. magna. The activity of catalase (CAT) was significantly diminished after acute exposure to Cu2+ in comparison to treatments with Cu2+ and EPS, while in the prolonged acute exposure the CAT activity did not show statistically significant (P ≤ 0.05) differences between treatments with and without the EPS. According to ICP-MS results, during prolonged acute exposure of neonates, the bioaccumulation of Cu2+ in treatments without the EPS was 52.03 μg/g of biomass (wet), while in treatments with EPS, the bioaccumulation was lower by one order of magnitude. The respiration of neonates during acute exposure to Cu2+ with or without the EPS was monitored using the MicroOxymax respirometer, and the results show the EPS can positively effect the respiration. In the case of bacterial bioluminescence, the toxicity of Cu2+ decreased in treatments with EPS (30 min EC10) from 3.54 mg/L to 140.61 mg/L (levan) and 45.00 mg/L (pullulan). This study demonstrates protective effect of EPS against Cu2+ toxicity on D. magna and V. fischeri, and opens the door for further investigation of potential application of levan and pullulan in bioremediation of heavy metals and mitigation of their adverse effects in the aquatic environment.
PB  - Elsevier
T2  - Ecotoxicology and Environmental Safety
T1  - Microbial levan and pullulan as potential protective agents for reducing adverse effects of copper on Daphnia magna and Vibrio fischeri
VL  - 181
SP  - 187
EP  - 193
DO  - 10.1016/j.ecoenv.2019.06.002
ER  - 
@article{
author = "Lončarević, Branka D. and Lješević, Marija and Marković, Marijana and Anđelković, Ivan and Gojgić-Cvijović, Gordana D. and Jakovljević, Dragica M. and Beškoski, Vladimir",
year = "2019",
abstract = "Microbial polysaccharides, due to their unique physiochemical properties, have found application in the food industry, cosmetics, pharmacy and medicine. In the environment, microbes can use polysaccharides to alleviate the adverse effects of heavy metals in their close proximity. This adaptive property shows interesting potential for bioremediation. Herein, the effects of the exopolysaccharides (EPS) levan, produced by the bacterium Bacillus licheniformis NS032 and pullulan, produced by the fungus Aureobasidium pullulans CH-1 in the presence of copper (Cu2+) have been investigated for the first time on antioxidant enzyme activity, respiration and Cu2+ bioaccumulation of Daphnia magna as well as the bioluminescence of Vibrio fischeri. Both EPS decreased toxicity of Cu2+ in the acute test with D. magna. The activity of catalase (CAT) was significantly diminished after acute exposure to Cu2+ in comparison to treatments with Cu2+ and EPS, while in the prolonged acute exposure the CAT activity did not show statistically significant (P ≤ 0.05) differences between treatments with and without the EPS. According to ICP-MS results, during prolonged acute exposure of neonates, the bioaccumulation of Cu2+ in treatments without the EPS was 52.03 μg/g of biomass (wet), while in treatments with EPS, the bioaccumulation was lower by one order of magnitude. The respiration of neonates during acute exposure to Cu2+ with or without the EPS was monitored using the MicroOxymax respirometer, and the results show the EPS can positively effect the respiration. In the case of bacterial bioluminescence, the toxicity of Cu2+ decreased in treatments with EPS (30 min EC10) from 3.54 mg/L to 140.61 mg/L (levan) and 45.00 mg/L (pullulan). This study demonstrates protective effect of EPS against Cu2+ toxicity on D. magna and V. fischeri, and opens the door for further investigation of potential application of levan and pullulan in bioremediation of heavy metals and mitigation of their adverse effects in the aquatic environment.",
publisher = "Elsevier",
journal = "Ecotoxicology and Environmental Safety",
title = "Microbial levan and pullulan as potential protective agents for reducing adverse effects of copper on Daphnia magna and Vibrio fischeri",
volume = "181",
pages = "187-193",
doi = "10.1016/j.ecoenv.2019.06.002"
}
Lončarević, B. D., Lješević, M., Marković, M., Anđelković, I., Gojgić-Cvijović, G. D., Jakovljević, D. M.,& Beškoski, V.. (2019). Microbial levan and pullulan as potential protective agents for reducing adverse effects of copper on Daphnia magna and Vibrio fischeri. in Ecotoxicology and Environmental Safety
Elsevier., 181, 187-193.
https://doi.org/10.1016/j.ecoenv.2019.06.002
Lončarević BD, Lješević M, Marković M, Anđelković I, Gojgić-Cvijović GD, Jakovljević DM, Beškoski V. Microbial levan and pullulan as potential protective agents for reducing adverse effects of copper on Daphnia magna and Vibrio fischeri. in Ecotoxicology and Environmental Safety. 2019;181:187-193.
doi:10.1016/j.ecoenv.2019.06.002 .
Lončarević, Branka D., Lješević, Marija, Marković, Marijana, Anđelković, Ivan, Gojgić-Cvijović, Gordana D., Jakovljević, Dragica M., Beškoski, Vladimir, "Microbial levan and pullulan as potential protective agents for reducing adverse effects of copper on Daphnia magna and Vibrio fischeri" in Ecotoxicology and Environmental Safety, 181 (2019):187-193,
https://doi.org/10.1016/j.ecoenv.2019.06.002 . .
1
3
4
4

Supplementary material for the article: Lončarević, B.; Lješević, M.; Marković, M.; Anđelković, I.; Gojgić-Cvijović, G.; Jakovljević, D.; Beškoski, V. Microbial Levan and Pullulan as Potential Protective Agents for Reducing Adverse Effects of Copper on Daphnia Magna and Vibrio Fischeri. Ecotoxicology and Environmental Safety 2019, 181, 187–193. https://doi.org/10.1016/j.ecoenv.2019.06.002

Lončarević, Branka D.; Lješević, Marija; Marković, Marijana; Anđelković, Ivan; Gojgić-Cvijović, Gordana D.; Jakovljević, Dragica M.; Beškoski, Vladimir

(Elsevier, 2019)

TY  - DATA
AU  - Lončarević, Branka D.
AU  - Lješević, Marija
AU  - Marković, Marijana
AU  - Anđelković, Ivan
AU  - Gojgić-Cvijović, Gordana D.
AU  - Jakovljević, Dragica M.
AU  - Beškoski, Vladimir
PY  - 2019
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3159
PB  - Elsevier
T2  - Ecotoxicology and Environmental Safety
T1  - Supplementary material for the article: Lončarević, B.; Lješević, M.; Marković, M.; Anđelković, I.; Gojgić-Cvijović, G.; Jakovljević, D.; Beškoski, V. Microbial Levan and Pullulan as Potential Protective Agents for Reducing Adverse Effects of Copper on Daphnia Magna and Vibrio Fischeri. Ecotoxicology and Environmental Safety 2019, 181, 187–193. https://doi.org/10.1016/j.ecoenv.2019.06.002
UR  - https://hdl.handle.net/21.15107/rcub_cherry_3159
ER  - 
@misc{
author = "Lončarević, Branka D. and Lješević, Marija and Marković, Marijana and Anđelković, Ivan and Gojgić-Cvijović, Gordana D. and Jakovljević, Dragica M. and Beškoski, Vladimir",
year = "2019",
publisher = "Elsevier",
journal = "Ecotoxicology and Environmental Safety",
title = "Supplementary material for the article: Lončarević, B.; Lješević, M.; Marković, M.; Anđelković, I.; Gojgić-Cvijović, G.; Jakovljević, D.; Beškoski, V. Microbial Levan and Pullulan as Potential Protective Agents for Reducing Adverse Effects of Copper on Daphnia Magna and Vibrio Fischeri. Ecotoxicology and Environmental Safety 2019, 181, 187–193. https://doi.org/10.1016/j.ecoenv.2019.06.002",
url = "https://hdl.handle.net/21.15107/rcub_cherry_3159"
}
Lončarević, B. D., Lješević, M., Marković, M., Anđelković, I., Gojgić-Cvijović, G. D., Jakovljević, D. M.,& Beškoski, V.. (2019). Supplementary material for the article: Lončarević, B.; Lješević, M.; Marković, M.; Anđelković, I.; Gojgić-Cvijović, G.; Jakovljević, D.; Beškoski, V. Microbial Levan and Pullulan as Potential Protective Agents for Reducing Adverse Effects of Copper on Daphnia Magna and Vibrio Fischeri. Ecotoxicology and Environmental Safety 2019, 181, 187–193. https://doi.org/10.1016/j.ecoenv.2019.06.002. in Ecotoxicology and Environmental Safety
Elsevier..
https://hdl.handle.net/21.15107/rcub_cherry_3159
Lončarević BD, Lješević M, Marković M, Anđelković I, Gojgić-Cvijović GD, Jakovljević DM, Beškoski V. Supplementary material for the article: Lončarević, B.; Lješević, M.; Marković, M.; Anđelković, I.; Gojgić-Cvijović, G.; Jakovljević, D.; Beškoski, V. Microbial Levan and Pullulan as Potential Protective Agents for Reducing Adverse Effects of Copper on Daphnia Magna and Vibrio Fischeri. Ecotoxicology and Environmental Safety 2019, 181, 187–193. https://doi.org/10.1016/j.ecoenv.2019.06.002. in Ecotoxicology and Environmental Safety. 2019;.
https://hdl.handle.net/21.15107/rcub_cherry_3159 .
Lončarević, Branka D., Lješević, Marija, Marković, Marijana, Anđelković, Ivan, Gojgić-Cvijović, Gordana D., Jakovljević, Dragica M., Beškoski, Vladimir, "Supplementary material for the article: Lončarević, B.; Lješević, M.; Marković, M.; Anđelković, I.; Gojgić-Cvijović, G.; Jakovljević, D.; Beškoski, V. Microbial Levan and Pullulan as Potential Protective Agents for Reducing Adverse Effects of Copper on Daphnia Magna and Vibrio Fischeri. Ecotoxicology and Environmental Safety 2019, 181, 187–193. https://doi.org/10.1016/j.ecoenv.2019.06.002" in Ecotoxicology and Environmental Safety (2019),
https://hdl.handle.net/21.15107/rcub_cherry_3159 .

The influence of low-frequency magnetic field regions on the Saccharomyces cerevisiae respiration and growth

Bubanja, Itana Nuša; Lončarević, Branka D.; Lješević, Marija; Beškoski, Vladimir; Gojgić-Cvijović, Gordana D.; Velikić, Zoran; Stanisavljev, Dragomir

(2019)

TY  - JOUR
AU  - Bubanja, Itana Nuša
AU  - Lončarević, Branka D.
AU  - Lješević, Marija
AU  - Beškoski, Vladimir
AU  - Gojgić-Cvijović, Gordana D.
AU  - Velikić, Zoran
AU  - Stanisavljev, Dragomir
PY  - 2019
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3321
AB  - The influence of four low-frequency magnetic field (MF) ranges 10–300 Hz, 10–100 Hz, 10–50 Hz and 50–100 Hz in scanning regime (all frequencies from selected range were scanned during 100 s repetitively during 24 h) on baker's yeast cells Saccharomyces cerevisiae was examined by continuous measurements of cumulative O2 consumption and cumulative CO2 production over 24 h with Micro-Oxymax® respirometer. Besides respiration activity, measurements of cell growth and glucose uptake were performed as well. Statistical analysis indicated that, among all investigated low-frequency MF ranges, range from 10 Hz to 50 Hz had the greatest influence to yeast cell respiration and cell growth. More precisely, for this region, paired two sample one-tail t-test showed statistically significant differences in cumulative O2 consumption, cumulative CO2 production and S. cerevisiae cell number. Moreover samples exposed to MF range from 10 Hz to 50 Hz showed the same behavior in all five replicates: lower cumulative O2 consumption, higher cumulative CO2 production and higher cell number compared to control sample. This could be important from the application aspect, in industry (food, feed, brewery etc.) and biotechnology, because changes in cells metabolism are not caused by chemical treatment.
T2  - Chemical Engineering and Processing - Process Intensification
T1  - The influence of low-frequency magnetic field regions on the Saccharomyces cerevisiae respiration and growth
VL  - 143
SP  - 1
EP  - 7
DO  - 10.1016/j.cep.2019.107593
ER  - 
@article{
author = "Bubanja, Itana Nuša and Lončarević, Branka D. and Lješević, Marija and Beškoski, Vladimir and Gojgić-Cvijović, Gordana D. and Velikić, Zoran and Stanisavljev, Dragomir",
year = "2019",
abstract = "The influence of four low-frequency magnetic field (MF) ranges 10–300 Hz, 10–100 Hz, 10–50 Hz and 50–100 Hz in scanning regime (all frequencies from selected range were scanned during 100 s repetitively during 24 h) on baker's yeast cells Saccharomyces cerevisiae was examined by continuous measurements of cumulative O2 consumption and cumulative CO2 production over 24 h with Micro-Oxymax® respirometer. Besides respiration activity, measurements of cell growth and glucose uptake were performed as well. Statistical analysis indicated that, among all investigated low-frequency MF ranges, range from 10 Hz to 50 Hz had the greatest influence to yeast cell respiration and cell growth. More precisely, for this region, paired two sample one-tail t-test showed statistically significant differences in cumulative O2 consumption, cumulative CO2 production and S. cerevisiae cell number. Moreover samples exposed to MF range from 10 Hz to 50 Hz showed the same behavior in all five replicates: lower cumulative O2 consumption, higher cumulative CO2 production and higher cell number compared to control sample. This could be important from the application aspect, in industry (food, feed, brewery etc.) and biotechnology, because changes in cells metabolism are not caused by chemical treatment.",
journal = "Chemical Engineering and Processing - Process Intensification",
title = "The influence of low-frequency magnetic field regions on the Saccharomyces cerevisiae respiration and growth",
volume = "143",
pages = "1-7",
doi = "10.1016/j.cep.2019.107593"
}
Bubanja, I. N., Lončarević, B. D., Lješević, M., Beškoski, V., Gojgić-Cvijović, G. D., Velikić, Z.,& Stanisavljev, D.. (2019). The influence of low-frequency magnetic field regions on the Saccharomyces cerevisiae respiration and growth. in Chemical Engineering and Processing - Process Intensification, 143, 1-7.
https://doi.org/10.1016/j.cep.2019.107593
Bubanja IN, Lončarević BD, Lješević M, Beškoski V, Gojgić-Cvijović GD, Velikić Z, Stanisavljev D. The influence of low-frequency magnetic field regions on the Saccharomyces cerevisiae respiration and growth. in Chemical Engineering and Processing - Process Intensification. 2019;143:1-7.
doi:10.1016/j.cep.2019.107593 .
Bubanja, Itana Nuša, Lončarević, Branka D., Lješević, Marija, Beškoski, Vladimir, Gojgić-Cvijović, Gordana D., Velikić, Zoran, Stanisavljev, Dragomir, "The influence of low-frequency magnetic field regions on the Saccharomyces cerevisiae respiration and growth" in Chemical Engineering and Processing - Process Intensification, 143 (2019):1-7,
https://doi.org/10.1016/j.cep.2019.107593 . .
3
2
2

The influence of low-frequency magnetic field regions on the Saccharomyces cerevisiae respiration and growth

Bubanja, Itana Nuša; Lončarević, Branka D.; Lješević, Marija; Beškoski, Vladimir; Gojgić-Cvijović, Gordana D.; Velikić, Zoran; Stanisavljev, Dragomir

(2019)

TY  - JOUR
AU  - Bubanja, Itana Nuša
AU  - Lončarević, Branka D.
AU  - Lješević, Marija
AU  - Beškoski, Vladimir
AU  - Gojgić-Cvijović, Gordana D.
AU  - Velikić, Zoran
AU  - Stanisavljev, Dragomir
PY  - 2019
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3322
AB  - The influence of four low-frequency magnetic field (MF) ranges 10–300 Hz, 10–100 Hz, 10–50 Hz and 50–100 Hz in scanning regime (all frequencies from selected range were scanned during 100 s repetitively during 24 h) on baker's yeast cells Saccharomyces cerevisiae was examined by continuous measurements of cumulative O2 consumption and cumulative CO2 production over 24 h with Micro-Oxymax® respirometer. Besides respiration activity, measurements of cell growth and glucose uptake were performed as well. Statistical analysis indicated that, among all investigated low-frequency MF ranges, range from 10 Hz to 50 Hz had the greatest influence to yeast cell respiration and cell growth. More precisely, for this region, paired two sample one-tail t-test showed statistically significant differences in cumulative O2 consumption, cumulative CO2 production and S. cerevisiae cell number. Moreover samples exposed to MF range from 10 Hz to 50 Hz showed the same behavior in all five replicates: lower cumulative O2 consumption, higher cumulative CO2 production and higher cell number compared to control sample. This could be important from the application aspect, in industry (food, feed, brewery etc.) and biotechnology, because changes in cells metabolism are not caused by chemical treatment.
T2  - Chemical Engineering and Processing - Process Intensification
T1  - The influence of low-frequency magnetic field regions on the Saccharomyces cerevisiae respiration and growth
VL  - 143
SP  - 1
EP  - 7
DO  - 10.1016/j.cep.2019.107593
ER  - 
@article{
author = "Bubanja, Itana Nuša and Lončarević, Branka D. and Lješević, Marija and Beškoski, Vladimir and Gojgić-Cvijović, Gordana D. and Velikić, Zoran and Stanisavljev, Dragomir",
year = "2019",
abstract = "The influence of four low-frequency magnetic field (MF) ranges 10–300 Hz, 10–100 Hz, 10–50 Hz and 50–100 Hz in scanning regime (all frequencies from selected range were scanned during 100 s repetitively during 24 h) on baker's yeast cells Saccharomyces cerevisiae was examined by continuous measurements of cumulative O2 consumption and cumulative CO2 production over 24 h with Micro-Oxymax® respirometer. Besides respiration activity, measurements of cell growth and glucose uptake were performed as well. Statistical analysis indicated that, among all investigated low-frequency MF ranges, range from 10 Hz to 50 Hz had the greatest influence to yeast cell respiration and cell growth. More precisely, for this region, paired two sample one-tail t-test showed statistically significant differences in cumulative O2 consumption, cumulative CO2 production and S. cerevisiae cell number. Moreover samples exposed to MF range from 10 Hz to 50 Hz showed the same behavior in all five replicates: lower cumulative O2 consumption, higher cumulative CO2 production and higher cell number compared to control sample. This could be important from the application aspect, in industry (food, feed, brewery etc.) and biotechnology, because changes in cells metabolism are not caused by chemical treatment.",
journal = "Chemical Engineering and Processing - Process Intensification",
title = "The influence of low-frequency magnetic field regions on the Saccharomyces cerevisiae respiration and growth",
volume = "143",
pages = "1-7",
doi = "10.1016/j.cep.2019.107593"
}
Bubanja, I. N., Lončarević, B. D., Lješević, M., Beškoski, V., Gojgić-Cvijović, G. D., Velikić, Z.,& Stanisavljev, D.. (2019). The influence of low-frequency magnetic field regions on the Saccharomyces cerevisiae respiration and growth. in Chemical Engineering and Processing - Process Intensification, 143, 1-7.
https://doi.org/10.1016/j.cep.2019.107593
Bubanja IN, Lončarević BD, Lješević M, Beškoski V, Gojgić-Cvijović GD, Velikić Z, Stanisavljev D. The influence of low-frequency magnetic field regions on the Saccharomyces cerevisiae respiration and growth. in Chemical Engineering and Processing - Process Intensification. 2019;143:1-7.
doi:10.1016/j.cep.2019.107593 .
Bubanja, Itana Nuša, Lončarević, Branka D., Lješević, Marija, Beškoski, Vladimir, Gojgić-Cvijović, Gordana D., Velikić, Zoran, Stanisavljev, Dragomir, "The influence of low-frequency magnetic field regions on the Saccharomyces cerevisiae respiration and growth" in Chemical Engineering and Processing - Process Intensification, 143 (2019):1-7,
https://doi.org/10.1016/j.cep.2019.107593 . .
3
2
2

High-quality draft genome sequence of Pseudomonas aeruginosa san ai, an environmental isolate resistant to heavy metals

Izrael-Živković, Lidija; Beškoski, Vladimir; Rikalović, Milena G.; Kazazić, Snježana; Shapiro, Nicole; Woyke, Tanja; Gojgić-Cvijović, Gordana D.; Vrvić, Miroslav M.; Maksimović, Nela; Karadžić, Ivanka M.

(Springer Japan, 2019)

TY  - JOUR
AU  - Izrael-Živković, Lidija
AU  - Beškoski, Vladimir
AU  - Rikalović, Milena G.
AU  - Kazazić, Snježana
AU  - Shapiro, Nicole
AU  - Woyke, Tanja
AU  - Gojgić-Cvijović, Gordana D.
AU  - Vrvić, Miroslav M.
AU  - Maksimović, Nela
AU  - Karadžić, Ivanka M.
PY  - 2019
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3705
AB  - The strain Pseudomonas aeruginosa san ai, isolated from an extreme environment (industrial mineral cutting oil, pH 10), is able to survive and persist in the presence of a variety of pollutants such as heavy metals and organic chemicals. The genome of P. aeruginosa san ai is 6.98 Mbp long with a GC content of 66.08% and 6485 protein encoding genes. A large number of genes associated with proteins, responsible for microbial resistance to heavy metal ions and involved in catabolism of toxic aromatic organic compounds were identified. P. aeruginosa san ai is a highly cadmium-resistant strain. Proteome analysis of biomass after cadmium exposal confirmed a high tolerance to sublethal concentrations of cadmium (100 mg/L), based on: extracellular biosorption, bioaccumulation, biofilm formation, controlled siderophore production and a pronounced metalloprotein synthesis. Proteins responsible for survival in osmostress conditions during exposure to elevated concentrations of cadmium (200 mg/L) demonstrate a strong genetic potential of P. aeruginosa san ai for survival and adaptation. Sequencing of P. aeruginosa san ai genome provides valuable insights into the evolution and adaptation of this microbe to environmental extremes at the whole-genome level, as well as how to optimally use the strain in bioremediation of chemically polluted sites.
PB  - Springer Japan
T2  - Extremophiles
T1  - High-quality draft genome sequence of Pseudomonas aeruginosa san ai, an environmental isolate resistant to heavy metals
VL  - 23
IS  - 4
SP  - 399
EP  - 405
DO  - 10.1007/s00792-019-01092-w
ER  - 
@article{
author = "Izrael-Živković, Lidija and Beškoski, Vladimir and Rikalović, Milena G. and Kazazić, Snježana and Shapiro, Nicole and Woyke, Tanja and Gojgić-Cvijović, Gordana D. and Vrvić, Miroslav M. and Maksimović, Nela and Karadžić, Ivanka M.",
year = "2019",
abstract = "The strain Pseudomonas aeruginosa san ai, isolated from an extreme environment (industrial mineral cutting oil, pH 10), is able to survive and persist in the presence of a variety of pollutants such as heavy metals and organic chemicals. The genome of P. aeruginosa san ai is 6.98 Mbp long with a GC content of 66.08% and 6485 protein encoding genes. A large number of genes associated with proteins, responsible for microbial resistance to heavy metal ions and involved in catabolism of toxic aromatic organic compounds were identified. P. aeruginosa san ai is a highly cadmium-resistant strain. Proteome analysis of biomass after cadmium exposal confirmed a high tolerance to sublethal concentrations of cadmium (100 mg/L), based on: extracellular biosorption, bioaccumulation, biofilm formation, controlled siderophore production and a pronounced metalloprotein synthesis. Proteins responsible for survival in osmostress conditions during exposure to elevated concentrations of cadmium (200 mg/L) demonstrate a strong genetic potential of P. aeruginosa san ai for survival and adaptation. Sequencing of P. aeruginosa san ai genome provides valuable insights into the evolution and adaptation of this microbe to environmental extremes at the whole-genome level, as well as how to optimally use the strain in bioremediation of chemically polluted sites.",
publisher = "Springer Japan",
journal = "Extremophiles",
title = "High-quality draft genome sequence of Pseudomonas aeruginosa san ai, an environmental isolate resistant to heavy metals",
volume = "23",
number = "4",
pages = "399-405",
doi = "10.1007/s00792-019-01092-w"
}
Izrael-Živković, L., Beškoski, V., Rikalović, M. G., Kazazić, S., Shapiro, N., Woyke, T., Gojgić-Cvijović, G. D., Vrvić, M. M., Maksimović, N.,& Karadžić, I. M.. (2019). High-quality draft genome sequence of Pseudomonas aeruginosa san ai, an environmental isolate resistant to heavy metals. in Extremophiles
Springer Japan., 23(4), 399-405.
https://doi.org/10.1007/s00792-019-01092-w
Izrael-Živković L, Beškoski V, Rikalović MG, Kazazić S, Shapiro N, Woyke T, Gojgić-Cvijović GD, Vrvić MM, Maksimović N, Karadžić IM. High-quality draft genome sequence of Pseudomonas aeruginosa san ai, an environmental isolate resistant to heavy metals. in Extremophiles. 2019;23(4):399-405.
doi:10.1007/s00792-019-01092-w .
Izrael-Živković, Lidija, Beškoski, Vladimir, Rikalović, Milena G., Kazazić, Snježana, Shapiro, Nicole, Woyke, Tanja, Gojgić-Cvijović, Gordana D., Vrvić, Miroslav M., Maksimović, Nela, Karadžić, Ivanka M., "High-quality draft genome sequence of Pseudomonas aeruginosa san ai, an environmental isolate resistant to heavy metals" in Extremophiles, 23, no. 4 (2019):399-405,
https://doi.org/10.1007/s00792-019-01092-w . .
1
4
3
4

Supplementary data for the article: Izrael-Živković, L.; Beškoski, V.; Rikalović, M.; Kazazić, S.; Shapiro, N.; Woyke, T.; Gojgić-Cvijović, G.; Vrvić, M. M.; Maksimović, N.; Karadžić, I. High-Quality Draft Genome Sequence of Pseudomonas Aeruginosa San Ai, an Environmental Isolate Resistant to Heavy Metals. Extremophiles 2019, 23 (4), 399–405. https://doi.org/10.1007/s00792-019-01092-w

Beškoski, Vladimir; Rikalović, Milena G.; Kazazić, Snježana; Shapiro, Nicole; Woyke, Tanja; Gojgić-Cvijović, Gordana D.; Vrvić, Miroslav M.; Maksimović, Nela; Karadžić, Ivanka M.

(Springer Japan, 2019)

TY  - DATA
AU  - Beškoski, Vladimir
AU  - Rikalović, Milena G.
AU  - Kazazić, Snježana
AU  - Shapiro, Nicole
AU  - Woyke, Tanja
AU  - Gojgić-Cvijović, Gordana D.
AU  - Vrvić, Miroslav M.
AU  - Maksimović, Nela
AU  - Karadžić, Ivanka M.
PY  - 2019
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3706
PB  - Springer Japan
T2  - Extremophiles
T1  - Supplementary data for the article: Izrael-Živković, L.; Beškoski, V.; Rikalović, M.; Kazazić, S.; Shapiro, N.; Woyke, T.; Gojgić-Cvijović, G.; Vrvić, M. M.; Maksimović, N.; Karadžić, I. High-Quality Draft Genome Sequence of Pseudomonas Aeruginosa San Ai, an Environmental Isolate Resistant to Heavy Metals. Extremophiles 2019, 23 (4), 399–405. https://doi.org/10.1007/s00792-019-01092-w
UR  - https://hdl.handle.net/21.15107/rcub_cherry_3706
ER  - 
@misc{
author = "Beškoski, Vladimir and Rikalović, Milena G. and Kazazić, Snježana and Shapiro, Nicole and Woyke, Tanja and Gojgić-Cvijović, Gordana D. and Vrvić, Miroslav M. and Maksimović, Nela and Karadžić, Ivanka M.",
year = "2019",
publisher = "Springer Japan",
journal = "Extremophiles",
title = "Supplementary data for the article: Izrael-Živković, L.; Beškoski, V.; Rikalović, M.; Kazazić, S.; Shapiro, N.; Woyke, T.; Gojgić-Cvijović, G.; Vrvić, M. M.; Maksimović, N.; Karadžić, I. High-Quality Draft Genome Sequence of Pseudomonas Aeruginosa San Ai, an Environmental Isolate Resistant to Heavy Metals. Extremophiles 2019, 23 (4), 399–405. https://doi.org/10.1007/s00792-019-01092-w",
url = "https://hdl.handle.net/21.15107/rcub_cherry_3706"
}
Beškoski, V., Rikalović, M. G., Kazazić, S., Shapiro, N., Woyke, T., Gojgić-Cvijović, G. D., Vrvić, M. M., Maksimović, N.,& Karadžić, I. M.. (2019). Supplementary data for the article: Izrael-Živković, L.; Beškoski, V.; Rikalović, M.; Kazazić, S.; Shapiro, N.; Woyke, T.; Gojgić-Cvijović, G.; Vrvić, M. M.; Maksimović, N.; Karadžić, I. High-Quality Draft Genome Sequence of Pseudomonas Aeruginosa San Ai, an Environmental Isolate Resistant to Heavy Metals. Extremophiles 2019, 23 (4), 399–405. https://doi.org/10.1007/s00792-019-01092-w. in Extremophiles
Springer Japan..
https://hdl.handle.net/21.15107/rcub_cherry_3706
Beškoski V, Rikalović MG, Kazazić S, Shapiro N, Woyke T, Gojgić-Cvijović GD, Vrvić MM, Maksimović N, Karadžić IM. Supplementary data for the article: Izrael-Živković, L.; Beškoski, V.; Rikalović, M.; Kazazić, S.; Shapiro, N.; Woyke, T.; Gojgić-Cvijović, G.; Vrvić, M. M.; Maksimović, N.; Karadžić, I. High-Quality Draft Genome Sequence of Pseudomonas Aeruginosa San Ai, an Environmental Isolate Resistant to Heavy Metals. Extremophiles 2019, 23 (4), 399–405. https://doi.org/10.1007/s00792-019-01092-w. in Extremophiles. 2019;.
https://hdl.handle.net/21.15107/rcub_cherry_3706 .
Beškoski, Vladimir, Rikalović, Milena G., Kazazić, Snježana, Shapiro, Nicole, Woyke, Tanja, Gojgić-Cvijović, Gordana D., Vrvić, Miroslav M., Maksimović, Nela, Karadžić, Ivanka M., "Supplementary data for the article: Izrael-Živković, L.; Beškoski, V.; Rikalović, M.; Kazazić, S.; Shapiro, N.; Woyke, T.; Gojgić-Cvijović, G.; Vrvić, M. M.; Maksimović, N.; Karadžić, I. High-Quality Draft Genome Sequence of Pseudomonas Aeruginosa San Ai, an Environmental Isolate Resistant to Heavy Metals. Extremophiles 2019, 23 (4), 399–405. https://doi.org/10.1007/s00792-019-01092-w" in Extremophiles (2019),
https://hdl.handle.net/21.15107/rcub_cherry_3706 .

The influence of the low frequency magnetic field with scan regime from 10 Hz to 50 Hz on Saccharomyces cerevisiae respiration

Lončarević, Branka; Lješević, Marija; Bubanja, Itana Nuša; Beškoski, Vladimir; Gojgić-Cvijović, Gordana; Velikić, Zoran; Stanisavljev, Dragomir

(Serbian Chemical Society, Belgrade / Srpsko hemijsko društvo, Beograd, 2019)

TY  - CONF
AU  - Lončarević, Branka
AU  - Lješević, Marija
AU  - Bubanja, Itana Nuša
AU  - Beškoski, Vladimir
AU  - Gojgić-Cvijović, Gordana
AU  - Velikić, Zoran
AU  - Stanisavljev, Dragomir
PY  - 2019
UR  - https://www.shd.org.rs/index.php/proceedings-56
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/4951
AB  - The analysis of the electric, magnetic and electromagnetic fields influence on microorganisms is a very popular research topic, since these fields could potentially act as stressors and affect the microbial metabolism and survival. The aim of this work was to investigate the influence of the low frequency magnetic field (MF) with scan regime from 10 Hz to 50 Hz on S. cerevisiae respiration. The experiment was performed in five replicates and monitored using the Micro-Oxymax® respirometer. All five experiments showed lower cumulative O2 consumption in MF exposed samples, compared to the control sample and inconsistent cumulative CO2 production. However, these differences in O2 consumption and CO2 production were statistically significant. Even though additional experiments are necessary, these results strongly suggest that this is a good basis for further investigation in this field.
AB  - Ispitivanje uticaja električnog, magnetnog i elektromagnetnog polja na mikroorganizme jeveoma aktuelni predmet istrazivanja, jer ova fizička polja potencijalno deluju kao faktoristresa i tako utiču na mikrobni metabolizam, ponašanje i preživljavanje. U ovom raduispitivan je uticaj niskofrekventnog magnetnog polja (MP) sa konstantnim intervalomskeniranja od 10 do 50 Hz na respiraciju ćelija kvasca, S. cerevisiae. Eksperiment je rađen upet ponavljanja i praćen Micro-Oxymax® respirometrom. Kumulativna potrošnja kiseonikaje bila manja kod ćelija izloženih MP u svih pet ponavljanja, dok je produkcija CO2 bilanekonzistentna. Međutim, ove razlike u potrošnji O2 i produkciji CO2 su statistički značajne.Iako su dodatna ispitivanja neophodna, dobijeni rezultati ovih inicijalnih eksperimenatapredstavljaju dobru osnovu za dalja istraživanja u ovoj oblasti.
PB  - Serbian Chemical Society, Belgrade / Srpsko hemijsko društvo, Beograd
C3  - 56th Meeting of the Serbian chemical Society - Proceedings / 56. Savetovanje Srpskog hemijskog društva - Knjiga radova Niš 7-8.9. 2019.
T1  - The influence of the low frequency magnetic field with scan regime from 10 Hz to 50 Hz on Saccharomyces cerevisiae respiration
T1  - Uticaj niskofrekventnog magnetnog polja (10-50 Hz) na respiracionu aktivnost ćelija kvasca Saccharomyces cerevisiae
SP  - 24
EP  - 29
UR  - https://hdl.handle.net/21.15107/rcub_cer_3289
ER  - 
@conference{
author = "Lončarević, Branka and Lješević, Marija and Bubanja, Itana Nuša and Beškoski, Vladimir and Gojgić-Cvijović, Gordana and Velikić, Zoran and Stanisavljev, Dragomir",
year = "2019",
abstract = "The analysis of the electric, magnetic and electromagnetic fields influence on microorganisms is a very popular research topic, since these fields could potentially act as stressors and affect the microbial metabolism and survival. The aim of this work was to investigate the influence of the low frequency magnetic field (MF) with scan regime from 10 Hz to 50 Hz on S. cerevisiae respiration. The experiment was performed in five replicates and monitored using the Micro-Oxymax® respirometer. All five experiments showed lower cumulative O2 consumption in MF exposed samples, compared to the control sample and inconsistent cumulative CO2 production. However, these differences in O2 consumption and CO2 production were statistically significant. Even though additional experiments are necessary, these results strongly suggest that this is a good basis for further investigation in this field., Ispitivanje uticaja električnog, magnetnog i elektromagnetnog polja na mikroorganizme jeveoma aktuelni predmet istrazivanja, jer ova fizička polja potencijalno deluju kao faktoristresa i tako utiču na mikrobni metabolizam, ponašanje i preživljavanje. U ovom raduispitivan je uticaj niskofrekventnog magnetnog polja (MP) sa konstantnim intervalomskeniranja od 10 do 50 Hz na respiraciju ćelija kvasca, S. cerevisiae. Eksperiment je rađen upet ponavljanja i praćen Micro-Oxymax® respirometrom. Kumulativna potrošnja kiseonikaje bila manja kod ćelija izloženih MP u svih pet ponavljanja, dok je produkcija CO2 bilanekonzistentna. Međutim, ove razlike u potrošnji O2 i produkciji CO2 su statistički značajne.Iako su dodatna ispitivanja neophodna, dobijeni rezultati ovih inicijalnih eksperimenatapredstavljaju dobru osnovu za dalja istraživanja u ovoj oblasti.",
publisher = "Serbian Chemical Society, Belgrade / Srpsko hemijsko društvo, Beograd",
journal = "56th Meeting of the Serbian chemical Society - Proceedings / 56. Savetovanje Srpskog hemijskog društva - Knjiga radova Niš 7-8.9. 2019.",
title = "The influence of the low frequency magnetic field with scan regime from 10 Hz to 50 Hz on Saccharomyces cerevisiae respiration, Uticaj niskofrekventnog magnetnog polja (10-50 Hz) na respiracionu aktivnost ćelija kvasca Saccharomyces cerevisiae",
pages = "24-29",
url = "https://hdl.handle.net/21.15107/rcub_cer_3289"
}
Lončarević, B., Lješević, M., Bubanja, I. N., Beškoski, V., Gojgić-Cvijović, G., Velikić, Z.,& Stanisavljev, D.. (2019). The influence of the low frequency magnetic field with scan regime from 10 Hz to 50 Hz on Saccharomyces cerevisiae respiration. in 56th Meeting of the Serbian chemical Society - Proceedings / 56. Savetovanje Srpskog hemijskog društva - Knjiga radova Niš 7-8.9. 2019.
Serbian Chemical Society, Belgrade / Srpsko hemijsko društvo, Beograd., 24-29.
https://hdl.handle.net/21.15107/rcub_cer_3289
Lončarević B, Lješević M, Bubanja IN, Beškoski V, Gojgić-Cvijović G, Velikić Z, Stanisavljev D. The influence of the low frequency magnetic field with scan regime from 10 Hz to 50 Hz on Saccharomyces cerevisiae respiration. in 56th Meeting of the Serbian chemical Society - Proceedings / 56. Savetovanje Srpskog hemijskog društva - Knjiga radova Niš 7-8.9. 2019.. 2019;:24-29.
https://hdl.handle.net/21.15107/rcub_cer_3289 .
Lončarević, Branka, Lješević, Marija, Bubanja, Itana Nuša, Beškoski, Vladimir, Gojgić-Cvijović, Gordana, Velikić, Zoran, Stanisavljev, Dragomir, "The influence of the low frequency magnetic field with scan regime from 10 Hz to 50 Hz on Saccharomyces cerevisiae respiration" in 56th Meeting of the Serbian chemical Society - Proceedings / 56. Savetovanje Srpskog hemijskog društva - Knjiga radova Niš 7-8.9. 2019. (2019):24-29,
https://hdl.handle.net/21.15107/rcub_cer_3289 .

Influence of the low frequency magnetic field with scan regime from 10 Hz to 50 Hz on Saccharomyces cerevisiae respiration

Lončarević, Branka; Lješević, Marija; Bubanja, Itana Nuša; Beškoski, Vladimir; Gojgić-Cvijović, Gordana; Velikić, Zoran; Stanisavljev, Dragomir

(Serbian Chemical Society, Belgrade / Srpsko hemijsko društvo, Beograd, 2019)

TY  - CONF
AU  - Lončarević, Branka
AU  - Lješević, Marija
AU  - Bubanja, Itana Nuša
AU  - Beškoski, Vladimir
AU  - Gojgić-Cvijović, Gordana
AU  - Velikić, Zoran
AU  - Stanisavljev, Dragomir
PY  - 2019
UR  - https://www.shd.org.rs/index.php/abstracts-56
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/4952
AB  - The analysis of the electric, magnetic and electromagnetic fields influence on microorganisms is a very popular research topic, since these fields could potentially act as stressors and affect the microbial metabolism and survival. The aim of this work was to investigate the influence of the low frequency magnetic field (MF) with scan regime from 10 Hz to 50 Hz on S. cerevisiae respiration. The experiment was performed in five replicates and monitored using the Micro-Oxymax® respirometer. All five experiments showed lower cumulative O2 consumption in MF exposed samples, compared to the control sample and inconsistent cumulative CO2 production. However, these differences in O2 consumption and CO2 production were statistically significant. Even though additional experiments are necessary, these results strongly suggest that this is a good basis for further investigation in this field.
AB  - Ispitivanje uticaja električnog, magnetnog i elektromagnetnog polja na mikroorganizme je veoma aktuelni predmet istrazivanja, jer ova fizička polja potencijalno deluju kao faktori stresa i tako utiču na mikrobni metabolizam i preživljavanje. U ovom radu ispitivan je uticaj niskofrekventnog magnetnog polja (MP) sa konstantnim intervalom skeniranja od 10 do 50 Hz na respiraciju ćelija kvasca, S. cerevisiae. Eksperiment je rađen u pet ponavljanja i praćen Micro-Oxymax® respirometrom. Kumulativna potrošnja kiseonika je bila manja kod ćelija izloženih MP u svih pet ponavljanja, dok je produkcija CO2 bila nekonzistentna. Međutim, ove razlike u potrošnji O2 i produkciji CO2 su statistički značajne. Iako su dodatna ispitivanja neophodna, dobijeni rezultati ovih inicijalnih eksperimenata predstavljaju dobru osnovu za dalja istraživanja u ovoj oblasti.
PB  - Serbian Chemical Society, Belgrade / Srpsko hemijsko društvo, Beograd
C3  - 56th Meeting of the Serbian chemical Society - Book of Abstracts / 56. Savetovanje Srpskog hemijskog društva - Kratki izvodi radova Niš 7-8.9. 2019.
T1  - Influence of the low frequency magnetic field with scan regime from 10 Hz to 50 Hz on Saccharomyces cerevisiae respiration
T1  - Uticaj niskofrekventnog magnetnog polja (10-50 Hz) na respiracionu aktivnost ćelija kvasca Saccharomyces cerevisiae
SP  - 8
UR  - https://hdl.handle.net/21.15107/rcub_cer_3288
ER  - 
@conference{
author = "Lončarević, Branka and Lješević, Marija and Bubanja, Itana Nuša and Beškoski, Vladimir and Gojgić-Cvijović, Gordana and Velikić, Zoran and Stanisavljev, Dragomir",
year = "2019",
abstract = "The analysis of the electric, magnetic and electromagnetic fields influence on microorganisms is a very popular research topic, since these fields could potentially act as stressors and affect the microbial metabolism and survival. The aim of this work was to investigate the influence of the low frequency magnetic field (MF) with scan regime from 10 Hz to 50 Hz on S. cerevisiae respiration. The experiment was performed in five replicates and monitored using the Micro-Oxymax® respirometer. All five experiments showed lower cumulative O2 consumption in MF exposed samples, compared to the control sample and inconsistent cumulative CO2 production. However, these differences in O2 consumption and CO2 production were statistically significant. Even though additional experiments are necessary, these results strongly suggest that this is a good basis for further investigation in this field., Ispitivanje uticaja električnog, magnetnog i elektromagnetnog polja na mikroorganizme je veoma aktuelni predmet istrazivanja, jer ova fizička polja potencijalno deluju kao faktori stresa i tako utiču na mikrobni metabolizam i preživljavanje. U ovom radu ispitivan je uticaj niskofrekventnog magnetnog polja (MP) sa konstantnim intervalom skeniranja od 10 do 50 Hz na respiraciju ćelija kvasca, S. cerevisiae. Eksperiment je rađen u pet ponavljanja i praćen Micro-Oxymax® respirometrom. Kumulativna potrošnja kiseonika je bila manja kod ćelija izloženih MP u svih pet ponavljanja, dok je produkcija CO2 bila nekonzistentna. Međutim, ove razlike u potrošnji O2 i produkciji CO2 su statistički značajne. Iako su dodatna ispitivanja neophodna, dobijeni rezultati ovih inicijalnih eksperimenata predstavljaju dobru osnovu za dalja istraživanja u ovoj oblasti.",
publisher = "Serbian Chemical Society, Belgrade / Srpsko hemijsko društvo, Beograd",
journal = "56th Meeting of the Serbian chemical Society - Book of Abstracts / 56. Savetovanje Srpskog hemijskog društva - Kratki izvodi radova Niš 7-8.9. 2019.",
title = "Influence of the low frequency magnetic field with scan regime from 10 Hz to 50 Hz on Saccharomyces cerevisiae respiration, Uticaj niskofrekventnog magnetnog polja (10-50 Hz) na respiracionu aktivnost ćelija kvasca Saccharomyces cerevisiae",
pages = "8",
url = "https://hdl.handle.net/21.15107/rcub_cer_3288"
}
Lončarević, B., Lješević, M., Bubanja, I. N., Beškoski, V., Gojgić-Cvijović, G., Velikić, Z.,& Stanisavljev, D.. (2019). Influence of the low frequency magnetic field with scan regime from 10 Hz to 50 Hz on Saccharomyces cerevisiae respiration. in 56th Meeting of the Serbian chemical Society - Book of Abstracts / 56. Savetovanje Srpskog hemijskog društva - Kratki izvodi radova Niš 7-8.9. 2019.
Serbian Chemical Society, Belgrade / Srpsko hemijsko društvo, Beograd., 8.
https://hdl.handle.net/21.15107/rcub_cer_3288
Lončarević B, Lješević M, Bubanja IN, Beškoski V, Gojgić-Cvijović G, Velikić Z, Stanisavljev D. Influence of the low frequency magnetic field with scan regime from 10 Hz to 50 Hz on Saccharomyces cerevisiae respiration. in 56th Meeting of the Serbian chemical Society - Book of Abstracts / 56. Savetovanje Srpskog hemijskog društva - Kratki izvodi radova Niš 7-8.9. 2019.. 2019;:8.
https://hdl.handle.net/21.15107/rcub_cer_3288 .
Lončarević, Branka, Lješević, Marija, Bubanja, Itana Nuša, Beškoski, Vladimir, Gojgić-Cvijović, Gordana, Velikić, Zoran, Stanisavljev, Dragomir, "Influence of the low frequency magnetic field with scan regime from 10 Hz to 50 Hz on Saccharomyces cerevisiae respiration" in 56th Meeting of the Serbian chemical Society - Book of Abstracts / 56. Savetovanje Srpskog hemijskog društva - Kratki izvodi radova Niš 7-8.9. 2019. (2019):8,
https://hdl.handle.net/21.15107/rcub_cer_3288 .

Microbially-induced deterioration of concrete from hydroelectric power plants – an initial study

Lješević, Marija; Gojgić-Cvijović, Gordana; Stanimirović, Bojana; Beškoski, Vladimir; Brčeski, Ilija

(Balkan Environmental Association, 2019)

TY  - JOUR
AU  - Lješević, Marija
AU  - Gojgić-Cvijović, Gordana
AU  - Stanimirović, Bojana
AU  - Beškoski, Vladimir
AU  - Brčeski, Ilija
PY  - 2019
UR  - http://www.jepe-journal.info/journal-content/vol-20-no-3
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/4957
AB  - Microorganisms can grow on the surface of concrete and inside its pores and microcracks, producing different metabolites. Microbial metabolites, particularly acids, degrade concrete components and enhance its deterioration by abiotic factors. Deterioration of concrete is a serious problem worldwide since it affects construction functionality and requires high maintenance costs.This paper presents microbiological and chemical analyses of 12 concrete samples originating from6 hydroelectric power plants in Serbia, investigated in order to evaluate the key chemical factorsaffecting microbial growth on concrete. In most of the concrete samples, microorganisms from allexamined groups were present in high numbers (bacteria 8.64 × 103–3.4 × 108, fungi 9 × 102–2.08× 106, sulphur-oxidising bacteria 16.8–2.5×104 CFU/g). The high number and the presence of variousphysiological groups of microorganisms indicate the high intensity of deterioration caused bybiological sources. Values of pH of the concrete samples were in the range 8.46–11.23, Ca content5.43–19.93%, Fe 151–61100 ppm, sulphate 37.4–623.7 ppm and chloride 96.3–914.1 ppm. Correlation analysis between microbiological and chemical factors indicated a statistically significant strong negative correlation between sulphur-oxidising bacteria and pH (–0.759, p < 0.01).
PB  - Balkan Environmental Association
T2  - Journal of Environmental Protection and Ecology
T1  - Microbially-induced deterioration of concrete from hydroelectric power plants – an initial study
VL  - 20
IS  - 3
SP  - 1180
EP  - 1188
UR  - https://hdl.handle.net/21.15107/rcub_cer_3947
ER  - 
@article{
author = "Lješević, Marija and Gojgić-Cvijović, Gordana and Stanimirović, Bojana and Beškoski, Vladimir and Brčeski, Ilija",
year = "2019",
abstract = "Microorganisms can grow on the surface of concrete and inside its pores and microcracks, producing different metabolites. Microbial metabolites, particularly acids, degrade concrete components and enhance its deterioration by abiotic factors. Deterioration of concrete is a serious problem worldwide since it affects construction functionality and requires high maintenance costs.This paper presents microbiological and chemical analyses of 12 concrete samples originating from6 hydroelectric power plants in Serbia, investigated in order to evaluate the key chemical factorsaffecting microbial growth on concrete. In most of the concrete samples, microorganisms from allexamined groups were present in high numbers (bacteria 8.64 × 103–3.4 × 108, fungi 9 × 102–2.08× 106, sulphur-oxidising bacteria 16.8–2.5×104 CFU/g). The high number and the presence of variousphysiological groups of microorganisms indicate the high intensity of deterioration caused bybiological sources. Values of pH of the concrete samples were in the range 8.46–11.23, Ca content5.43–19.93%, Fe 151–61100 ppm, sulphate 37.4–623.7 ppm and chloride 96.3–914.1 ppm. Correlation analysis between microbiological and chemical factors indicated a statistically significant strong negative correlation between sulphur-oxidising bacteria and pH (–0.759, p < 0.01).",
publisher = "Balkan Environmental Association",
journal = "Journal of Environmental Protection and Ecology",
title = "Microbially-induced deterioration of concrete from hydroelectric power plants – an initial study",
volume = "20",
number = "3",
pages = "1180-1188",
url = "https://hdl.handle.net/21.15107/rcub_cer_3947"
}
Lješević, M., Gojgić-Cvijović, G., Stanimirović, B., Beškoski, V.,& Brčeski, I.. (2019). Microbially-induced deterioration of concrete from hydroelectric power plants – an initial study. in Journal of Environmental Protection and Ecology
Balkan Environmental Association., 20(3), 1180-1188.
https://hdl.handle.net/21.15107/rcub_cer_3947
Lješević M, Gojgić-Cvijović G, Stanimirović B, Beškoski V, Brčeski I. Microbially-induced deterioration of concrete from hydroelectric power plants – an initial study. in Journal of Environmental Protection and Ecology. 2019;20(3):1180-1188.
https://hdl.handle.net/21.15107/rcub_cer_3947 .
Lješević, Marija, Gojgić-Cvijović, Gordana, Stanimirović, Bojana, Beškoski, Vladimir, Brčeski, Ilija, "Microbially-induced deterioration of concrete from hydroelectric power plants – an initial study" in Journal of Environmental Protection and Ecology, 20, no. 3 (2019):1180-1188,
https://hdl.handle.net/21.15107/rcub_cer_3947 .

Biodegradation of the aromatic fraction from petroleum diesel fuel by Oerskovia sp. followed by comprehensive GC×GC-TOF MS

Lješević, Marija; Gojgić-Cvijović, Gordana D.; Ieda, T.; Hashimoto, S.; Nakano, Takeshi; Bulatović, S.; Ilić, Mila V.; Beškoski, Vladimir

(2019)

TY  - JOUR
AU  - Lješević, Marija
AU  - Gojgić-Cvijović, Gordana D.
AU  - Ieda, T.
AU  - Hashimoto, S.
AU  - Nakano, Takeshi
AU  - Bulatović, S.
AU  - Ilić, Mila V.
AU  - Beškoski, Vladimir
PY  - 2019
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/351
AB  - Polycyclic aromatic hydrocarbons (PAHs) from petroleum and fossil fuels are one of the most dominant pollutants in the environment. Since aromatic fraction from petroleum diesel fuel is mainly composed of PAHs, it is important to discover new microorganisms that can biodegrade these compounds. This article describes the biodegradation of the aromatic fraction separated from petroleum diesel fuel using the strain Oerskovia sp. CHP-ZH25 isolated from petroleum oil-contaminated soil. The biodegradation was monitored by gravimetry and GC × GC-TOF MS. An innovative method was applied to visualize degraded compounds in the data provided by a GC × GC-TOF MS. It was shown that Oerskovia sp. CHP-ZH25 degraded 77.4% based on gravimetric analysis within 30 days. Average rate of degradation was 14.4 mg/L/day, 10.5 mg/l/day and 4.0 mg/l/day from 0 to 10 day, 10–20 and 20–30 day, respectively. The order of PAH degradation based on decrease in peak volume after 30 days of incubation was as follows: dibenzothiophene derivatives  gt  benzo[b]thiophene derivatives  gt  naphthalene derivatives  gt  acenaphthene derivatives  gt  acenaphthylene/biphenyl derivatives  gt  fluorene derivatives  gt  phenanthrene/anthracene derivatives. Here we demonstrated that Oerskovia sp. CHP-ZH25 could potentially be a suitable candidate for use in bioremediation of environments polluted with different PAHs. © 2018 Elsevier B.V.
T2  - Journal of Hazardous Materials
T1  - Biodegradation of the aromatic fraction from petroleum diesel fuel by Oerskovia sp. followed by comprehensive GC×GC-TOF MS
VL  - 363
SP  - 227
EP  - 232
DO  - 10.1016/j.jhazmat.2018.10.005
UR  - Kon_1322
ER  - 
@article{
author = "Lješević, Marija and Gojgić-Cvijović, Gordana D. and Ieda, T. and Hashimoto, S. and Nakano, Takeshi and Bulatović, S. and Ilić, Mila V. and Beškoski, Vladimir",
year = "2019",
abstract = "Polycyclic aromatic hydrocarbons (PAHs) from petroleum and fossil fuels are one of the most dominant pollutants in the environment. Since aromatic fraction from petroleum diesel fuel is mainly composed of PAHs, it is important to discover new microorganisms that can biodegrade these compounds. This article describes the biodegradation of the aromatic fraction separated from petroleum diesel fuel using the strain Oerskovia sp. CHP-ZH25 isolated from petroleum oil-contaminated soil. The biodegradation was monitored by gravimetry and GC × GC-TOF MS. An innovative method was applied to visualize degraded compounds in the data provided by a GC × GC-TOF MS. It was shown that Oerskovia sp. CHP-ZH25 degraded 77.4% based on gravimetric analysis within 30 days. Average rate of degradation was 14.4 mg/L/day, 10.5 mg/l/day and 4.0 mg/l/day from 0 to 10 day, 10–20 and 20–30 day, respectively. The order of PAH degradation based on decrease in peak volume after 30 days of incubation was as follows: dibenzothiophene derivatives  gt  benzo[b]thiophene derivatives  gt  naphthalene derivatives  gt  acenaphthene derivatives  gt  acenaphthylene/biphenyl derivatives  gt  fluorene derivatives  gt  phenanthrene/anthracene derivatives. Here we demonstrated that Oerskovia sp. CHP-ZH25 could potentially be a suitable candidate for use in bioremediation of environments polluted with different PAHs. © 2018 Elsevier B.V.",
journal = "Journal of Hazardous Materials",
title = "Biodegradation of the aromatic fraction from petroleum diesel fuel by Oerskovia sp. followed by comprehensive GC×GC-TOF MS",
volume = "363",
pages = "227-232",
doi = "10.1016/j.jhazmat.2018.10.005",
url = "Kon_1322"
}
Lješević, M., Gojgić-Cvijović, G. D., Ieda, T., Hashimoto, S., Nakano, T., Bulatović, S., Ilić, M. V.,& Beškoski, V.. (2019). Biodegradation of the aromatic fraction from petroleum diesel fuel by Oerskovia sp. followed by comprehensive GC×GC-TOF MS. in Journal of Hazardous Materials, 363, 227-232.
https://doi.org/10.1016/j.jhazmat.2018.10.005
Kon_1322
Lješević M, Gojgić-Cvijović GD, Ieda T, Hashimoto S, Nakano T, Bulatović S, Ilić MV, Beškoski V. Biodegradation of the aromatic fraction from petroleum diesel fuel by Oerskovia sp. followed by comprehensive GC×GC-TOF MS. in Journal of Hazardous Materials. 2019;363:227-232.
doi:10.1016/j.jhazmat.2018.10.005
Kon_1322 .
Lješević, Marija, Gojgić-Cvijović, Gordana D., Ieda, T., Hashimoto, S., Nakano, Takeshi, Bulatović, S., Ilić, Mila V., Beškoski, Vladimir, "Biodegradation of the aromatic fraction from petroleum diesel fuel by Oerskovia sp. followed by comprehensive GC×GC-TOF MS" in Journal of Hazardous Materials, 363 (2019):227-232,
https://doi.org/10.1016/j.jhazmat.2018.10.005 .,
Kon_1322 .
10
9
9

Supplementary material for the article: Izrael-Živković, L.; Rikalović, M.; Gojgić-Cvijović, G.; Kazazić, S.; Vrvić, M.; Brčeski, I.; Beškoski, V.; Lončarević, B.; Gopčević, K.; Karadžić, I. Cadmium Specific Proteomic Responses of a Highly Resistant: Pseudomonas Aeruginosa San Ai. RSC Advances 2018, 8 (19), 10549–10560. https://doi.org/10.1039/c8ra00371h

Izrael-Živković, Lidija; Rikalović, Milena G.; Gojgić-Cvijović, Gordana D.; Kazazić, Saša; Vrvić, Miroslav M.; Brčeski, Ilija; Beškoski, Vladimir; Lončarević, Branka D.; Gopčević, Kristina; Karadžić, Ivanka M.

(Royal Soc Chemistry, Cambridge, 2018)

TY  - DATA
AU  - Izrael-Živković, Lidija
AU  - Rikalović, Milena G.
AU  - Gojgić-Cvijović, Gordana D.
AU  - Kazazić, Saša
AU  - Vrvić, Miroslav M.
AU  - Brčeski, Ilija
AU  - Beškoski, Vladimir
AU  - Lončarević, Branka D.
AU  - Gopčević, Kristina
AU  - Karadžić, Ivanka M.
PY  - 2018
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3179
PB  - Royal Soc Chemistry, Cambridge
T2  - RSC Advances
T1  - Supplementary material for the article: Izrael-Živković, L.; Rikalović, M.; Gojgić-Cvijović, G.; Kazazić, S.; Vrvić, M.; Brčeski, I.;  Beškoski, V.; Lončarević, B.; Gopčević, K.; Karadžić, I. Cadmium Specific Proteomic  Responses of a Highly Resistant: Pseudomonas Aeruginosa San Ai. RSC Advances 2018, 8  (19), 10549–10560. https://doi.org/10.1039/c8ra00371h
UR  - https://hdl.handle.net/21.15107/rcub_cherry_3179
ER  - 
@misc{
author = "Izrael-Živković, Lidija and Rikalović, Milena G. and Gojgić-Cvijović, Gordana D. and Kazazić, Saša and Vrvić, Miroslav M. and Brčeski, Ilija and Beškoski, Vladimir and Lončarević, Branka D. and Gopčević, Kristina and Karadžić, Ivanka M.",
year = "2018",
publisher = "Royal Soc Chemistry, Cambridge",
journal = "RSC Advances",
title = "Supplementary material for the article: Izrael-Živković, L.; Rikalović, M.; Gojgić-Cvijović, G.; Kazazić, S.; Vrvić, M.; Brčeski, I.;  Beškoski, V.; Lončarević, B.; Gopčević, K.; Karadžić, I. Cadmium Specific Proteomic  Responses of a Highly Resistant: Pseudomonas Aeruginosa San Ai. RSC Advances 2018, 8  (19), 10549–10560. https://doi.org/10.1039/c8ra00371h",
url = "https://hdl.handle.net/21.15107/rcub_cherry_3179"
}
Izrael-Živković, L., Rikalović, M. G., Gojgić-Cvijović, G. D., Kazazić, S., Vrvić, M. M., Brčeski, I., Beškoski, V., Lončarević, B. D., Gopčević, K.,& Karadžić, I. M.. (2018). Supplementary material for the article: Izrael-Živković, L.; Rikalović, M.; Gojgić-Cvijović, G.; Kazazić, S.; Vrvić, M.; Brčeski, I.;  Beškoski, V.; Lončarević, B.; Gopčević, K.; Karadžić, I. Cadmium Specific Proteomic  Responses of a Highly Resistant: Pseudomonas Aeruginosa San Ai. RSC Advances 2018, 8  (19), 10549–10560. https://doi.org/10.1039/c8ra00371h. in RSC Advances
Royal Soc Chemistry, Cambridge..
https://hdl.handle.net/21.15107/rcub_cherry_3179
Izrael-Živković L, Rikalović MG, Gojgić-Cvijović GD, Kazazić S, Vrvić MM, Brčeski I, Beškoski V, Lončarević BD, Gopčević K, Karadžić IM. Supplementary material for the article: Izrael-Živković, L.; Rikalović, M.; Gojgić-Cvijović, G.; Kazazić, S.; Vrvić, M.; Brčeski, I.;  Beškoski, V.; Lončarević, B.; Gopčević, K.; Karadžić, I. Cadmium Specific Proteomic  Responses of a Highly Resistant: Pseudomonas Aeruginosa San Ai. RSC Advances 2018, 8  (19), 10549–10560. https://doi.org/10.1039/c8ra00371h. in RSC Advances. 2018;.
https://hdl.handle.net/21.15107/rcub_cherry_3179 .
Izrael-Živković, Lidija, Rikalović, Milena G., Gojgić-Cvijović, Gordana D., Kazazić, Saša, Vrvić, Miroslav M., Brčeski, Ilija, Beškoski, Vladimir, Lončarević, Branka D., Gopčević, Kristina, Karadžić, Ivanka M., "Supplementary material for the article: Izrael-Živković, L.; Rikalović, M.; Gojgić-Cvijović, G.; Kazazić, S.; Vrvić, M.; Brčeski, I.;  Beškoski, V.; Lončarević, B.; Gopčević, K.; Karadžić, I. Cadmium Specific Proteomic  Responses of a Highly Resistant: Pseudomonas Aeruginosa San Ai. RSC Advances 2018, 8  (19), 10549–10560. https://doi.org/10.1039/c8ra00371h" in RSC Advances (2018),
https://hdl.handle.net/21.15107/rcub_cherry_3179 .