Balatti, Pedro A.

Link to this page

Authority KeyName Variants
7d2a6889-c8ba-441e-8ec3-6d905d50fa0d
  • Balatti, Pedro A. (2)
Projects

Author's Bibliography

Fungal transformation and reduction of phytotoxicity of grape pomace waste

Troncozo, María I.; Lješević, Marija; Beškoski, Vladimir; Anđelković, Boban D.; Balatti, Pedro A.; Saparrat, Mario C.N.

(Elsevier, 2019)

TY  - JOUR
AU  - Troncozo, María I.
AU  - Lješević, Marija
AU  - Beškoski, Vladimir
AU  - Anđelković, Boban D.
AU  - Balatti, Pedro A.
AU  - Saparrat, Mario C.N.
PY  - 2019
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/3302
AB  - Grape pomace (GP) from Vitis labrusca, the main byproduct from “American table wine” production, is recalcitrant to degradation, and its accumulation is a serious problem with negative environmental impacts. In this work, transformation of grape pomace using a steam pretreatment followed by incubation of GP during a 90-day period with six different fungi were evaluated. Several fungi tested reduced the phytotoxicity of water-soluble fraction (WSFd) from steam-pretreated GP after 90 days’ incubation to lettuce and tomato seeds. U. botrytis caused the largest effective phytotoxicity reduction of WSFd (used in the concentration range of 10–1.25% p/v) and was the only fungus causing the removal of monoaromatic compounds. Therefore, this procedure with U. botrytis effectively reduces the availability of phytotoxic monoaromatic compounds in GP, which opens a way for the development of guidelines for the management of these wastes and their potential use as organic amendments in agricultural soil.
PB  - Elsevier
T2  - Chemosphere
T1  - Fungal transformation and reduction of phytotoxicity of grape pomace waste
VL  - 237
DO  - 10.1016/j.chemosphere.2019.124458
ER  - 
@article{
author = "Troncozo, María I. and Lješević, Marija and Beškoski, Vladimir and Anđelković, Boban D. and Balatti, Pedro A. and Saparrat, Mario C.N.",
year = "2019",
url = "http://cherry.chem.bg.ac.rs/handle/123456789/3302",
abstract = "Grape pomace (GP) from Vitis labrusca, the main byproduct from “American table wine” production, is recalcitrant to degradation, and its accumulation is a serious problem with negative environmental impacts. In this work, transformation of grape pomace using a steam pretreatment followed by incubation of GP during a 90-day period with six different fungi were evaluated. Several fungi tested reduced the phytotoxicity of water-soluble fraction (WSFd) from steam-pretreated GP after 90 days’ incubation to lettuce and tomato seeds. U. botrytis caused the largest effective phytotoxicity reduction of WSFd (used in the concentration range of 10–1.25% p/v) and was the only fungus causing the removal of monoaromatic compounds. Therefore, this procedure with U. botrytis effectively reduces the availability of phytotoxic monoaromatic compounds in GP, which opens a way for the development of guidelines for the management of these wastes and their potential use as organic amendments in agricultural soil.",
publisher = "Elsevier",
journal = "Chemosphere",
title = "Fungal transformation and reduction of phytotoxicity of grape pomace waste",
volume = "237",
doi = "10.1016/j.chemosphere.2019.124458"
}
Troncozo, M. I., Lješević, M., Beškoski, V., Anđelković, B. D., Balatti, P. A.,& Saparrat, M. C.N. (2019). Fungal transformation and reduction of phytotoxicity of grape pomace waste.
Chemosphere
Elsevier., 237.
https://doi.org/10.1016/j.chemosphere.2019.124458
Troncozo MI, Lješević M, Beškoski V, Anđelković BD, Balatti PA, Saparrat MC. Fungal transformation and reduction of phytotoxicity of grape pomace waste. Chemosphere. 2019;237
Troncozo María I., Lješević Marija, Beškoski Vladimir, Anđelković Boban D., Balatti Pedro A., Saparrat Mario C.N., "Fungal transformation and reduction of phytotoxicity of grape pomace waste" Chemosphere, 237 (2019),
https://doi.org/10.1016/j.chemosphere.2019.124458 .
3
1
3

Fungal transformation and reduction of phytotoxicity of grape pomace waste

Troncozo, María I.; Lješević, Marija; Beškoski, Vladimir; Anđelković, Boban D.; Balatti, Pedro A.; Saparrat, Mario C.N.

(Elsevier, 2019)

TY  - JOUR
AU  - Troncozo, María I.
AU  - Lješević, Marija
AU  - Beškoski, Vladimir
AU  - Anđelković, Boban D.
AU  - Balatti, Pedro A.
AU  - Saparrat, Mario C.N.
PY  - 2019
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/3303
AB  - Grape pomace (GP) from Vitis labrusca, the main byproduct from “American table wine” production, is recalcitrant to degradation, and its accumulation is a serious problem with negative environmental impacts. In this work, transformation of grape pomace using a steam pretreatment followed by incubation of GP during a 90-day period with six different fungi were evaluated. Several fungi tested reduced the phytotoxicity of water-soluble fraction (WSFd) from steam-pretreated GP after 90 days’ incubation to lettuce and tomato seeds. U. botrytis caused the largest effective phytotoxicity reduction of WSFd (used in the concentration range of 10–1.25% p/v) and was the only fungus causing the removal of monoaromatic compounds. Therefore, this procedure with U. botrytis effectively reduces the availability of phytotoxic monoaromatic compounds in GP, which opens a way for the development of guidelines for the management of these wastes and their potential use as organic amendments in agricultural soil.
PB  - Elsevier
T2  - Chemosphere
T1  - Fungal transformation and reduction of phytotoxicity of grape pomace waste
VL  - 237
DO  - 10.1016/j.chemosphere.2019.124458
ER  - 
@article{
author = "Troncozo, María I. and Lješević, Marija and Beškoski, Vladimir and Anđelković, Boban D. and Balatti, Pedro A. and Saparrat, Mario C.N.",
year = "2019",
url = "http://cherry.chem.bg.ac.rs/handle/123456789/3303",
abstract = "Grape pomace (GP) from Vitis labrusca, the main byproduct from “American table wine” production, is recalcitrant to degradation, and its accumulation is a serious problem with negative environmental impacts. In this work, transformation of grape pomace using a steam pretreatment followed by incubation of GP during a 90-day period with six different fungi were evaluated. Several fungi tested reduced the phytotoxicity of water-soluble fraction (WSFd) from steam-pretreated GP after 90 days’ incubation to lettuce and tomato seeds. U. botrytis caused the largest effective phytotoxicity reduction of WSFd (used in the concentration range of 10–1.25% p/v) and was the only fungus causing the removal of monoaromatic compounds. Therefore, this procedure with U. botrytis effectively reduces the availability of phytotoxic monoaromatic compounds in GP, which opens a way for the development of guidelines for the management of these wastes and their potential use as organic amendments in agricultural soil.",
publisher = "Elsevier",
journal = "Chemosphere",
title = "Fungal transformation and reduction of phytotoxicity of grape pomace waste",
volume = "237",
doi = "10.1016/j.chemosphere.2019.124458"
}
Troncozo, M. I., Lješević, M., Beškoski, V., Anđelković, B. D., Balatti, P. A.,& Saparrat, M. C.N. (2019). Fungal transformation and reduction of phytotoxicity of grape pomace waste.
Chemosphere
Elsevier., 237.
https://doi.org/10.1016/j.chemosphere.2019.124458
Troncozo MI, Lješević M, Beškoski V, Anđelković BD, Balatti PA, Saparrat MC. Fungal transformation and reduction of phytotoxicity of grape pomace waste. Chemosphere. 2019;237
Troncozo María I., Lješević Marija, Beškoski Vladimir, Anđelković Boban D., Balatti Pedro A., Saparrat Mario C.N., "Fungal transformation and reduction of phytotoxicity of grape pomace waste" Chemosphere, 237 (2019),
https://doi.org/10.1016/j.chemosphere.2019.124458 .
3
1
3