Menghiu, Gheorghita

Link to this page

Authority KeyName Variants
orcid::0000-0002-6523-5738
  • Menghiu, Gheorghita (3)

Author's Bibliography

Non-conventional expression of recombinant chitinase A originating from Bacillus licheniformis DSM8785, in Saccharomyces cerevisiae INVSc1: Scientific paper

Menghiu, Gheorghita; Prodanović, Radivoje; Blažić, Marija; Mincea, Manuela; Moraru, Cristina; Ostafe, Vasile

(2022)

TY  - JOUR
AU  - Menghiu, Gheorghita
AU  - Prodanović, Radivoje
AU  - Blažić, Marija
AU  - Mincea, Manuela
AU  - Moraru, Cristina
AU  - Ostafe, Vasile
PY  - 2022
UR  - https://www.shd-pub.org.rs/index.php/JSCS/article/view/11169
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5981
AB  - Chitinases are glycosyl hydrolases, that cleave the β-1,4 linkage between N-acetyl glucosamines present in chitin chains. Chitin is the second most abundant polysaccharide on Earth after cellulose, and it is produced in the exoskeleton of crustaceans and insects, and in some parts of the cell walls of fungi. Enzymatic development and the extraction of superior derivatives from chitin wastes – such as chitooligosaccharides with vast importance in the medi­cal and biofuels industry – lead to the necessity of creating chitinases using dif­ferent strains of organisms. In this paper, the chiA gene from the Bacillus lich­eniformis DSM8785 encoding chitinase A (ChiA) with C-terminal hexahis­tid­ine tag was cloned and expressed in the extracellular expression system pYES2 from Saccharomyces cerevisiae INVSc1 as a hyperglycosylated enzyme. The production of recombinant ChiA was successfully confirmed by dot blotting, using anti-His antibodies. The optimal time of expression was identified to be 24 h when galactose was added only at the beginning of fermentation, the chit­in­ase activity starting to decrease after this threshold. Nevertheless, in another experiment, when galactose was added every 24 h for 72 h, the expression con­tinued for the entire period. The purified enzyme was detected, using sodium dodecyl sulphate–polyacrylamide gel electrophoresis (SDS-PAGE), as a het­ero­geneous diffuse band between 80 and 180 kDa. The molecular mass of the same ChiA enzyme expressed in Pichia pastoris KM71H and Escherichia coli BL21 (DE3) was compared using SDS-PAGE with ChiA expressed in S. cere­visiae INVSc1. The activity of ChiA was determined using the fluorogenic substrate, 4-methylumbelliferyl β-d-N,N,N-triacetylchitotrioside (4MUTC). Using a bioinformatics simulation, the number of the glycolsylation sites of the ChiA gene sequence and the proximity of these sites to the alpha factor sequ­ence were hypothesized to be a possible reason for which ChiA enzyme was internally expressed.
T2  - Journal of the Serbian Chemical Society
T1  - Non-conventional expression of recombinant chitinase A originating from Bacillus licheniformis DSM8785, in Saccharomyces cerevisiae INVSc1: Scientific paper
VL  - 87
IS  - 6
SP  - 677
EP  - 692
DO  - 10.2298/JSC210913017M
ER  - 
@article{
author = "Menghiu, Gheorghita and Prodanović, Radivoje and Blažić, Marija and Mincea, Manuela and Moraru, Cristina and Ostafe, Vasile",
year = "2022",
abstract = "Chitinases are glycosyl hydrolases, that cleave the β-1,4 linkage between N-acetyl glucosamines present in chitin chains. Chitin is the second most abundant polysaccharide on Earth after cellulose, and it is produced in the exoskeleton of crustaceans and insects, and in some parts of the cell walls of fungi. Enzymatic development and the extraction of superior derivatives from chitin wastes – such as chitooligosaccharides with vast importance in the medi­cal and biofuels industry – lead to the necessity of creating chitinases using dif­ferent strains of organisms. In this paper, the chiA gene from the Bacillus lich­eniformis DSM8785 encoding chitinase A (ChiA) with C-terminal hexahis­tid­ine tag was cloned and expressed in the extracellular expression system pYES2 from Saccharomyces cerevisiae INVSc1 as a hyperglycosylated enzyme. The production of recombinant ChiA was successfully confirmed by dot blotting, using anti-His antibodies. The optimal time of expression was identified to be 24 h when galactose was added only at the beginning of fermentation, the chit­in­ase activity starting to decrease after this threshold. Nevertheless, in another experiment, when galactose was added every 24 h for 72 h, the expression con­tinued for the entire period. The purified enzyme was detected, using sodium dodecyl sulphate–polyacrylamide gel electrophoresis (SDS-PAGE), as a het­ero­geneous diffuse band between 80 and 180 kDa. The molecular mass of the same ChiA enzyme expressed in Pichia pastoris KM71H and Escherichia coli BL21 (DE3) was compared using SDS-PAGE with ChiA expressed in S. cere­visiae INVSc1. The activity of ChiA was determined using the fluorogenic substrate, 4-methylumbelliferyl β-d-N,N,N-triacetylchitotrioside (4MUTC). Using a bioinformatics simulation, the number of the glycolsylation sites of the ChiA gene sequence and the proximity of these sites to the alpha factor sequ­ence were hypothesized to be a possible reason for which ChiA enzyme was internally expressed.",
journal = "Journal of the Serbian Chemical Society",
title = "Non-conventional expression of recombinant chitinase A originating from Bacillus licheniformis DSM8785, in Saccharomyces cerevisiae INVSc1: Scientific paper",
volume = "87",
number = "6",
pages = "677-692",
doi = "10.2298/JSC210913017M"
}
Menghiu, G., Prodanović, R., Blažić, M., Mincea, M., Moraru, C.,& Ostafe, V.. (2022). Non-conventional expression of recombinant chitinase A originating from Bacillus licheniformis DSM8785, in Saccharomyces cerevisiae INVSc1: Scientific paper. in Journal of the Serbian Chemical Society, 87(6), 677-692.
https://doi.org/10.2298/JSC210913017M
Menghiu G, Prodanović R, Blažić M, Mincea M, Moraru C, Ostafe V. Non-conventional expression of recombinant chitinase A originating from Bacillus licheniformis DSM8785, in Saccharomyces cerevisiae INVSc1: Scientific paper. in Journal of the Serbian Chemical Society. 2022;87(6):677-692.
doi:10.2298/JSC210913017M .
Menghiu, Gheorghita, Prodanović, Radivoje, Blažić, Marija, Mincea, Manuela, Moraru, Cristina, Ostafe, Vasile, "Non-conventional expression of recombinant chitinase A originating from Bacillus licheniformis DSM8785, in Saccharomyces cerevisiae INVSc1: Scientific paper" in Journal of the Serbian Chemical Society, 87, no. 6 (2022):677-692,
https://doi.org/10.2298/JSC210913017M . .

A High-Throughput Screening System Based on Fluorescence-Activated Cell Sorting for the Directed Evolution of Chitinase A

Menghiu, Gheorghita; Ostafe, Vasile; Prodanović, Radivoje; Fischer, Rainer; Ostafe, Raluca

(MDPI, 2021)

TY  - JOUR
AU  - Menghiu, Gheorghita
AU  - Ostafe, Vasile
AU  - Prodanović, Radivoje
AU  - Fischer, Rainer
AU  - Ostafe, Raluca
PY  - 2021
UR  - https://www.mdpi.com/1422-0067/22/6/3041
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4393
AB  - Chitinases catalyze the degradation of chitin, a polymer of N-acetylglucosamine found in crustacean shells, insect cuticles, and fungal cell walls. There is great interest in the development of improved chitinases to address the environmental burden of chitin waste from the food processing industry as well as the potential medical, agricultural, and industrial uses of partially deacetylated chitin (chitosan) and its products (chito-oligosaccharides). The depolymerization of chitin can be achieved using chemical and physical treatments, but an enzymatic process would be more environmentally friendly and more sustainable. However, chitinases are slow-acting enzymes, limiting their biotechnological exploitation, although this can be overcome by molecular evolution approaches to enhance the features required for specific applications. The two main goals of this study were the development of a high-throughput screening system for chitinase activity (which could be extrapolated to other hydrolytic enzymes), and the deployment of this new method to select improved chitinase variants. We therefore cloned and expressed the Bacillus licheniformis DSM8785 chitinase A (chiA) gene in Escherichia coli BL21 (DE3) cells and generated a mutant library by error-prone PCR. We then developed a screening method based on fluorescence-activated cell sorting (FACS) using the model substrate 4-methylumbelliferyl β-d-N,N′,N″-triacetyl chitotrioside to identify improved enzymes. We prevented cross-talk between emulsion compartments caused by the hydrophobicity of 4-methylumbelliferone, the fluorescent product of the enzymatic reaction, by incorporating cyclodextrins into the aqueous phases. We also addressed the toxicity of long-term chiA expression in E. coli by limiting the reaction time. We identified 12 mutants containing 2–8 mutations per gene resulting in up to twofold higher activity than wild-type ChiA.
PB  - MDPI
T2  - International Journal of Molecular Sciences
T1  - A High-Throughput Screening System Based on Fluorescence-Activated Cell Sorting for the Directed Evolution of Chitinase A
VL  - 22
IS  - 6
SP  - 3041
DO  - 10.3390/ijms22063041
ER  - 
@article{
author = "Menghiu, Gheorghita and Ostafe, Vasile and Prodanović, Radivoje and Fischer, Rainer and Ostafe, Raluca",
year = "2021",
abstract = "Chitinases catalyze the degradation of chitin, a polymer of N-acetylglucosamine found in crustacean shells, insect cuticles, and fungal cell walls. There is great interest in the development of improved chitinases to address the environmental burden of chitin waste from the food processing industry as well as the potential medical, agricultural, and industrial uses of partially deacetylated chitin (chitosan) and its products (chito-oligosaccharides). The depolymerization of chitin can be achieved using chemical and physical treatments, but an enzymatic process would be more environmentally friendly and more sustainable. However, chitinases are slow-acting enzymes, limiting their biotechnological exploitation, although this can be overcome by molecular evolution approaches to enhance the features required for specific applications. The two main goals of this study were the development of a high-throughput screening system for chitinase activity (which could be extrapolated to other hydrolytic enzymes), and the deployment of this new method to select improved chitinase variants. We therefore cloned and expressed the Bacillus licheniformis DSM8785 chitinase A (chiA) gene in Escherichia coli BL21 (DE3) cells and generated a mutant library by error-prone PCR. We then developed a screening method based on fluorescence-activated cell sorting (FACS) using the model substrate 4-methylumbelliferyl β-d-N,N′,N″-triacetyl chitotrioside to identify improved enzymes. We prevented cross-talk between emulsion compartments caused by the hydrophobicity of 4-methylumbelliferone, the fluorescent product of the enzymatic reaction, by incorporating cyclodextrins into the aqueous phases. We also addressed the toxicity of long-term chiA expression in E. coli by limiting the reaction time. We identified 12 mutants containing 2–8 mutations per gene resulting in up to twofold higher activity than wild-type ChiA.",
publisher = "MDPI",
journal = "International Journal of Molecular Sciences",
title = "A High-Throughput Screening System Based on Fluorescence-Activated Cell Sorting for the Directed Evolution of Chitinase A",
volume = "22",
number = "6",
pages = "3041",
doi = "10.3390/ijms22063041"
}
Menghiu, G., Ostafe, V., Prodanović, R., Fischer, R.,& Ostafe, R.. (2021). A High-Throughput Screening System Based on Fluorescence-Activated Cell Sorting for the Directed Evolution of Chitinase A. in International Journal of Molecular Sciences
MDPI., 22(6), 3041.
https://doi.org/10.3390/ijms22063041
Menghiu G, Ostafe V, Prodanović R, Fischer R, Ostafe R. A High-Throughput Screening System Based on Fluorescence-Activated Cell Sorting for the Directed Evolution of Chitinase A. in International Journal of Molecular Sciences. 2021;22(6):3041.
doi:10.3390/ijms22063041 .
Menghiu, Gheorghita, Ostafe, Vasile, Prodanović, Radivoje, Fischer, Rainer, Ostafe, Raluca, "A High-Throughput Screening System Based on Fluorescence-Activated Cell Sorting for the Directed Evolution of Chitinase A" in International Journal of Molecular Sciences, 22, no. 6 (2021):3041,
https://doi.org/10.3390/ijms22063041 . .
7
10
5

Supplementary data for the article: Menghiu, G.; Ostafe, V.; Prodanović, R.; Fischer, R.; Ostafe, R. A High-Throughput Screening System Based on Fluorescence-Activated Cell Sorting for the Directed Evolution of Chitinase A. International Journal of Molecular Sciences 2021, 22 (6), 3041. https://doi.org/10.3390/ijms22063041.

Menghiu, Gheorghita; Ostafe, Vasile; Prodanović, Radivoje; Fischer, Rainer; Ostafe, Raluca

(MDPI, 2021)

TY  - DATA
AU  - Menghiu, Gheorghita
AU  - Ostafe, Vasile
AU  - Prodanović, Radivoje
AU  - Fischer, Rainer
AU  - Ostafe, Raluca
PY  - 2021
UR  - https://www.mdpi.com/1422-0067/22/6/3041
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4394
PB  - MDPI
T2  - International Journal of Molecular Sciences
T1  - Supplementary data for the article: Menghiu, G.; Ostafe, V.; Prodanović, R.; Fischer, R.; Ostafe, R. A High-Throughput Screening System Based on Fluorescence-Activated Cell Sorting for the Directed Evolution of Chitinase A. International Journal of Molecular Sciences 2021, 22 (6), 3041. https://doi.org/10.3390/ijms22063041.
UR  - https://hdl.handle.net/21.15107/rcub_cherry_4394
ER  - 
@misc{
author = "Menghiu, Gheorghita and Ostafe, Vasile and Prodanović, Radivoje and Fischer, Rainer and Ostafe, Raluca",
year = "2021",
publisher = "MDPI",
journal = "International Journal of Molecular Sciences",
title = "Supplementary data for the article: Menghiu, G.; Ostafe, V.; Prodanović, R.; Fischer, R.; Ostafe, R. A High-Throughput Screening System Based on Fluorescence-Activated Cell Sorting for the Directed Evolution of Chitinase A. International Journal of Molecular Sciences 2021, 22 (6), 3041. https://doi.org/10.3390/ijms22063041.",
url = "https://hdl.handle.net/21.15107/rcub_cherry_4394"
}
Menghiu, G., Ostafe, V., Prodanović, R., Fischer, R.,& Ostafe, R.. (2021). Supplementary data for the article: Menghiu, G.; Ostafe, V.; Prodanović, R.; Fischer, R.; Ostafe, R. A High-Throughput Screening System Based on Fluorescence-Activated Cell Sorting for the Directed Evolution of Chitinase A. International Journal of Molecular Sciences 2021, 22 (6), 3041. https://doi.org/10.3390/ijms22063041.. in International Journal of Molecular Sciences
MDPI..
https://hdl.handle.net/21.15107/rcub_cherry_4394
Menghiu G, Ostafe V, Prodanović R, Fischer R, Ostafe R. Supplementary data for the article: Menghiu, G.; Ostafe, V.; Prodanović, R.; Fischer, R.; Ostafe, R. A High-Throughput Screening System Based on Fluorescence-Activated Cell Sorting for the Directed Evolution of Chitinase A. International Journal of Molecular Sciences 2021, 22 (6), 3041. https://doi.org/10.3390/ijms22063041.. in International Journal of Molecular Sciences. 2021;.
https://hdl.handle.net/21.15107/rcub_cherry_4394 .
Menghiu, Gheorghita, Ostafe, Vasile, Prodanović, Radivoje, Fischer, Rainer, Ostafe, Raluca, "Supplementary data for the article: Menghiu, G.; Ostafe, V.; Prodanović, R.; Fischer, R.; Ostafe, R. A High-Throughput Screening System Based on Fluorescence-Activated Cell Sorting for the Directed Evolution of Chitinase A. International Journal of Molecular Sciences 2021, 22 (6), 3041. https://doi.org/10.3390/ijms22063041." in International Journal of Molecular Sciences (2021),
https://hdl.handle.net/21.15107/rcub_cherry_4394 .