Malenov, Dušan P.

Link to this page

Authority KeyName Variants
orcid::0000-0002-3060-3377
  • Malenov, Dušan P. (62)
Projects
Noncovalent interactions of pi-systems and their role in molecular recognition Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200168 (University of Belgrade, Faculty of Chemistry)
Qatar Foundation for Education, Science and Community Development Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200288 (Innovation Center of the Faculty of Chemistry)
NPRP grant from the Qatar National Research Fund (a member of the Qatar Foundation) [NPRP8-425-1-087] CD-HEM - Computational Design of High Energetic Materials: Case of Chelate Complexes
Alexander von Humboldt foundation Fund for Young Talents of Republic of Serbia
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200125 (University of Novi Sad, Faculty of Science) Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200126 (University of Belgrade, Faculty of Mining and Geology)
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200135 (University of Belgrade, Faculty of Technology and Metallurgy) Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200287 (Innovation Center of the Faculty of Technology and Metallurgy)
NPRP (Qatar National Research Fund, Qatar Foundation) [NPRP8-425-1-087] Qatar Foundation for Education, Science and Community Development.
Qatar National Research Fund (a member of the Qatar Foundation), Grant No. NPRP8-425-1-087. Qatar National Research Fund (Qatar Foundation) [NPRP8-425-1-087]
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200026 (University of Belgrade, Institute of Chemistry, Technology and Metallurgy - IChTM) Qatar Foundation for Education, Science and Community Development
Qatar National Research Fund (a member of the Qatar Foundation) (grant No. NPRP8-425-1-087 to Michael B. Hall) Wiley-V C H Verlag Gmbh, Weinheim

Author's Bibliography

Recognizing New Types of Stacking Interactions by Analyzing Data in the Cambridge Structural Database

Malenov, Dušan P.; Zarić, Snežana D.

(MDPI, 2023)

TY  - JOUR
AU  - Malenov, Dušan P.
AU  - Zarić, Snežana D.
PY  - 2023
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/6298
AB  - Cambridge Structural Database (CSD) is the largest repository of crystal data, containing over 1.2 million crystal structures of organic, metal–organic and organometallic compounds. It is a powerful research tool in many areas, including the extensive studying of noncovalent interactions. In this review, we show how a thorough analysis of CSD crystal data resulted in recognition of novel types of stacking interactions. Even though stacking interactions were traditionally related to aromatic systems, a number of crystallographic studies have shown that nonaromatic metal–chelate rings, as well as hydrogen-bridged rings, can also form stacking interactions. Joined efforts of a CSD analysis and quantum chemical calculations showed that these new stacking interactions are stronger than stacking interactions of aromatic species and recognized them as very important attractive forces in numerous supramolecular systems.
PB  - MDPI
T2  - Chemistry
T1  - Recognizing New Types of Stacking Interactions by Analyzing Data in the Cambridge Structural Database
VL  - 5
IS  - 4
SP  - 2513
EP  - 2541
DO  - 10.3390/chemistry5040164
ER  - 
@article{
author = "Malenov, Dušan P. and Zarić, Snežana D.",
year = "2023",
abstract = "Cambridge Structural Database (CSD) is the largest repository of crystal data, containing over 1.2 million crystal structures of organic, metal–organic and organometallic compounds. It is a powerful research tool in many areas, including the extensive studying of noncovalent interactions. In this review, we show how a thorough analysis of CSD crystal data resulted in recognition of novel types of stacking interactions. Even though stacking interactions were traditionally related to aromatic systems, a number of crystallographic studies have shown that nonaromatic metal–chelate rings, as well as hydrogen-bridged rings, can also form stacking interactions. Joined efforts of a CSD analysis and quantum chemical calculations showed that these new stacking interactions are stronger than stacking interactions of aromatic species and recognized them as very important attractive forces in numerous supramolecular systems.",
publisher = "MDPI",
journal = "Chemistry",
title = "Recognizing New Types of Stacking Interactions by Analyzing Data in the Cambridge Structural Database",
volume = "5",
number = "4",
pages = "2513-2541",
doi = "10.3390/chemistry5040164"
}
Malenov, D. P.,& Zarić, S. D.. (2023). Recognizing New Types of Stacking Interactions by Analyzing Data in the Cambridge Structural Database. in Chemistry
MDPI., 5(4), 2513-2541.
https://doi.org/10.3390/chemistry5040164
Malenov DP, Zarić SD. Recognizing New Types of Stacking Interactions by Analyzing Data in the Cambridge Structural Database. in Chemistry. 2023;5(4):2513-2541.
doi:10.3390/chemistry5040164 .
Malenov, Dušan P., Zarić, Snežana D., "Recognizing New Types of Stacking Interactions by Analyzing Data in the Cambridge Structural Database" in Chemistry, 5, no. 4 (2023):2513-2541,
https://doi.org/10.3390/chemistry5040164 . .

Substituent effects on stacking interactions of aromatic ligands in organometallic compounds – chemoinformatics and quantum chemical study

Malenov, Dušan P.; Blagojević Filipović, Jelena P.; Zarić, Snežana D.

(2023)

TY  - CONF
AU  - Malenov, Dušan P.
AU  - Blagojević Filipović, Jelena P.
AU  - Zarić, Snežana D.
PY  - 2023
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/6345
AB  - The effects of alkyl substituents on stacking interactions of aromatic ligands in organometallic compounds were studied on two most common ligands with substituents pentamethylcyclopentadienyl (Cp*) and 1-methyl-4-isopropylbenzene (p-cymene). The analysis ofgeometries of interactions found in crystal structures deposited in the Cambridge Structural Database indicated that substituents are involved in interactions with aromatic rings, indicating the combination of stacking and C-and p-cymene ligands. Quantum chemical calculations on p-cymene half-sandwich ruthenium(II) compound showed that additional CB97D2/def2-TZVP interaction energy between two p-cymenecomplexes is -7.56 kcal/mol, while the interaction energy between two corresponding benzene complexes is -3.93 kcal/mol. Ruthenium p-cymene complexes can engage in stacking interactions with large horizontal displacements combined with interactions between the substituents, with a significant interaction energy of -4.57 kcal/mol. These studies show that substituents strengthen stacking interactions of coordinated aromatic rings and modulate their geometries by providing additional simultaneous interactions.
C3  - 2nd International Conference on Chemo and Bioinformatics (ICCBIKG_2023), Book of Proceedings, 28-29 September 2023, Kragujevac, Serbia, 2023
T1  - Substituent effects on stacking interactions of aromatic ligands in organometallic compounds – chemoinformatics and quantum chemical study
SP  - 625
EP  - 628
DO  - 10.46793/ICCBI23.625M
ER  - 
@conference{
author = "Malenov, Dušan P. and Blagojević Filipović, Jelena P. and Zarić, Snežana D.",
year = "2023",
abstract = "The effects of alkyl substituents on stacking interactions of aromatic ligands in organometallic compounds were studied on two most common ligands with substituents pentamethylcyclopentadienyl (Cp*) and 1-methyl-4-isopropylbenzene (p-cymene). The analysis ofgeometries of interactions found in crystal structures deposited in the Cambridge Structural Database indicated that substituents are involved in interactions with aromatic rings, indicating the combination of stacking and C-and p-cymene ligands. Quantum chemical calculations on p-cymene half-sandwich ruthenium(II) compound showed that additional CB97D2/def2-TZVP interaction energy between two p-cymenecomplexes is -7.56 kcal/mol, while the interaction energy between two corresponding benzene complexes is -3.93 kcal/mol. Ruthenium p-cymene complexes can engage in stacking interactions with large horizontal displacements combined with interactions between the substituents, with a significant interaction energy of -4.57 kcal/mol. These studies show that substituents strengthen stacking interactions of coordinated aromatic rings and modulate their geometries by providing additional simultaneous interactions.",
journal = "2nd International Conference on Chemo and Bioinformatics (ICCBIKG_2023), Book of Proceedings, 28-29 September 2023, Kragujevac, Serbia, 2023",
title = "Substituent effects on stacking interactions of aromatic ligands in organometallic compounds – chemoinformatics and quantum chemical study",
pages = "625-628",
doi = "10.46793/ICCBI23.625M"
}
Malenov, D. P., Blagojević Filipović, J. P.,& Zarić, S. D.. (2023). Substituent effects on stacking interactions of aromatic ligands in organometallic compounds – chemoinformatics and quantum chemical study. in 2nd International Conference on Chemo and Bioinformatics (ICCBIKG_2023), Book of Proceedings, 28-29 September 2023, Kragujevac, Serbia, 2023, 625-628.
https://doi.org/10.46793/ICCBI23.625M
Malenov DP, Blagojević Filipović JP, Zarić SD. Substituent effects on stacking interactions of aromatic ligands in organometallic compounds – chemoinformatics and quantum chemical study. in 2nd International Conference on Chemo and Bioinformatics (ICCBIKG_2023), Book of Proceedings, 28-29 September 2023, Kragujevac, Serbia, 2023. 2023;:625-628.
doi:10.46793/ICCBI23.625M .
Malenov, Dušan P., Blagojević Filipović, Jelena P., Zarić, Snežana D., "Substituent effects on stacking interactions of aromatic ligands in organometallic compounds – chemoinformatics and quantum chemical study" in 2nd International Conference on Chemo and Bioinformatics (ICCBIKG_2023), Book of Proceedings, 28-29 September 2023, Kragujevac, Serbia, 2023 (2023):625-628,
https://doi.org/10.46793/ICCBI23.625M . .

Modeling ion-π interactions of transition metal complexes

Malenov, Dušan P.; Ćeranić, Katarina; Vojislavljević-Vasilev, Dubravka; Zarić, Snežana D.

(2023)

TY  - CONF
AU  - Malenov, Dušan P.
AU  - Ćeranić, Katarina
AU  - Vojislavljević-Vasilev, Dubravka
AU  - Zarić, Snežana D.
PY  - 2023
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/6363
C3  - 2nd International Conference on Chemo and Bioinformatics (ICCBIKG_2023), Book of Proceedings, 28-29 September 2023, Kragujevac, Serbia, 2023
T1  - Modeling ion-π interactions of transition metal complexes
SP  - 621
EP  - 624
UR  - https://hdl.handle.net/21.15107/rcub_cherry_6363
ER  - 
@conference{
author = "Malenov, Dušan P. and Ćeranić, Katarina and Vojislavljević-Vasilev, Dubravka and Zarić, Snežana D.",
year = "2023",
journal = "2nd International Conference on Chemo and Bioinformatics (ICCBIKG_2023), Book of Proceedings, 28-29 September 2023, Kragujevac, Serbia, 2023",
title = "Modeling ion-π interactions of transition metal complexes",
pages = "621-624",
url = "https://hdl.handle.net/21.15107/rcub_cherry_6363"
}
Malenov, D. P., Ćeranić, K., Vojislavljević-Vasilev, D.,& Zarić, S. D.. (2023). Modeling ion-π interactions of transition metal complexes. in 2nd International Conference on Chemo and Bioinformatics (ICCBIKG_2023), Book of Proceedings, 28-29 September 2023, Kragujevac, Serbia, 2023, 621-624.
https://hdl.handle.net/21.15107/rcub_cherry_6363
Malenov DP, Ćeranić K, Vojislavljević-Vasilev D, Zarić SD. Modeling ion-π interactions of transition metal complexes. in 2nd International Conference on Chemo and Bioinformatics (ICCBIKG_2023), Book of Proceedings, 28-29 September 2023, Kragujevac, Serbia, 2023. 2023;:621-624.
https://hdl.handle.net/21.15107/rcub_cherry_6363 .
Malenov, Dušan P., Ćeranić, Katarina, Vojislavljević-Vasilev, Dubravka, Zarić, Snežana D., "Modeling ion-π interactions of transition metal complexes" in 2nd International Conference on Chemo and Bioinformatics (ICCBIKG_2023), Book of Proceedings, 28-29 September 2023, Kragujevac, Serbia, 2023 (2023):621-624,
https://hdl.handle.net/21.15107/rcub_cherry_6363 .

Coordinated Water as Hydrogen Bond Acceptor: Crystallographic and Quantum Chemical Study

Malenov, Dušan P.; (Andrić) Živković, Jelena; Vojislavljević-Vasilev, Dubravka; Zarić, Snežana D.

(2023)

TY  - CONF
AU  - Malenov, Dušan P.
AU  - (Andrić) Živković, Jelena
AU  - Vojislavljević-Vasilev, Dubravka
AU  - Zarić, Snežana D.
PY  - 2023
UR  - https://physics.mff.cuni.cz/kchfo/MIB23/doc/BoA_final.pdf
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/6367
C3  - Modeling Interactions in Biomolecules IX, Book of Abstracts, Pruhonice, Prague-Pruhonice, Czech Republic, 10th-14th September 2023
T1  - Coordinated Water as Hydrogen Bond Acceptor: Crystallographic and Quantum Chemical Study
UR  - https://hdl.handle.net/21.15107/rcub_cherry_6367
ER  - 
@conference{
author = "Malenov, Dušan P. and (Andrić) Živković, Jelena and Vojislavljević-Vasilev, Dubravka and Zarić, Snežana D.",
year = "2023",
journal = "Modeling Interactions in Biomolecules IX, Book of Abstracts, Pruhonice, Prague-Pruhonice, Czech Republic, 10th-14th September 2023",
title = "Coordinated Water as Hydrogen Bond Acceptor: Crystallographic and Quantum Chemical Study",
url = "https://hdl.handle.net/21.15107/rcub_cherry_6367"
}
Malenov, D. P., (Andrić) Živković, J., Vojislavljević-Vasilev, D.,& Zarić, S. D.. (2023). Coordinated Water as Hydrogen Bond Acceptor: Crystallographic and Quantum Chemical Study. in Modeling Interactions in Biomolecules IX, Book of Abstracts, Pruhonice, Prague-Pruhonice, Czech Republic, 10th-14th September 2023.
https://hdl.handle.net/21.15107/rcub_cherry_6367
Malenov DP, (Andrić) Živković J, Vojislavljević-Vasilev D, Zarić SD. Coordinated Water as Hydrogen Bond Acceptor: Crystallographic and Quantum Chemical Study. in Modeling Interactions in Biomolecules IX, Book of Abstracts, Pruhonice, Prague-Pruhonice, Czech Republic, 10th-14th September 2023. 2023;.
https://hdl.handle.net/21.15107/rcub_cherry_6367 .
Malenov, Dušan P., (Andrić) Živković, Jelena, Vojislavljević-Vasilev, Dubravka, Zarić, Snežana D., "Coordinated Water as Hydrogen Bond Acceptor: Crystallographic and Quantum Chemical Study" in Modeling Interactions in Biomolecules IX, Book of Abstracts, Pruhonice, Prague-Pruhonice, Czech Republic, 10th-14th September 2023 (2023),
https://hdl.handle.net/21.15107/rcub_cherry_6367 .

Can Coordinated Water Be a Good Hydrogen Bond Acceptor?

Malenov, Dušan P.; (Andrić) Živković, Jelena; Vojislavljević-Vasilev, Dubravka; Zarić, Snežana D.

(2023)

TY  - CONF
AU  - Malenov, Dušan P.
AU  - (Andrić) Živković, Jelena
AU  - Vojislavljević-Vasilev, Dubravka
AU  - Zarić, Snežana D.
PY  - 2023
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/6368
AB  - Hydrogen bond is arguably the most famous of all noncovalent interactions. The majority of contacts between water molecules in the solid state are hydrogen bonds, with a substantial number of antiparallel dipolar interactions as well.1 The crystallographic and quantum chemical studies have shown that the strength of hydrogen bonds of water can be increased by metal coordination.2,3 These previous studies considered coordinated water as hydrogen bond donor. In this study, we wanted to investigate the possibility of coordinated water acting as hydrogen bond acceptor.  The Cambridge Structural Database (CSD) search yielded 1229 hydrogen bonds between coordinated water as hydrogen bond acceptor and uncoordinated water as hydrogen bond donor. These hydrogen bonds are somewhat longer and less directional than hydrogen bonds with donor coordinated water. The strength of these hydrogen bonds was evaluated at the B97D/def2-TZVP level of theory, both on the structures found in the CSD, as well as on the model systems. The obtained energies cover a wide range of values (Figure 1), depending on the charge of the complex, and they can be comparable to the energy of hydrogen bond between two uncoordinated water molecules (-4.84 kcal/mol),2 or even significantly more favorable if the complex is negatively charged. If the complex is positively charged, these interactions are repulsive (Figure 1), but they are still frequently encountered (444 interactions in crystal structures), simultaneously with other (attractive) interactions.  The strength of interactions shows dependence on the orientation of both hydrogen atoms of uncoordinated water, and it is in general greatly influenced by additional contacts of uncoordinated water with neighboring ligands of the metal complex. Even though it is difficult to estimate how strong these interactions are alone, the calculated interaction energies suggest that coordinated water is a better hydrogen bond donor than hydrogen bond acceptor. However, coordinated water acting as hydrogen bond acceptor gives more opportunities for additional interactions, making the supramolecular systems containing studied hydrogen bonds more stable.
C3  - The van der Waals – London Discussions, Strasbourg, France, Book of Abstracts, 2023.
T1  - Can Coordinated Water Be a Good Hydrogen Bond Acceptor?
UR  - https://hdl.handle.net/21.15107/rcub_cherry_6368
ER  - 
@conference{
author = "Malenov, Dušan P. and (Andrić) Živković, Jelena and Vojislavljević-Vasilev, Dubravka and Zarić, Snežana D.",
year = "2023",
abstract = "Hydrogen bond is arguably the most famous of all noncovalent interactions. The majority of contacts between water molecules in the solid state are hydrogen bonds, with a substantial number of antiparallel dipolar interactions as well.1 The crystallographic and quantum chemical studies have shown that the strength of hydrogen bonds of water can be increased by metal coordination.2,3 These previous studies considered coordinated water as hydrogen bond donor. In this study, we wanted to investigate the possibility of coordinated water acting as hydrogen bond acceptor.  The Cambridge Structural Database (CSD) search yielded 1229 hydrogen bonds between coordinated water as hydrogen bond acceptor and uncoordinated water as hydrogen bond donor. These hydrogen bonds are somewhat longer and less directional than hydrogen bonds with donor coordinated water. The strength of these hydrogen bonds was evaluated at the B97D/def2-TZVP level of theory, both on the structures found in the CSD, as well as on the model systems. The obtained energies cover a wide range of values (Figure 1), depending on the charge of the complex, and they can be comparable to the energy of hydrogen bond between two uncoordinated water molecules (-4.84 kcal/mol),2 or even significantly more favorable if the complex is negatively charged. If the complex is positively charged, these interactions are repulsive (Figure 1), but they are still frequently encountered (444 interactions in crystal structures), simultaneously with other (attractive) interactions.  The strength of interactions shows dependence on the orientation of both hydrogen atoms of uncoordinated water, and it is in general greatly influenced by additional contacts of uncoordinated water with neighboring ligands of the metal complex. Even though it is difficult to estimate how strong these interactions are alone, the calculated interaction energies suggest that coordinated water is a better hydrogen bond donor than hydrogen bond acceptor. However, coordinated water acting as hydrogen bond acceptor gives more opportunities for additional interactions, making the supramolecular systems containing studied hydrogen bonds more stable.",
journal = "The van der Waals – London Discussions, Strasbourg, France, Book of Abstracts, 2023.",
title = "Can Coordinated Water Be a Good Hydrogen Bond Acceptor?",
url = "https://hdl.handle.net/21.15107/rcub_cherry_6368"
}
Malenov, D. P., (Andrić) Živković, J., Vojislavljević-Vasilev, D.,& Zarić, S. D.. (2023). Can Coordinated Water Be a Good Hydrogen Bond Acceptor?. in The van der Waals – London Discussions, Strasbourg, France, Book of Abstracts, 2023..
https://hdl.handle.net/21.15107/rcub_cherry_6368
Malenov DP, (Andrić) Živković J, Vojislavljević-Vasilev D, Zarić SD. Can Coordinated Water Be a Good Hydrogen Bond Acceptor?. in The van der Waals – London Discussions, Strasbourg, France, Book of Abstracts, 2023.. 2023;.
https://hdl.handle.net/21.15107/rcub_cherry_6368 .
Malenov, Dušan P., (Andrić) Živković, Jelena, Vojislavljević-Vasilev, Dubravka, Zarić, Snežana D., "Can Coordinated Water Be a Good Hydrogen Bond Acceptor?" in The van der Waals – London Discussions, Strasbourg, France, Book of Abstracts, 2023. (2023),
https://hdl.handle.net/21.15107/rcub_cherry_6368 .

Stacking of the methylated cyclopentadienyl ligands in crystal structures of transition metal complexes

Malenov, Dušan P.; Blagojević Filipović, Jelena P.; Zarić, Snežana D.

(2022)

TY  - CONF
AU  - Malenov, Dušan P.
AU  - Blagojević Filipović, Jelena P.
AU  - Zarić, Snežana D.
PY  - 2022
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/6349
AB  - Crystal structures of the methylated cyclopentadienyl (Cp) complexes are systematically analysed by searching the Cambridge Structural Database (CSD) and the preferred positions of the stacked methylated Cp ligands are described. The stacking contacts of the Me5Cp complexes are by far the most frequently found in the CSD (3632 contacts), followed by MeCp (446) and Me4Cp (151). These contacts mostly correspond to simultaneous parallel-displaced stacking and CH/π interactions, as well as paralleldisplaced stacking and stacking interactions at large horizontal displacements. With increasing the number of methyl substituents the occurrence of stacking with large displacements decreases (48.4% for MeCp, 28.5% for Me4Cp, 3.8% for Me5Cp), because CH/π interactions stabilize geometries with smaller displacements. Different interaction types can be explained by the electrostatic potential maps of the studied complexes.
AB  - Кристалне структуре метилованих (Me) циклопентадиенилних (Cp) комплекса су систематски анализиране претрагом Кембричке базе структурних података (CSD) и описани су преовлађујући положаји метилованих Cp лиганада у стекинг оријентацији. Стекинг контакти Me5Cp комплекса су далеко најучесталији (3632 контакта), a затим следе MeCp (446) и Me4Cp (151). Kонтакти у највећој мери садрже симултане паралелно-померене стекинг интеракције и CH/π интеракције, али се јављају и саме паралелно-померене стекинг интеракције и стекинг интеракције са великим хоризонталним померањима. Са повећањем броја метил-супституената опада заступљеност стекинга на великим померањима (48,4% за MeCp, 28,5% за Me4Cp, 3,8% за Me5Cp), пошто CH/π интеракције стабилизују геометрије на мањим померањима. Различити типови интеракција се могу објаснити на основу мапа електростатичких потенцијала испитиваних комплекса.
C3  - 58th Meeting of the Serbian Chemical Society, Belgrade, Serbia, 9th-10th June, 2022. In: Book of Abstracts and Proceedings
T1  - Stacking of the methylated cyclopentadienyl ligands in crystal structures of transition metal complexes
T1  - Стекинг метилованих циклопентадиенилних лиганада у кристалним структурама комплекса прелазних метала
UR  - https://hdl.handle.net/21.15107/rcub_cherry_6349
ER  - 
@conference{
author = "Malenov, Dušan P. and Blagojević Filipović, Jelena P. and Zarić, Snežana D.",
year = "2022",
abstract = "Crystal structures of the methylated cyclopentadienyl (Cp) complexes are systematically analysed by searching the Cambridge Structural Database (CSD) and the preferred positions of the stacked methylated Cp ligands are described. The stacking contacts of the Me5Cp complexes are by far the most frequently found in the CSD (3632 contacts), followed by MeCp (446) and Me4Cp (151). These contacts mostly correspond to simultaneous parallel-displaced stacking and CH/π interactions, as well as paralleldisplaced stacking and stacking interactions at large horizontal displacements. With increasing the number of methyl substituents the occurrence of stacking with large displacements decreases (48.4% for MeCp, 28.5% for Me4Cp, 3.8% for Me5Cp), because CH/π interactions stabilize geometries with smaller displacements. Different interaction types can be explained by the electrostatic potential maps of the studied complexes., Кристалне структуре метилованих (Me) циклопентадиенилних (Cp) комплекса су систематски анализиране претрагом Кембричке базе структурних података (CSD) и описани су преовлађујући положаји метилованих Cp лиганада у стекинг оријентацији. Стекинг контакти Me5Cp комплекса су далеко најучесталији (3632 контакта), a затим следе MeCp (446) и Me4Cp (151). Kонтакти у највећој мери садрже симултане паралелно-померене стекинг интеракције и CH/π интеракције, али се јављају и саме паралелно-померене стекинг интеракције и стекинг интеракције са великим хоризонталним померањима. Са повећањем броја метил-супституената опада заступљеност стекинга на великим померањима (48,4% за MeCp, 28,5% за Me4Cp, 3,8% за Me5Cp), пошто CH/π интеракције стабилизују геометрије на мањим померањима. Различити типови интеракција се могу објаснити на основу мапа електростатичких потенцијала испитиваних комплекса.",
journal = "58th Meeting of the Serbian Chemical Society, Belgrade, Serbia, 9th-10th June, 2022. In: Book of Abstracts and Proceedings",
title = "Stacking of the methylated cyclopentadienyl ligands in crystal structures of transition metal complexes, Стекинг метилованих циклопентадиенилних лиганада у кристалним структурама комплекса прелазних метала",
url = "https://hdl.handle.net/21.15107/rcub_cherry_6349"
}
Malenov, D. P., Blagojević Filipović, J. P.,& Zarić, S. D.. (2022). Stacking of the methylated cyclopentadienyl ligands in crystal structures of transition metal complexes. in 58th Meeting of the Serbian Chemical Society, Belgrade, Serbia, 9th-10th June, 2022. In: Book of Abstracts and Proceedings.
https://hdl.handle.net/21.15107/rcub_cherry_6349
Malenov DP, Blagojević Filipović JP, Zarić SD. Stacking of the methylated cyclopentadienyl ligands in crystal structures of transition metal complexes. in 58th Meeting of the Serbian Chemical Society, Belgrade, Serbia, 9th-10th June, 2022. In: Book of Abstracts and Proceedings. 2022;.
https://hdl.handle.net/21.15107/rcub_cherry_6349 .
Malenov, Dušan P., Blagojević Filipović, Jelena P., Zarić, Snežana D., "Stacking of the methylated cyclopentadienyl ligands in crystal structures of transition metal complexes" in 58th Meeting of the Serbian Chemical Society, Belgrade, Serbia, 9th-10th June, 2022. In: Book of Abstracts and Proceedings (2022),
https://hdl.handle.net/21.15107/rcub_cherry_6349 .

Crystallographic, spectroscopic, thermal and computational studies of polymeric cobalt(II)–mellitate complex with 2,2′-bipyridine

Radovanović, Lidija; Malenov, Dušan P.; Rodić, Marko; Kremenović, Aleksandar; Rogan, Jelena

(Elsevier, 2022)

TY  - JOUR
AU  - Radovanović, Lidija
AU  - Malenov, Dušan P.
AU  - Rodić, Marko
AU  - Kremenović, Aleksandar
AU  - Rogan, Jelena
PY  - 2022
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5015
AB  - Orange single crystals of new polymeric cobalt(II) complex {[Co(bipy)(H2O)4]2[Co(μ-mell)(H2O)2 ]·
10H2 O}n, 1, were synthesized by slow evaporation method at room temperature (bipy = 2,2′-bipyridine,
mell = hexaanion of mellitic acid) and its crystal structure was determined by single-crystal X-ray diffrac-
tion. The complex 1 was characterized based on elemental analysis, FTIR spectroscopy and thermal
(TG/DTA) analysis followed by computational analysis of noncovalent interactions and quantum chemical
calculations of interaction energies. In 1, two crystallographically different Co(II) atoms adopt a deformed
octahedral geometry, while bridging mell acts as a tetrakis monodentate ligand allowing the development
of wavy-like anionic chains running along [100] direction. The 3D supramolecular network of 1 is com-
posed of alternating supramolecular and water layers connected by hydrogen bonds. The supramolecular
layer is formed of ionic interactions between complex cations and polymeric complex anions, established
mainly through O–H···O hydrogen bonds, as well as stacking interactions between bipy ligands, while the
water layers are comprised of hydrogen bonded lattice water molecules. Upon heating up to 1200 °C
in nitrogen and air atmosphere, complex 1 showed multiple-step degradation that resulted in the for-
mation of Co and Co3O4, respectively. Computed Hirshfeld surfaces and 2D fingerprint plots indicated
that O–H···O hydrogen bonds are the most dominant in the crystal structure, while the shape index and
curvedness mapped on the Hirshfeld surfaces of 1 revealed that stacking interactions have an important
role in the stabilization of the crystal packing. Quantum chemical calculations showed that, aside from
ionic hydrogen-bonded interaction between cation and anionic polymer, the important role in the sta-
bility of supramolecular structure of 1 is played by hydrogen bonds of cation and anionic polymer with
lattice water, as well as by stacking interactions between bipy ligands.
PB  - Elsevier
T2  - Journal of Molecular Structure
T1  - Crystallographic, spectroscopic, thermal and computational studies of polymeric cobalt(II)–mellitate complex with 2,2′-bipyridine
VL  - 1252
IS  - 132202
DO  - 10.1016/j.molstruc.2021.132202
ER  - 
@article{
author = "Radovanović, Lidija and Malenov, Dušan P. and Rodić, Marko and Kremenović, Aleksandar and Rogan, Jelena",
year = "2022",
abstract = "Orange single crystals of new polymeric cobalt(II) complex {[Co(bipy)(H2O)4]2[Co(μ-mell)(H2O)2 ]·
10H2 O}n, 1, were synthesized by slow evaporation method at room temperature (bipy = 2,2′-bipyridine,
mell = hexaanion of mellitic acid) and its crystal structure was determined by single-crystal X-ray diffrac-
tion. The complex 1 was characterized based on elemental analysis, FTIR spectroscopy and thermal
(TG/DTA) analysis followed by computational analysis of noncovalent interactions and quantum chemical
calculations of interaction energies. In 1, two crystallographically different Co(II) atoms adopt a deformed
octahedral geometry, while bridging mell acts as a tetrakis monodentate ligand allowing the development
of wavy-like anionic chains running along [100] direction. The 3D supramolecular network of 1 is com-
posed of alternating supramolecular and water layers connected by hydrogen bonds. The supramolecular
layer is formed of ionic interactions between complex cations and polymeric complex anions, established
mainly through O–H···O hydrogen bonds, as well as stacking interactions between bipy ligands, while the
water layers are comprised of hydrogen bonded lattice water molecules. Upon heating up to 1200 °C
in nitrogen and air atmosphere, complex 1 showed multiple-step degradation that resulted in the for-
mation of Co and Co3O4, respectively. Computed Hirshfeld surfaces and 2D fingerprint plots indicated
that O–H···O hydrogen bonds are the most dominant in the crystal structure, while the shape index and
curvedness mapped on the Hirshfeld surfaces of 1 revealed that stacking interactions have an important
role in the stabilization of the crystal packing. Quantum chemical calculations showed that, aside from
ionic hydrogen-bonded interaction between cation and anionic polymer, the important role in the sta-
bility of supramolecular structure of 1 is played by hydrogen bonds of cation and anionic polymer with
lattice water, as well as by stacking interactions between bipy ligands.",
publisher = "Elsevier",
journal = "Journal of Molecular Structure",
title = "Crystallographic, spectroscopic, thermal and computational studies of polymeric cobalt(II)–mellitate complex with 2,2′-bipyridine",
volume = "1252",
number = "132202",
doi = "10.1016/j.molstruc.2021.132202"
}
Radovanović, L., Malenov, D. P., Rodić, M., Kremenović, A.,& Rogan, J.. (2022). Crystallographic, spectroscopic, thermal and computational studies of polymeric cobalt(II)–mellitate complex with 2,2′-bipyridine. in Journal of Molecular Structure
Elsevier., 1252(132202).
https://doi.org/10.1016/j.molstruc.2021.132202
Radovanović L, Malenov DP, Rodić M, Kremenović A, Rogan J. Crystallographic, spectroscopic, thermal and computational studies of polymeric cobalt(II)–mellitate complex with 2,2′-bipyridine. in Journal of Molecular Structure. 2022;1252(132202).
doi:10.1016/j.molstruc.2021.132202 .
Radovanović, Lidija, Malenov, Dušan P., Rodić, Marko, Kremenović, Aleksandar, Rogan, Jelena, "Crystallographic, spectroscopic, thermal and computational studies of polymeric cobalt(II)–mellitate complex with 2,2′-bipyridine" in Journal of Molecular Structure, 1252, no. 132202 (2022),
https://doi.org/10.1016/j.molstruc.2021.132202 . .

Supplementary data for the article: Radovanović, L.; Malenov, D. P.; Rodić, M. V.; Kremenović, A.; Rogan, J. Crystallographic, Spectroscopic, Thermal and Computational Studies of Polymeric Cobalt(II)–Mellitate Complex with 2,2′-Bipyridine. Journal of Molecular Structure 2022, 1252, 132202. https://doi.org/10.1016/j.molstruc.2021.132202.

Radovanović, Lidija; Malenov, Dušan P.; Rodić, Marko; Kremenović, Aleksandar; Rogan, Jelena

(Elsevier, 2022)

TY  - DATA
AU  - Radovanović, Lidija
AU  - Malenov, Dušan P.
AU  - Rodić, Marko
AU  - Kremenović, Aleksandar
AU  - Rogan, Jelena
PY  - 2022
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5032
PB  - Elsevier
T2  - Journal of Molecular Structure
T1  - Supplementary data for the article: Radovanović, L.; Malenov, D. P.; Rodić, M. V.; Kremenović, A.; Rogan, J. Crystallographic, Spectroscopic, Thermal and Computational Studies of Polymeric Cobalt(II)–Mellitate Complex with 2,2′-Bipyridine. Journal of Molecular Structure 2022, 1252, 132202. https://doi.org/10.1016/j.molstruc.2021.132202.
UR  - https://hdl.handle.net/21.15107/rcub_cherry_5032
ER  - 
@misc{
author = "Radovanović, Lidija and Malenov, Dušan P. and Rodić, Marko and Kremenović, Aleksandar and Rogan, Jelena",
year = "2022",
publisher = "Elsevier",
journal = "Journal of Molecular Structure",
title = "Supplementary data for the article: Radovanović, L.; Malenov, D. P.; Rodić, M. V.; Kremenović, A.; Rogan, J. Crystallographic, Spectroscopic, Thermal and Computational Studies of Polymeric Cobalt(II)–Mellitate Complex with 2,2′-Bipyridine. Journal of Molecular Structure 2022, 1252, 132202. https://doi.org/10.1016/j.molstruc.2021.132202.",
url = "https://hdl.handle.net/21.15107/rcub_cherry_5032"
}
Radovanović, L., Malenov, D. P., Rodić, M., Kremenović, A.,& Rogan, J.. (2022). Supplementary data for the article: Radovanović, L.; Malenov, D. P.; Rodić, M. V.; Kremenović, A.; Rogan, J. Crystallographic, Spectroscopic, Thermal and Computational Studies of Polymeric Cobalt(II)–Mellitate Complex with 2,2′-Bipyridine. Journal of Molecular Structure 2022, 1252, 132202. https://doi.org/10.1016/j.molstruc.2021.132202.. in Journal of Molecular Structure
Elsevier..
https://hdl.handle.net/21.15107/rcub_cherry_5032
Radovanović L, Malenov DP, Rodić M, Kremenović A, Rogan J. Supplementary data for the article: Radovanović, L.; Malenov, D. P.; Rodić, M. V.; Kremenović, A.; Rogan, J. Crystallographic, Spectroscopic, Thermal and Computational Studies of Polymeric Cobalt(II)–Mellitate Complex with 2,2′-Bipyridine. Journal of Molecular Structure 2022, 1252, 132202. https://doi.org/10.1016/j.molstruc.2021.132202.. in Journal of Molecular Structure. 2022;.
https://hdl.handle.net/21.15107/rcub_cherry_5032 .
Radovanović, Lidija, Malenov, Dušan P., Rodić, Marko, Kremenović, Aleksandar, Rogan, Jelena, "Supplementary data for the article: Radovanović, L.; Malenov, D. P.; Rodić, M. V.; Kremenović, A.; Rogan, J. Crystallographic, Spectroscopic, Thermal and Computational Studies of Polymeric Cobalt(II)–Mellitate Complex with 2,2′-Bipyridine. Journal of Molecular Structure 2022, 1252, 132202. https://doi.org/10.1016/j.molstruc.2021.132202." in Journal of Molecular Structure (2022),
https://hdl.handle.net/21.15107/rcub_cherry_5032 .

Study of noncovalent interactions using crystal structure data in the Cambridge Structural Database

Milovanović, Milan R.; Živković, Jelena M.; Ninković, Dragan; Blagojević Filipović, Jelena P.; Vojislavljević-Vasilev, Dubravka; Veljković, Ivana S.; Stanković, Ivana M.; Malenov, Dušan P.; Medaković, Vesna; Veljković, Dušan Ž.; Zarić, Snežana D.

(Wiley, 2021)

TY  - CONF
AU  - Milovanović, Milan R.
AU  - Živković, Jelena M.
AU  - Ninković, Dragan
AU  - Blagojević Filipović, Jelena P.
AU  - Vojislavljević-Vasilev, Dubravka
AU  - Veljković, Ivana S.
AU  - Stanković, Ivana M.
AU  - Malenov, Dušan P.
AU  - Medaković, Vesna
AU  - Veljković, Dušan Ž.
AU  - Zarić, Snežana D.
PY  - 2021
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5275
UR  - https://iucr25.org/
AB  - In the recent review it was point out that the crystal structures in the Cambridge Structural Database (CSD), collected, have contribute
to various fields of chemical research such as geometries of molecules, noncovalent interactions of molecules, and large assemblies of
molecules. The CSD also contributed to the study and the design of biologically active molecules and the study of gas storage and
delivery [1].
In our group we use analysis of the crystal structures in the CSD to recognize and characterize new types of noncovalent interactions
and to study already known noncovalent interactions. Based on the data from the CSD we can determine existence of the interactions,
frequency of the interactions, and preferred geometries of the interactions in the crystal structures. In addition, we perform quantum
chemical calculations to evaluate the energies of the interactions. Based on the calculated potential energy surfaces for the
interactions, we can determine the most stable geometries, as well as stability of various geometries. We also can determine the
interaction energies for the preferred geometries in the crystal structures. In the cases where the most preferred geometries in the
crystal structures are not the most stable geometries at the potential energy surface, one can find significant influence of the
supramolecular structures in the crystals.
Using this methodology our group recognized stacking interactions of planar metal-chelate rings; stacking interactions with organic
aromatic rings and stacking interactions between two chelate rings. The calculated energies indicate strong stacking interactions of
metal-chelate rings; the stacking of metal-chelate rings is stronger than stacking between two benzene molecules [2]. The data indicate
influence of the metal and ligand type in the metal chelate ring on the strength of the interactions. Our results also indicate strong
stacking interactions of coordinated aromatic rings [3]. Studies of interactions of coordinated water indicate stronger hydrogen bonds
and stronger OH/π interactions of coordinated in comparison to noncoordianted water molecule [4,5]. The calculations on OH/M
interactions between metal ion in square-planar complexes and water molecule indicate that these interactions are among the strongest
hydrogen bonds in any molecular system [6].
The studies on stacking interactions of benzene molecules in the crystal structures in the CSD show preference for interactions at large
horizontal displacements, while high level quantum chemical calculations indicate significantly strong interactions at large offsets; the
energy is 70% of the strongest stacking geometry [7].
PB  - Wiley
C3  - 25th Congress and General Assembly of the International Union of Crystallography, Prague, Czech Republic, August 2021
T1  - Study of noncovalent interactions using crystal structure data in the Cambridge Structural Database
VL  - A77
SP  - C192
UR  - https://hdl.handle.net/21.15107/rcub_cherry_5275
ER  - 
@conference{
author = "Milovanović, Milan R. and Živković, Jelena M. and Ninković, Dragan and Blagojević Filipović, Jelena P. and Vojislavljević-Vasilev, Dubravka and Veljković, Ivana S. and Stanković, Ivana M. and Malenov, Dušan P. and Medaković, Vesna and Veljković, Dušan Ž. and Zarić, Snežana D.",
year = "2021",
abstract = "In the recent review it was point out that the crystal structures in the Cambridge Structural Database (CSD), collected, have contribute
to various fields of chemical research such as geometries of molecules, noncovalent interactions of molecules, and large assemblies of
molecules. The CSD also contributed to the study and the design of biologically active molecules and the study of gas storage and
delivery [1].
In our group we use analysis of the crystal structures in the CSD to recognize and characterize new types of noncovalent interactions
and to study already known noncovalent interactions. Based on the data from the CSD we can determine existence of the interactions,
frequency of the interactions, and preferred geometries of the interactions in the crystal structures. In addition, we perform quantum
chemical calculations to evaluate the energies of the interactions. Based on the calculated potential energy surfaces for the
interactions, we can determine the most stable geometries, as well as stability of various geometries. We also can determine the
interaction energies for the preferred geometries in the crystal structures. In the cases where the most preferred geometries in the
crystal structures are not the most stable geometries at the potential energy surface, one can find significant influence of the
supramolecular structures in the crystals.
Using this methodology our group recognized stacking interactions of planar metal-chelate rings; stacking interactions with organic
aromatic rings and stacking interactions between two chelate rings. The calculated energies indicate strong stacking interactions of
metal-chelate rings; the stacking of metal-chelate rings is stronger than stacking between two benzene molecules [2]. The data indicate
influence of the metal and ligand type in the metal chelate ring on the strength of the interactions. Our results also indicate strong
stacking interactions of coordinated aromatic rings [3]. Studies of interactions of coordinated water indicate stronger hydrogen bonds
and stronger OH/π interactions of coordinated in comparison to noncoordianted water molecule [4,5]. The calculations on OH/M
interactions between metal ion in square-planar complexes and water molecule indicate that these interactions are among the strongest
hydrogen bonds in any molecular system [6].
The studies on stacking interactions of benzene molecules in the crystal structures in the CSD show preference for interactions at large
horizontal displacements, while high level quantum chemical calculations indicate significantly strong interactions at large offsets; the
energy is 70% of the strongest stacking geometry [7].",
publisher = "Wiley",
journal = "25th Congress and General Assembly of the International Union of Crystallography, Prague, Czech Republic, August 2021",
title = "Study of noncovalent interactions using crystal structure data in the Cambridge Structural Database",
volume = "A77",
pages = "C192",
url = "https://hdl.handle.net/21.15107/rcub_cherry_5275"
}
Milovanović, M. R., Živković, J. M., Ninković, D., Blagojević Filipović, J. P., Vojislavljević-Vasilev, D., Veljković, I. S., Stanković, I. M., Malenov, D. P., Medaković, V., Veljković, D. Ž.,& Zarić, S. D.. (2021). Study of noncovalent interactions using crystal structure data in the Cambridge Structural Database. in 25th Congress and General Assembly of the International Union of Crystallography, Prague, Czech Republic, August 2021
Wiley., A77, C192.
https://hdl.handle.net/21.15107/rcub_cherry_5275
Milovanović MR, Živković JM, Ninković D, Blagojević Filipović JP, Vojislavljević-Vasilev D, Veljković IS, Stanković IM, Malenov DP, Medaković V, Veljković DŽ, Zarić SD. Study of noncovalent interactions using crystal structure data in the Cambridge Structural Database. in 25th Congress and General Assembly of the International Union of Crystallography, Prague, Czech Republic, August 2021. 2021;A77:C192.
https://hdl.handle.net/21.15107/rcub_cherry_5275 .
Milovanović, Milan R., Živković, Jelena M., Ninković, Dragan, Blagojević Filipović, Jelena P., Vojislavljević-Vasilev, Dubravka, Veljković, Ivana S., Stanković, Ivana M., Malenov, Dušan P., Medaković, Vesna, Veljković, Dušan Ž., Zarić, Snežana D., "Study of noncovalent interactions using crystal structure data in the Cambridge Structural Database" in 25th Congress and General Assembly of the International Union of Crystallography, Prague, Czech Republic, August 2021, A77 (2021):C192,
https://hdl.handle.net/21.15107/rcub_cherry_5275 .

Study of noncovalent interactions using crystal strucutre data and quantum chemical calculations

Milovanović, Milan R.; Živković, Jelena M.; Ninković, Dragan; Blagojević Filipović, Jelena P.; Vojislavljević-Vasilev, Dubravka; Veljković, Ivana S.; Stanković, Ivana M.; Malenov, Dušan P.; Medaković, Vesna; Veljković, Dušan Ž.; Zarić, Snežana D.

(Society of Physical Chemists of Serbia, 2021)

TY  - CONF
AU  - Milovanović, Milan R.
AU  - Živković, Jelena M.
AU  - Ninković, Dragan
AU  - Blagojević Filipović, Jelena P.
AU  - Vojislavljević-Vasilev, Dubravka
AU  - Veljković, Ivana S.
AU  - Stanković, Ivana M.
AU  - Malenov, Dušan P.
AU  - Medaković, Vesna
AU  - Veljković, Dušan Ž.
AU  - Zarić, Snežana D.
PY  - 2021
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5274
AB  - The analysis of the crystal structures in the CSD was used to recognize and characterize new types of noncovalent interactions. It was also used to study already known noncovalent interactions. Based on the data from the CSD we can determine existence of the interactions, frequency of the interactions, and preferred geometries of the interactions in the crystal structures [1,2].
The quantum chemical calculations were performed to evaluate the energies of the interactions. For the preferred geometries in the crystal structures we can calculate the interaction energies. By calculating potential energy surfaces for the interactions, we can determine the most stable geometries, as well as stability of various geometries [1,2].
Using this methodology our group recognized stacking interactions of planar metal-chelate rings; stacking interactions with organic aromatic rings, and stacking interactions between two chelate rings. The calculated energies showed that the stacking of metal-chelate rings is stronger than stacking between two benzene molecules. Studies of interactions of coordinated ligands indicate stronger noncovalent interactions that interactions of noncoordinated molecules [2].

REFERENCES
[1] Ninković, D. B., Blagojević Filipović, J. P., Hall, M. B., Brothers, E. N., Zarić, S. D. (2020) ACS Central Science, 6, 420.
[2] Malenov, D. P., Zarić, S. D. (2020) Cood. Chem. Rev. 419, 213338.
PB  - Society of Physical Chemists of Serbia
C3  - 15th International Conference on Fundamental and Applied Aspects of Physical Chemistry, Book of Abstracts
T1  - Study of noncovalent interactions using crystal strucutre data and quantum chemical calculations
UR  - https://hdl.handle.net/21.15107/rcub_cherry_5274
ER  - 
@conference{
author = "Milovanović, Milan R. and Živković, Jelena M. and Ninković, Dragan and Blagojević Filipović, Jelena P. and Vojislavljević-Vasilev, Dubravka and Veljković, Ivana S. and Stanković, Ivana M. and Malenov, Dušan P. and Medaković, Vesna and Veljković, Dušan Ž. and Zarić, Snežana D.",
year = "2021",
abstract = "The analysis of the crystal structures in the CSD was used to recognize and characterize new types of noncovalent interactions. It was also used to study already known noncovalent interactions. Based on the data from the CSD we can determine existence of the interactions, frequency of the interactions, and preferred geometries of the interactions in the crystal structures [1,2].
The quantum chemical calculations were performed to evaluate the energies of the interactions. For the preferred geometries in the crystal structures we can calculate the interaction energies. By calculating potential energy surfaces for the interactions, we can determine the most stable geometries, as well as stability of various geometries [1,2].
Using this methodology our group recognized stacking interactions of planar metal-chelate rings; stacking interactions with organic aromatic rings, and stacking interactions between two chelate rings. The calculated energies showed that the stacking of metal-chelate rings is stronger than stacking between two benzene molecules. Studies of interactions of coordinated ligands indicate stronger noncovalent interactions that interactions of noncoordinated molecules [2].

REFERENCES
[1] Ninković, D. B., Blagojević Filipović, J. P., Hall, M. B., Brothers, E. N., Zarić, S. D. (2020) ACS Central Science, 6, 420.
[2] Malenov, D. P., Zarić, S. D. (2020) Cood. Chem. Rev. 419, 213338.",
publisher = "Society of Physical Chemists of Serbia",
journal = "15th International Conference on Fundamental and Applied Aspects of Physical Chemistry, Book of Abstracts",
title = "Study of noncovalent interactions using crystal strucutre data and quantum chemical calculations",
url = "https://hdl.handle.net/21.15107/rcub_cherry_5274"
}
Milovanović, M. R., Živković, J. M., Ninković, D., Blagojević Filipović, J. P., Vojislavljević-Vasilev, D., Veljković, I. S., Stanković, I. M., Malenov, D. P., Medaković, V., Veljković, D. Ž.,& Zarić, S. D.. (2021). Study of noncovalent interactions using crystal strucutre data and quantum chemical calculations. in 15th International Conference on Fundamental and Applied Aspects of Physical Chemistry, Book of Abstracts
Society of Physical Chemists of Serbia..
https://hdl.handle.net/21.15107/rcub_cherry_5274
Milovanović MR, Živković JM, Ninković D, Blagojević Filipović JP, Vojislavljević-Vasilev D, Veljković IS, Stanković IM, Malenov DP, Medaković V, Veljković DŽ, Zarić SD. Study of noncovalent interactions using crystal strucutre data and quantum chemical calculations. in 15th International Conference on Fundamental and Applied Aspects of Physical Chemistry, Book of Abstracts. 2021;.
https://hdl.handle.net/21.15107/rcub_cherry_5274 .
Milovanović, Milan R., Živković, Jelena M., Ninković, Dragan, Blagojević Filipović, Jelena P., Vojislavljević-Vasilev, Dubravka, Veljković, Ivana S., Stanković, Ivana M., Malenov, Dušan P., Medaković, Vesna, Veljković, Dušan Ž., Zarić, Snežana D., "Study of noncovalent interactions using crystal strucutre data and quantum chemical calculations" in 15th International Conference on Fundamental and Applied Aspects of Physical Chemistry, Book of Abstracts (2021),
https://hdl.handle.net/21.15107/rcub_cherry_5274 .

Study of noncovalent interactions using crystal strucutre data and quantum chemical calculations

Milovanović, Milan R.; Živković, Jelena M.; Ninković, Dragan; Blagojević Filipović, Jelena P.; Vojislavljević-Vasilev, Dubravka; Veljković, Ivana S.; Stanković, Ivana M.; Malenov, Dušan P.; Medaković, Vesna; Veljković, Dušan Ž.; Zarić, Snežana D.

(Society of Physical Chemists of Serbia, 2021)

TY  - CONF
AU  - Milovanović, Milan R.
AU  - Živković, Jelena M.
AU  - Ninković, Dragan
AU  - Blagojević Filipović, Jelena P.
AU  - Vojislavljević-Vasilev, Dubravka
AU  - Veljković, Ivana S.
AU  - Stanković, Ivana M.
AU  - Malenov, Dušan P.
AU  - Medaković, Vesna
AU  - Veljković, Dušan Ž.
AU  - Zarić, Snežana D.
PY  - 2021
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5354
AB  - The analysis of the crystal structures in the CSD was used to recognize and characterize new types of noncovalent interactions. It was also used to study already known noncovalent interactions. Based on the data from the CSD we can determine existence of the interactions, frequency of the interactions, and preferred geometries of the interactions in the crystal structures [1,2].
The quantum chemical calculations were performed to evaluate the energies of the interactions.
For the preferred geometries in the crystal structures we can calculate the interaction energies. By
calculating potential energy surfaces for the interactions, we can determine the most stable
geometries, as well as stability of various geometries [1,2].
Using this methodology our group recognized stacking interactions of planar metal-chelate rings;
stacking interactions with organic aromatic rings, and stacking interactions between two chelate rings.
The calculated energies showed that the stacking of metal-chelate rings is stronger than stacking
between two benzene molecules. Studies of interactions of coordinated ligands indicate stronger
noncovalent interactions that interactions of noncoordinated molecules [2].
PB  - Society of Physical Chemists of Serbia
C3  - 15th International Conference on Fundamental and Applied Aspects of Physical Chemistry, PC2021, 22-22
T1  - Study of noncovalent interactions using crystal strucutre data and quantum chemical calculations
SP  - 22
EP  - 22
UR  - https://hdl.handle.net/21.15107/rcub_cherry_5354
ER  - 
@conference{
author = "Milovanović, Milan R. and Živković, Jelena M. and Ninković, Dragan and Blagojević Filipović, Jelena P. and Vojislavljević-Vasilev, Dubravka and Veljković, Ivana S. and Stanković, Ivana M. and Malenov, Dušan P. and Medaković, Vesna and Veljković, Dušan Ž. and Zarić, Snežana D.",
year = "2021",
abstract = "The analysis of the crystal structures in the CSD was used to recognize and characterize new types of noncovalent interactions. It was also used to study already known noncovalent interactions. Based on the data from the CSD we can determine existence of the interactions, frequency of the interactions, and preferred geometries of the interactions in the crystal structures [1,2].
The quantum chemical calculations were performed to evaluate the energies of the interactions.
For the preferred geometries in the crystal structures we can calculate the interaction energies. By
calculating potential energy surfaces for the interactions, we can determine the most stable
geometries, as well as stability of various geometries [1,2].
Using this methodology our group recognized stacking interactions of planar metal-chelate rings;
stacking interactions with organic aromatic rings, and stacking interactions between two chelate rings.
The calculated energies showed that the stacking of metal-chelate rings is stronger than stacking
between two benzene molecules. Studies of interactions of coordinated ligands indicate stronger
noncovalent interactions that interactions of noncoordinated molecules [2].",
publisher = "Society of Physical Chemists of Serbia",
journal = "15th International Conference on Fundamental and Applied Aspects of Physical Chemistry, PC2021, 22-22",
title = "Study of noncovalent interactions using crystal strucutre data and quantum chemical calculations",
pages = "22-22",
url = "https://hdl.handle.net/21.15107/rcub_cherry_5354"
}
Milovanović, M. R., Živković, J. M., Ninković, D., Blagojević Filipović, J. P., Vojislavljević-Vasilev, D., Veljković, I. S., Stanković, I. M., Malenov, D. P., Medaković, V., Veljković, D. Ž.,& Zarić, S. D.. (2021). Study of noncovalent interactions using crystal strucutre data and quantum chemical calculations. in 15th International Conference on Fundamental and Applied Aspects of Physical Chemistry, PC2021, 22-22
Society of Physical Chemists of Serbia., 22-22.
https://hdl.handle.net/21.15107/rcub_cherry_5354
Milovanović MR, Živković JM, Ninković D, Blagojević Filipović JP, Vojislavljević-Vasilev D, Veljković IS, Stanković IM, Malenov DP, Medaković V, Veljković DŽ, Zarić SD. Study of noncovalent interactions using crystal strucutre data and quantum chemical calculations. in 15th International Conference on Fundamental and Applied Aspects of Physical Chemistry, PC2021, 22-22. 2021;:22-22.
https://hdl.handle.net/21.15107/rcub_cherry_5354 .
Milovanović, Milan R., Živković, Jelena M., Ninković, Dragan, Blagojević Filipović, Jelena P., Vojislavljević-Vasilev, Dubravka, Veljković, Ivana S., Stanković, Ivana M., Malenov, Dušan P., Medaković, Vesna, Veljković, Dušan Ž., Zarić, Snežana D., "Study of noncovalent interactions using crystal strucutre data and quantum chemical calculations" in 15th International Conference on Fundamental and Applied Aspects of Physical Chemistry, PC2021, 22-22 (2021):22-22,
https://hdl.handle.net/21.15107/rcub_cherry_5354 .

Modification of electrostatic potentials of organometallic compounds as a tool in a design of new class of high energetic materials

Zarić, Snežana D.; Malenov, Dušan P.; Veljković, Ivana S.; Ninković, Dragan; Veljković, Dušan Ž.

(2021)

TY  - CONF
AU  - Zarić, Snežana D.
AU  - Malenov, Dušan P.
AU  - Veljković, Ivana S.
AU  - Ninković, Dragan
AU  - Veljković, Dušan Ž.
PY  - 2021
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5355
AB  - Design of new classes of high energetic materials (HEM) with lower sensitivity towards 
detonation is the ultimate goal of numerous experimental and theoretical studies.[1] One 
of the most important properties that define the impact sensitivity of HEM molecules is 
the value of molecular electrostatic potential (MEP) above the central regions of molecular 
surface. Positive values of MEP are strongly related to high sensitivity of HEM molecules 
towards detonation.[2] In our previous work, we showed that it is possible to modify MEP 
of chelate complexes by careful selection of ligands and metal atoms.[3] In this work, we 
calculated MEPs for series of metallocene molecules and analysed results in the context 
of their possible detonation properties. 
Calculations performed at B3LYP/def2TZVP level showed that negative values of MEP above 
the center of the cyclopentadienyl ligand of ferrocene (-16.55 kcal/mol) were changed to 
positive values (7.11 kcal/mol) upon the addition of NO2 substituent to cyclopentadienyl 
ligand. Results of DFT calculations also showed that changing of transition metal atom 
in metallocene molecule could be used for fine-tuning of electrostatic potential values 
above the central region of cyclopentadienyl ligands.
C3  - XXIV Conference on Organometallic Chemistry (EuCOMC XXIV Conference), Madrid, Spain, September 1-3, 2021
T1  - Modification of electrostatic potentials of organometallic compounds as a tool in a design of new class of high energetic materials
SP  - 164
EP  - 164
UR  - https://hdl.handle.net/21.15107/rcub_cherry_5355
ER  - 
@conference{
author = "Zarić, Snežana D. and Malenov, Dušan P. and Veljković, Ivana S. and Ninković, Dragan and Veljković, Dušan Ž.",
year = "2021",
abstract = "Design of new classes of high energetic materials (HEM) with lower sensitivity towards 
detonation is the ultimate goal of numerous experimental and theoretical studies.[1] One 
of the most important properties that define the impact sensitivity of HEM molecules is 
the value of molecular electrostatic potential (MEP) above the central regions of molecular 
surface. Positive values of MEP are strongly related to high sensitivity of HEM molecules 
towards detonation.[2] In our previous work, we showed that it is possible to modify MEP 
of chelate complexes by careful selection of ligands and metal atoms.[3] In this work, we 
calculated MEPs for series of metallocene molecules and analysed results in the context 
of their possible detonation properties. 
Calculations performed at B3LYP/def2TZVP level showed that negative values of MEP above 
the center of the cyclopentadienyl ligand of ferrocene (-16.55 kcal/mol) were changed to 
positive values (7.11 kcal/mol) upon the addition of NO2 substituent to cyclopentadienyl 
ligand. Results of DFT calculations also showed that changing of transition metal atom 
in metallocene molecule could be used for fine-tuning of electrostatic potential values 
above the central region of cyclopentadienyl ligands.",
journal = "XXIV Conference on Organometallic Chemistry (EuCOMC XXIV Conference), Madrid, Spain, September 1-3, 2021",
title = "Modification of electrostatic potentials of organometallic compounds as a tool in a design of new class of high energetic materials",
pages = "164-164",
url = "https://hdl.handle.net/21.15107/rcub_cherry_5355"
}
Zarić, S. D., Malenov, D. P., Veljković, I. S., Ninković, D.,& Veljković, D. Ž.. (2021). Modification of electrostatic potentials of organometallic compounds as a tool in a design of new class of high energetic materials. in XXIV Conference on Organometallic Chemistry (EuCOMC XXIV Conference), Madrid, Spain, September 1-3, 2021, 164-164.
https://hdl.handle.net/21.15107/rcub_cherry_5355
Zarić SD, Malenov DP, Veljković IS, Ninković D, Veljković DŽ. Modification of electrostatic potentials of organometallic compounds as a tool in a design of new class of high energetic materials. in XXIV Conference on Organometallic Chemistry (EuCOMC XXIV Conference), Madrid, Spain, September 1-3, 2021. 2021;:164-164.
https://hdl.handle.net/21.15107/rcub_cherry_5355 .
Zarić, Snežana D., Malenov, Dušan P., Veljković, Ivana S., Ninković, Dragan, Veljković, Dušan Ž., "Modification of electrostatic potentials of organometallic compounds as a tool in a design of new class of high energetic materials" in XXIV Conference on Organometallic Chemistry (EuCOMC XXIV Conference), Madrid, Spain, September 1-3, 2021 (2021):164-164,
https://hdl.handle.net/21.15107/rcub_cherry_5355 .

Role of hydrogen bonding in modifications of impact sensitivities of high energetic materials: evidence from crystal structures and quantum chemical calculations

Veljković, Dušan Ž.; Kretić, Danijela S.; Veljković, Ivana S.; Malenov, Dušan P.; Ninković, Dragan; Zarić, Snežana D.

(2021)

TY  - CONF
AU  - Veljković, Dušan Ž.
AU  - Kretić, Danijela S.
AU  - Veljković, Ivana S.
AU  - Malenov, Dušan P.
AU  - Ninković, Dragan
AU  - Zarić, Snežana D.
PY  - 2021
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5356
AB  - The development of new classes of high energetic materials (HEM) with high efficiency and low impact sensitivity is in the focus of
numerous experimental and theoretical studies [1]. However, the high efficiency of HEM molecules is usually related to the high
sensitivity towards detonation [2]. It is known that the sensitivity of HEM molecules towards detonation depends on many factors,
including oxygen balance, energy content, and positive values of electrostatic potential above the central regions of the molecular
surface. Analysis of positive values of molecular electrostatic potentials (MEP) showed to be an excellent tool in the assessment of
impact sensitivities of high energetic molecules since positive values of MEP above the central regions of molecules are associated
with high sensitivity towards detonation of HEM molecules [2]. Here we analysed the influence of hydrogen bonding on the values of
the electrostatic potentials of fragments of HEM molecules extracted from crystal structures [3].
Crystal structures of three selected high energetic molecules were extracted from Cambridge Structural Database (CSD) and analysed
in terms of non-covalent interactions. Three well-known HEM molecules were selected for the analysis: 1,3,5-Trinitrobenzene (TNB),
2,4,6-Trinitrophenol (TNP), and 2,4,6-Trinitrotoluene (TNT). Geometries of these molecules were used for electrostatic potentials
calculations and for the design of model systems for interaction energies calculations. Electrostatic potential maps were calculated for
TNB, TNP, and TNT geometries extracted from crystal structures for free molecules and molecules involved in hydrogen bonding.
Values of electrostatic potentials above the central regions of molecules were analysed and compared for non-bonded HEM molecules
and HEM molecules involved in hydrogen bonding.
Analysis of crystal structures showed that selected HEM molecules are involved in three types of hydrogen bonds: O-H…O-N
interactions, C-H…O-H interactions, and in the case of TNP molecule O-H…O-H interactions. Analysis of positive values of the
electrostatic potentials showed that hydrogen bonds have a significant influence on the values of the electrostatic potential in the
central regions of HEM molecules. Calculations performed at M06/cc-PVDZ level showed that in the case when HEM molecules are
involved in hydrogen bonding as hydrogen atom donors, positive values of electrostatic potentials in the centres of molecules
decreased by 20 – 25%. In the case when HEM molecules were involved in hydrogen bonding as hydrogen atom acceptors, positive
values of electrostatic potentials in the centres of HEM molecules increased by 10%.
Results presented in this study show that hydrogen bonds could be used as a tool for the modification of positive values of MEP above
the central regions of HEM molecules and for the modification of their sensitivities towards detonation. Moderate change of positive
electrostatic potential values above the central regions of HEM molecules upon formation of hydrogen bonds provide an opportunity
for fine-tuning of sensitivities of HEM molecules towards detonation.
C3  - Microsymposium, Acta Cryst.
T1  - Role of hydrogen bonding in modifications of impact sensitivities of high energetic materials:  evidence from crystal structures and quantum chemical calculations
SP  - 76
EP  - 76
UR  - https://hdl.handle.net/21.15107/rcub_cherry_5356
ER  - 
@conference{
author = "Veljković, Dušan Ž. and Kretić, Danijela S. and Veljković, Ivana S. and Malenov, Dušan P. and Ninković, Dragan and Zarić, Snežana D.",
year = "2021",
abstract = "The development of new classes of high energetic materials (HEM) with high efficiency and low impact sensitivity is in the focus of
numerous experimental and theoretical studies [1]. However, the high efficiency of HEM molecules is usually related to the high
sensitivity towards detonation [2]. It is known that the sensitivity of HEM molecules towards detonation depends on many factors,
including oxygen balance, energy content, and positive values of electrostatic potential above the central regions of the molecular
surface. Analysis of positive values of molecular electrostatic potentials (MEP) showed to be an excellent tool in the assessment of
impact sensitivities of high energetic molecules since positive values of MEP above the central regions of molecules are associated
with high sensitivity towards detonation of HEM molecules [2]. Here we analysed the influence of hydrogen bonding on the values of
the electrostatic potentials of fragments of HEM molecules extracted from crystal structures [3].
Crystal structures of three selected high energetic molecules were extracted from Cambridge Structural Database (CSD) and analysed
in terms of non-covalent interactions. Three well-known HEM molecules were selected for the analysis: 1,3,5-Trinitrobenzene (TNB),
2,4,6-Trinitrophenol (TNP), and 2,4,6-Trinitrotoluene (TNT). Geometries of these molecules were used for electrostatic potentials
calculations and for the design of model systems for interaction energies calculations. Electrostatic potential maps were calculated for
TNB, TNP, and TNT geometries extracted from crystal structures for free molecules and molecules involved in hydrogen bonding.
Values of electrostatic potentials above the central regions of molecules were analysed and compared for non-bonded HEM molecules
and HEM molecules involved in hydrogen bonding.
Analysis of crystal structures showed that selected HEM molecules are involved in three types of hydrogen bonds: O-H…O-N
interactions, C-H…O-H interactions, and in the case of TNP molecule O-H…O-H interactions. Analysis of positive values of the
electrostatic potentials showed that hydrogen bonds have a significant influence on the values of the electrostatic potential in the
central regions of HEM molecules. Calculations performed at M06/cc-PVDZ level showed that in the case when HEM molecules are
involved in hydrogen bonding as hydrogen atom donors, positive values of electrostatic potentials in the centres of molecules
decreased by 20 – 25%. In the case when HEM molecules were involved in hydrogen bonding as hydrogen atom acceptors, positive
values of electrostatic potentials in the centres of HEM molecules increased by 10%.
Results presented in this study show that hydrogen bonds could be used as a tool for the modification of positive values of MEP above
the central regions of HEM molecules and for the modification of their sensitivities towards detonation. Moderate change of positive
electrostatic potential values above the central regions of HEM molecules upon formation of hydrogen bonds provide an opportunity
for fine-tuning of sensitivities of HEM molecules towards detonation.",
journal = "Microsymposium, Acta Cryst.",
title = "Role of hydrogen bonding in modifications of impact sensitivities of high energetic materials:  evidence from crystal structures and quantum chemical calculations",
pages = "76-76",
url = "https://hdl.handle.net/21.15107/rcub_cherry_5356"
}
Veljković, D. Ž., Kretić, D. S., Veljković, I. S., Malenov, D. P., Ninković, D.,& Zarić, S. D.. (2021). Role of hydrogen bonding in modifications of impact sensitivities of high energetic materials:  evidence from crystal structures and quantum chemical calculations. in Microsymposium, Acta Cryst., 76-76.
https://hdl.handle.net/21.15107/rcub_cherry_5356
Veljković DŽ, Kretić DS, Veljković IS, Malenov DP, Ninković D, Zarić SD. Role of hydrogen bonding in modifications of impact sensitivities of high energetic materials:  evidence from crystal structures and quantum chemical calculations. in Microsymposium, Acta Cryst.. 2021;:76-76.
https://hdl.handle.net/21.15107/rcub_cherry_5356 .
Veljković, Dušan Ž., Kretić, Danijela S., Veljković, Ivana S., Malenov, Dušan P., Ninković, Dragan, Zarić, Snežana D., "Role of hydrogen bonding in modifications of impact sensitivities of high energetic materials:  evidence from crystal structures and quantum chemical calculations" in Microsymposium, Acta Cryst. (2021):76-76,
https://hdl.handle.net/21.15107/rcub_cherry_5356 .

Улога нековалентних интеракција у модификовању особина високоенергетских материјала

Veljković, Dušan Ž.; Kretić, Danijela S.; Malenov, Dušan P.; Veljković, Ivana S.; Ninković, Dragan; Zarić, Snežana D.

(Beograd : Srpsko hemijsko društvo, 2021)

TY  - CONF
AU  - Veljković, Dušan Ž.
AU  - Kretić, Danijela S.
AU  - Malenov, Dušan P.
AU  - Veljković, Ivana S.
AU  - Ninković, Dragan
AU  - Zarić, Snežana D.
PY  - 2021
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5375
AB  - У овом раду смо испитивали утицај нековалентних интеракција на електростатичке 
потенцијале и осетљивост ка детонацији одабраних високоенергетских молекула. Резултати 
прорачуна рађених на M06/cc-PVDZ нивоу су показали да водоничне везе значајно утичу на 
вредности електростатичког потенцијала и осетљивост ка детонацији високоенергетских 
молекула. У случајевима када високоенергетски молекул игра улогу акцептора водоника, 
вредности електростатичког потенцијала изнад центара високоенергетских молекула се 
смањују за 20-25%. Ово даје могућност за коришћење водоничног везивања за 
модификовање осетљивости високоенергетских молекула.
PB  - Beograd : Srpsko hemijsko društvo
C3  - 57. Savetovanje Srpskog hemijskog društva, Kragujevac 18. i 19. jun 2021.
T1  - Улога нековалентних интеракција у модификовању особина високоенергетских  материјала
T1  - Role of non-covalent interactions in modification of properties of high energetic materials
SP  - 98
EP  - 98
UR  - https://hdl.handle.net/21.15107/rcub_cherry_5375
ER  - 
@conference{
author = "Veljković, Dušan Ž. and Kretić, Danijela S. and Malenov, Dušan P. and Veljković, Ivana S. and Ninković, Dragan and Zarić, Snežana D.",
year = "2021",
abstract = "У овом раду смо испитивали утицај нековалентних интеракција на електростатичке 
потенцијале и осетљивост ка детонацији одабраних високоенергетских молекула. Резултати 
прорачуна рађених на M06/cc-PVDZ нивоу су показали да водоничне везе значајно утичу на 
вредности електростатичког потенцијала и осетљивост ка детонацији високоенергетских 
молекула. У случајевима када високоенергетски молекул игра улогу акцептора водоника, 
вредности електростатичког потенцијала изнад центара високоенергетских молекула се 
смањују за 20-25%. Ово даје могућност за коришћење водоничног везивања за 
модификовање осетљивости високоенергетских молекула.",
publisher = "Beograd : Srpsko hemijsko društvo",
journal = "57. Savetovanje Srpskog hemijskog društva, Kragujevac 18. i 19. jun 2021.",
title = "Улога нековалентних интеракција у модификовању особина високоенергетских  материјала, Role of non-covalent interactions in modification of properties of high energetic materials",
pages = "98-98",
url = "https://hdl.handle.net/21.15107/rcub_cherry_5375"
}
Veljković, D. Ž., Kretić, D. S., Malenov, D. P., Veljković, I. S., Ninković, D.,& Zarić, S. D.. (2021). Улога нековалентних интеракција у модификовању особина високоенергетских  материјала. in 57. Savetovanje Srpskog hemijskog društva, Kragujevac 18. i 19. jun 2021.
Beograd : Srpsko hemijsko društvo., 98-98.
https://hdl.handle.net/21.15107/rcub_cherry_5375
Veljković DŽ, Kretić DS, Malenov DP, Veljković IS, Ninković D, Zarić SD. Улога нековалентних интеракција у модификовању особина високоенергетских  материјала. in 57. Savetovanje Srpskog hemijskog društva, Kragujevac 18. i 19. jun 2021.. 2021;:98-98.
https://hdl.handle.net/21.15107/rcub_cherry_5375 .
Veljković, Dušan Ž., Kretić, Danijela S., Malenov, Dušan P., Veljković, Ivana S., Ninković, Dragan, Zarić, Snežana D., "Улога нековалентних интеракција у модификовању особина високоенергетских  материјала" in 57. Savetovanje Srpskog hemijskog društva, Kragujevac 18. i 19. jun 2021. (2021):98-98,
https://hdl.handle.net/21.15107/rcub_cherry_5375 .

New Type of Aromatic π-Systems for Anion Recognition: Strong Anion-π and C−H⋅⋅⋅Anion Interactions Between Halides and Aromatic Ligands in Half-Sandwich Compounds

Malenov, Dušan P.; Zarić, Snežana D.

(Wiley, 2021)

TY  - JOUR
AU  - Malenov, Dušan P.
AU  - Zarić, Snežana D.
PY  - 2021
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/4873
AB  - Half-sandwich compounds of benzene, cyclopentadienyl, pentamethylcyclopentadienyl, and indenyl were studied as a new type of aromatic π-systems for interactions with halide anions. Although uncoordinated benzene forms only C−H⋅⋅⋅anion interactions, and hexafluorobenzene forms only anion-π interactions, aromatic ligands in half-sandwich compounds can form both types of interactions, because their entire electrostatic potential surface is positive. These aromatic ligands can form stronger anion-π interactions than organic aromatic molecules, as a consequence of more pronounced dispersion and induction energy components. Moreover, C−H⋅⋅⋅anion interactions of aromatic ligands are stronger than anion-π interactions, and significantly stronger than C−H⋅⋅⋅anion interactions of benzene. Our study shows that transition-metal coordination can make aromatic moieties suitable for strong interactions with anions, and gives insight into the design of new anion receptors.
PB  - Wiley
T2  - Chemistry – A European Journal
T1  - New Type of Aromatic π-Systems for Anion Recognition: Strong Anion-π and C−H⋅⋅⋅Anion Interactions Between Halides and Aromatic Ligands in Half-Sandwich Compounds
VL  - 27
IS  - 71
SP  - 17862
EP  - 17872
DO  - 10.1002/chem.202102896
ER  - 
@article{
author = "Malenov, Dušan P. and Zarić, Snežana D.",
year = "2021",
abstract = "Half-sandwich compounds of benzene, cyclopentadienyl, pentamethylcyclopentadienyl, and indenyl were studied as a new type of aromatic π-systems for interactions with halide anions. Although uncoordinated benzene forms only C−H⋅⋅⋅anion interactions, and hexafluorobenzene forms only anion-π interactions, aromatic ligands in half-sandwich compounds can form both types of interactions, because their entire electrostatic potential surface is positive. These aromatic ligands can form stronger anion-π interactions than organic aromatic molecules, as a consequence of more pronounced dispersion and induction energy components. Moreover, C−H⋅⋅⋅anion interactions of aromatic ligands are stronger than anion-π interactions, and significantly stronger than C−H⋅⋅⋅anion interactions of benzene. Our study shows that transition-metal coordination can make aromatic moieties suitable for strong interactions with anions, and gives insight into the design of new anion receptors.",
publisher = "Wiley",
journal = "Chemistry – A European Journal",
title = "New Type of Aromatic π-Systems for Anion Recognition: Strong Anion-π and C−H⋅⋅⋅Anion Interactions Between Halides and Aromatic Ligands in Half-Sandwich Compounds",
volume = "27",
number = "71",
pages = "17862-17872",
doi = "10.1002/chem.202102896"
}
Malenov, D. P.,& Zarić, S. D.. (2021). New Type of Aromatic π-Systems for Anion Recognition: Strong Anion-π and C−H⋅⋅⋅Anion Interactions Between Halides and Aromatic Ligands in Half-Sandwich Compounds. in Chemistry – A European Journal
Wiley., 27(71), 17862-17872.
https://doi.org/10.1002/chem.202102896
Malenov DP, Zarić SD. New Type of Aromatic π-Systems for Anion Recognition: Strong Anion-π and C−H⋅⋅⋅Anion Interactions Between Halides and Aromatic Ligands in Half-Sandwich Compounds. in Chemistry – A European Journal. 2021;27(71):17862-17872.
doi:10.1002/chem.202102896 .
Malenov, Dušan P., Zarić, Snežana D., "New Type of Aromatic π-Systems for Anion Recognition: Strong Anion-π and C−H⋅⋅⋅Anion Interactions Between Halides and Aromatic Ligands in Half-Sandwich Compounds" in Chemistry – A European Journal, 27, no. 71 (2021):17862-17872,
https://doi.org/10.1002/chem.202102896 . .
2
4
1
1

Supplementary data for article: Malenov, D. P.; Zarić, S. D. New Type of Aromatic π-Systems for Anion Recognition: Strong Anion-π and C−H⋅⋅⋅Anion Interactions Between Halides and Aromatic Ligands in Half-Sandwich Compounds. Chemistry – A European Journal 2021, 27 (71), 17862–17872. https://doi.org/10.1002/chem.202102896.

Malenov, Dušan P.; Zarić, Snežana D.

(Wiley, 2021)

TY  - DATA
AU  - Malenov, Dušan P.
AU  - Zarić, Snežana D.
PY  - 2021
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/4874
PB  - Wiley
T2  - Chemistry – A European Journal
T1  - Supplementary data for article: Malenov, D. P.; Zarić, S. D. New Type of Aromatic π-Systems for Anion Recognition: Strong Anion-π and C−H⋅⋅⋅Anion Interactions Between Halides and Aromatic Ligands in Half-Sandwich Compounds. Chemistry – A European Journal 2021, 27 (71), 17862–17872. https://doi.org/10.1002/chem.202102896.
UR  - https://hdl.handle.net/21.15107/rcub_cherry_4874
ER  - 
@misc{
author = "Malenov, Dušan P. and Zarić, Snežana D.",
year = "2021",
publisher = "Wiley",
journal = "Chemistry – A European Journal",
title = "Supplementary data for article: Malenov, D. P.; Zarić, S. D. New Type of Aromatic π-Systems for Anion Recognition: Strong Anion-π and C−H⋅⋅⋅Anion Interactions Between Halides and Aromatic Ligands in Half-Sandwich Compounds. Chemistry – A European Journal 2021, 27 (71), 17862–17872. https://doi.org/10.1002/chem.202102896.",
url = "https://hdl.handle.net/21.15107/rcub_cherry_4874"
}
Malenov, D. P.,& Zarić, S. D.. (2021). Supplementary data for article: Malenov, D. P.; Zarić, S. D. New Type of Aromatic π-Systems for Anion Recognition: Strong Anion-π and C−H⋅⋅⋅Anion Interactions Between Halides and Aromatic Ligands in Half-Sandwich Compounds. Chemistry – A European Journal 2021, 27 (71), 17862–17872. https://doi.org/10.1002/chem.202102896.. in Chemistry – A European Journal
Wiley..
https://hdl.handle.net/21.15107/rcub_cherry_4874
Malenov DP, Zarić SD. Supplementary data for article: Malenov, D. P.; Zarić, S. D. New Type of Aromatic π-Systems for Anion Recognition: Strong Anion-π and C−H⋅⋅⋅Anion Interactions Between Halides and Aromatic Ligands in Half-Sandwich Compounds. Chemistry – A European Journal 2021, 27 (71), 17862–17872. https://doi.org/10.1002/chem.202102896.. in Chemistry – A European Journal. 2021;.
https://hdl.handle.net/21.15107/rcub_cherry_4874 .
Malenov, Dušan P., Zarić, Snežana D., "Supplementary data for article: Malenov, D. P.; Zarić, S. D. New Type of Aromatic π-Systems for Anion Recognition: Strong Anion-π and C−H⋅⋅⋅Anion Interactions Between Halides and Aromatic Ligands in Half-Sandwich Compounds. Chemistry – A European Journal 2021, 27 (71), 17862–17872. https://doi.org/10.1002/chem.202102896." in Chemistry – A European Journal (2021),
https://hdl.handle.net/21.15107/rcub_cherry_4874 .

Stacking interactions of the methyl­ated cyclo­pentadienyl ligands in the crystal structures of transition metal complexes

Malenov, Dušan P.; Blagojević Filipović, Jelena P.; Zarić, Snežana D.

(International Union of Crystallography, 2020)

TY  - JOUR
AU  - Malenov, Dušan P.
AU  - Blagojević Filipović, Jelena P.
AU  - Zarić, Snežana D.
PY  - 2020
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4029
AB  - In the crystal structures of methylated cyclopentadienyl (Cp) complexes (MeCp, Me4Cp and Me5Cp) deposited in the Cambridge Structural Database, certain orientation types of stacked contacts can be noted as the most frequent. These orientation preferences can be well explained by the matching of oppositely charged regions of electrostatic potential. Parallel displaced stacking, large offset stacking and C - H⋯π interactions are the dominant interaction types that are responsible for the arrangement in the crystal structures of stacked methylated Cp complexes.
PB  - International Union of Crystallography
T2  - Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials
T1  - Stacking interactions of the methyl­ated cyclo­pentadienyl ligands in the crystal structures of transition metal complexes
VL  - 76
IS  - 2
SP  - 252
EP  - 258
DO  - 10.1107/S2052520620002206
ER  - 
@article{
author = "Malenov, Dušan P. and Blagojević Filipović, Jelena P. and Zarić, Snežana D.",
year = "2020",
abstract = "In the crystal structures of methylated cyclopentadienyl (Cp) complexes (MeCp, Me4Cp and Me5Cp) deposited in the Cambridge Structural Database, certain orientation types of stacked contacts can be noted as the most frequent. These orientation preferences can be well explained by the matching of oppositely charged regions of electrostatic potential. Parallel displaced stacking, large offset stacking and C - H⋯π interactions are the dominant interaction types that are responsible for the arrangement in the crystal structures of stacked methylated Cp complexes.",
publisher = "International Union of Crystallography",
journal = "Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials",
title = "Stacking interactions of the methyl­ated cyclo­pentadienyl ligands in the crystal structures of transition metal complexes",
volume = "76",
number = "2",
pages = "252-258",
doi = "10.1107/S2052520620002206"
}
Malenov, D. P., Blagojević Filipović, J. P.,& Zarić, S. D.. (2020). Stacking interactions of the methyl­ated cyclo­pentadienyl ligands in the crystal structures of transition metal complexes. in Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials
International Union of Crystallography., 76(2), 252-258.
https://doi.org/10.1107/S2052520620002206
Malenov DP, Blagojević Filipović JP, Zarić SD. Stacking interactions of the methyl­ated cyclo­pentadienyl ligands in the crystal structures of transition metal complexes. in Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials. 2020;76(2):252-258.
doi:10.1107/S2052520620002206 .
Malenov, Dušan P., Blagojević Filipović, Jelena P., Zarić, Snežana D., "Stacking interactions of the methyl­ated cyclo­pentadienyl ligands in the crystal structures of transition metal complexes" in Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 76, no. 2 (2020):252-258,
https://doi.org/10.1107/S2052520620002206 . .
1
4
1
3
3

Stacking interactions of aromatic ligands in transition metal complexes

Malenov, Dušan P.; Zarić, Snežana D.

(Elsevier, 2020)

TY  - JOUR
AU  - Malenov, Dušan P.
AU  - Zarić, Snežana D.
PY  - 2020
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4030
AB  - In this review article we present all the recent research on stacking interactions of aromatic ligands that coordinate to transition metals through their π-electrons (η-coordination). These studies were mostly based on searching the crystal structures from the Cambridge Structural Database (CSD) and on quantum chemical calculations. Stacking interactions between coordinated and uncoordinated benzene reach the energy of −4.40 kcal/mol, while the strongest calculated staking between two coordinated benzenes has the energy of −4.01 kcal/mol; this is significantly stronger than stacking between two uncoordinated benzenes (−2.73 kcal/mol). It was determined that in crystal structures both coordinated benzene and coordinated cyclopentadienyl anion form stacking interactions that dominantly have large horizontal displacements (more than 4.5 Å). This dominance is caused by the relatively strong stacking interactions at large displacements between benzene or Cp ligands in sandwich compounds, while for half-sandwich compounds they are supported by additional interactions of the other (usually branched) ligands. Larger aromatic ligands, tropylium and cyclooctatetraenide, almost exclusively form stacking interactions with large horizontal displacements. Methyl substituted benzene and Cp ligands dominantly form stacking interactions in combination with C–H/π interactions. Moreover, there is an interplay of stacking and aromatic C–H/π interactions in the CSD crystal structures, both interactions being important energy contributors to the stability of supramolecular systems. Stacking interactions of η-coordinated aromatic ligands are important in materials science, crystal engineering and medicinal chemistry, primarily in the application of ruthenium-arene complexes, where they determine the strength of bonding of these complexes to the DNA.
PB  - Elsevier
T2  - Coordination Chemistry Reviews
T1  - Stacking interactions of aromatic ligands in transition metal complexes
VL  - 419
SP  - 213338
DO  - 10.1016/j.ccr.2020.213338
ER  - 
@article{
author = "Malenov, Dušan P. and Zarić, Snežana D.",
year = "2020",
abstract = "In this review article we present all the recent research on stacking interactions of aromatic ligands that coordinate to transition metals through their π-electrons (η-coordination). These studies were mostly based on searching the crystal structures from the Cambridge Structural Database (CSD) and on quantum chemical calculations. Stacking interactions between coordinated and uncoordinated benzene reach the energy of −4.40 kcal/mol, while the strongest calculated staking between two coordinated benzenes has the energy of −4.01 kcal/mol; this is significantly stronger than stacking between two uncoordinated benzenes (−2.73 kcal/mol). It was determined that in crystal structures both coordinated benzene and coordinated cyclopentadienyl anion form stacking interactions that dominantly have large horizontal displacements (more than 4.5 Å). This dominance is caused by the relatively strong stacking interactions at large displacements between benzene or Cp ligands in sandwich compounds, while for half-sandwich compounds they are supported by additional interactions of the other (usually branched) ligands. Larger aromatic ligands, tropylium and cyclooctatetraenide, almost exclusively form stacking interactions with large horizontal displacements. Methyl substituted benzene and Cp ligands dominantly form stacking interactions in combination with C–H/π interactions. Moreover, there is an interplay of stacking and aromatic C–H/π interactions in the CSD crystal structures, both interactions being important energy contributors to the stability of supramolecular systems. Stacking interactions of η-coordinated aromatic ligands are important in materials science, crystal engineering and medicinal chemistry, primarily in the application of ruthenium-arene complexes, where they determine the strength of bonding of these complexes to the DNA.",
publisher = "Elsevier",
journal = "Coordination Chemistry Reviews",
title = "Stacking interactions of aromatic ligands in transition metal complexes",
volume = "419",
pages = "213338",
doi = "10.1016/j.ccr.2020.213338"
}
Malenov, D. P.,& Zarić, S. D.. (2020). Stacking interactions of aromatic ligands in transition metal complexes. in Coordination Chemistry Reviews
Elsevier., 419, 213338.
https://doi.org/10.1016/j.ccr.2020.213338
Malenov DP, Zarić SD. Stacking interactions of aromatic ligands in transition metal complexes. in Coordination Chemistry Reviews. 2020;419:213338.
doi:10.1016/j.ccr.2020.213338 .
Malenov, Dušan P., Zarić, Snežana D., "Stacking interactions of aromatic ligands in transition metal complexes" in Coordination Chemistry Reviews, 419 (2020):213338,
https://doi.org/10.1016/j.ccr.2020.213338 . .
27
15
23
20

Supplementary data for the article: Malenov, D. P.; Zarić, S. D. Stacking Interactions of Aromatic Ligands in Transition Metal Complexes. Coordination Chemistry Reviews 2020, 419, 213338. https://doi.org/10.1016/j.ccr.2020.213338

Malenov, Dušan P.; Zarić, Snežana D.

(Elsevier, 2020)

TY  - DATA
AU  - Malenov, Dušan P.
AU  - Zarić, Snežana D.
PY  - 2020
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4031
PB  - Elsevier
T2  - Coordination Chemistry Reviews
T1  - Supplementary data for the article: Malenov, D. P.; Zarić, S. D. Stacking Interactions of Aromatic Ligands in Transition Metal Complexes. Coordination Chemistry Reviews 2020, 419, 213338. https://doi.org/10.1016/j.ccr.2020.213338
UR  - https://hdl.handle.net/21.15107/rcub_cherry_4031
ER  - 
@misc{
author = "Malenov, Dušan P. and Zarić, Snežana D.",
year = "2020",
publisher = "Elsevier",
journal = "Coordination Chemistry Reviews",
title = "Supplementary data for the article: Malenov, D. P.; Zarić, S. D. Stacking Interactions of Aromatic Ligands in Transition Metal Complexes. Coordination Chemistry Reviews 2020, 419, 213338. https://doi.org/10.1016/j.ccr.2020.213338",
url = "https://hdl.handle.net/21.15107/rcub_cherry_4031"
}
Malenov, D. P.,& Zarić, S. D.. (2020). Supplementary data for the article: Malenov, D. P.; Zarić, S. D. Stacking Interactions of Aromatic Ligands in Transition Metal Complexes. Coordination Chemistry Reviews 2020, 419, 213338. https://doi.org/10.1016/j.ccr.2020.213338. in Coordination Chemistry Reviews
Elsevier..
https://hdl.handle.net/21.15107/rcub_cherry_4031
Malenov DP, Zarić SD. Supplementary data for the article: Malenov, D. P.; Zarić, S. D. Stacking Interactions of Aromatic Ligands in Transition Metal Complexes. Coordination Chemistry Reviews 2020, 419, 213338. https://doi.org/10.1016/j.ccr.2020.213338. in Coordination Chemistry Reviews. 2020;.
https://hdl.handle.net/21.15107/rcub_cherry_4031 .
Malenov, Dušan P., Zarić, Snežana D., "Supplementary data for the article: Malenov, D. P.; Zarić, S. D. Stacking Interactions of Aromatic Ligands in Transition Metal Complexes. Coordination Chemistry Reviews 2020, 419, 213338. https://doi.org/10.1016/j.ccr.2020.213338" in Coordination Chemistry Reviews (2020),
https://hdl.handle.net/21.15107/rcub_cherry_4031 .

Stacking Interactions between Indenyl Ligands of Transition Metal Complexes: Crystallographic and Density Functional Study

Malenov, Dušan P.; Zarić, Snežana D.

(American Chemical Society, 2020)

TY  - JOUR
AU  - Malenov, Dušan P.
AU  - Zarić, Snežana D.
PY  - 2020
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4335
AB  - The analysis of crystal structures deposited in the Cambridge Structural Database showed that indenyl ligands of transition metal complexes prefer to form stacking interactions with one of the three geometries: two of them (types 1 and 2) at small horizontal displacements and one (type 3) at large horizontal displacements. Density functional theory calculations on several model molecules showed that types 1 and 2 are minima at potential energy surfaces, with substantial interaction energies that surpass −8.0 kcal/mol. Type 3 has a small energy contribution (around −2.0 kcal/mol) to the stability of supramolecular structures; however, it is combined with simultaneous stronger stacking or aromatic C–H/π interactions. Stacking of indenyl ligands is significantly stronger than the stacking of corresponding cyclopentadienyl ligands (−3.0 kcal/mol), due to the larger size of the indenyl ligand. The strength of stacking interactions depends on the electrostatic potential surface of indenyl ligands, depending on the nature and number of the other ligands of the transition metal.
PB  - American Chemical Society
T2  - Crystal Growth & Design
T1  - Stacking Interactions between Indenyl Ligands of Transition Metal Complexes: Crystallographic and Density Functional Study
VL  - 20
IS  - 7
SP  - 4491
EP  - 4502
DO  - 10.1021/acs.cgd.0c00303
ER  - 
@article{
author = "Malenov, Dušan P. and Zarić, Snežana D.",
year = "2020",
abstract = "The analysis of crystal structures deposited in the Cambridge Structural Database showed that indenyl ligands of transition metal complexes prefer to form stacking interactions with one of the three geometries: two of them (types 1 and 2) at small horizontal displacements and one (type 3) at large horizontal displacements. Density functional theory calculations on several model molecules showed that types 1 and 2 are minima at potential energy surfaces, with substantial interaction energies that surpass −8.0 kcal/mol. Type 3 has a small energy contribution (around −2.0 kcal/mol) to the stability of supramolecular structures; however, it is combined with simultaneous stronger stacking or aromatic C–H/π interactions. Stacking of indenyl ligands is significantly stronger than the stacking of corresponding cyclopentadienyl ligands (−3.0 kcal/mol), due to the larger size of the indenyl ligand. The strength of stacking interactions depends on the electrostatic potential surface of indenyl ligands, depending on the nature and number of the other ligands of the transition metal.",
publisher = "American Chemical Society",
journal = "Crystal Growth & Design",
title = "Stacking Interactions between Indenyl Ligands of Transition Metal Complexes: Crystallographic and Density Functional Study",
volume = "20",
number = "7",
pages = "4491-4502",
doi = "10.1021/acs.cgd.0c00303"
}
Malenov, D. P.,& Zarić, S. D.. (2020). Stacking Interactions between Indenyl Ligands of Transition Metal Complexes: Crystallographic and Density Functional Study. in Crystal Growth & Design
American Chemical Society., 20(7), 4491-4502.
https://doi.org/10.1021/acs.cgd.0c00303
Malenov DP, Zarić SD. Stacking Interactions between Indenyl Ligands of Transition Metal Complexes: Crystallographic and Density Functional Study. in Crystal Growth & Design. 2020;20(7):4491-4502.
doi:10.1021/acs.cgd.0c00303 .
Malenov, Dušan P., Zarić, Snežana D., "Stacking Interactions between Indenyl Ligands of Transition Metal Complexes: Crystallographic and Density Functional Study" in Crystal Growth & Design, 20, no. 7 (2020):4491-4502,
https://doi.org/10.1021/acs.cgd.0c00303 . .
2
4
2
4
3

Strong stacking interactions at large horizontal displacements of tropylium and cyclooctatetraenide ligands of transition metal complexes: crystallographic and DFT study

Malenov, Dušan P.; Zarić, Snežana D.

(Royal Society of Chemistry, 2020)

TY  - JOUR
AU  - Malenov, Dušan P.
AU  - Zarić, Snežana D.
PY  - 2020
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4336
AB  - A Cambridge Structural Database (CSD) search was performed in order to study the stacking interactions of the 7-membered tropylium ring and 8-membered cyclooctatetraenide (COT) ring, coordinated to transition metals via their π-electrons. The search showed that both ligands have very high preference for stacking interactions with large horizontal displacements. These interactions leave tropylium and COT faces available for additional simultaneous (mostly C–H/π and in some cases stacking) interactions, which lead to very stable supramolecular structures. DFT calculations on model molecules derived from CSD crystal structures showed that large offset stacking of both tropylium and COT ligands surpasses −3.0 kcal mol−1, which makes them important contributors to the overall stability of the systems they are found in. Small offset stacking of tropylium and COT ligands, which is the strongest type of stacking, is almost not found in the CSD crystal structures, which can be explained based on the fact that they do not enable additional simultaneous interactions with molecules from the environment. Stacking of tropylium and COT ligands occurs at larger offsets than stacking of benzene and cyclopentadienyl ligands, which can be rationalized with their larger size, as well as with their electrostatic potential surfaces.
PB  - Royal Society of Chemistry
T2  - CrystEngComm
T1  - Strong stacking interactions at large horizontal displacements of tropylium and cyclooctatetraenide ligands of transition metal complexes: crystallographic and DFT study
VL  - 22
IS  - 22
SP  - 3831
EP  - 3839
DO  - 10.1039/D0CE00501K
ER  - 
@article{
author = "Malenov, Dušan P. and Zarić, Snežana D.",
year = "2020",
abstract = "A Cambridge Structural Database (CSD) search was performed in order to study the stacking interactions of the 7-membered tropylium ring and 8-membered cyclooctatetraenide (COT) ring, coordinated to transition metals via their π-electrons. The search showed that both ligands have very high preference for stacking interactions with large horizontal displacements. These interactions leave tropylium and COT faces available for additional simultaneous (mostly C–H/π and in some cases stacking) interactions, which lead to very stable supramolecular structures. DFT calculations on model molecules derived from CSD crystal structures showed that large offset stacking of both tropylium and COT ligands surpasses −3.0 kcal mol−1, which makes them important contributors to the overall stability of the systems they are found in. Small offset stacking of tropylium and COT ligands, which is the strongest type of stacking, is almost not found in the CSD crystal structures, which can be explained based on the fact that they do not enable additional simultaneous interactions with molecules from the environment. Stacking of tropylium and COT ligands occurs at larger offsets than stacking of benzene and cyclopentadienyl ligands, which can be rationalized with their larger size, as well as with their electrostatic potential surfaces.",
publisher = "Royal Society of Chemistry",
journal = "CrystEngComm",
title = "Strong stacking interactions at large horizontal displacements of tropylium and cyclooctatetraenide ligands of transition metal complexes: crystallographic and DFT study",
volume = "22",
number = "22",
pages = "3831-3839",
doi = "10.1039/D0CE00501K"
}
Malenov, D. P.,& Zarić, S. D.. (2020). Strong stacking interactions at large horizontal displacements of tropylium and cyclooctatetraenide ligands of transition metal complexes: crystallographic and DFT study. in CrystEngComm
Royal Society of Chemistry., 22(22), 3831-3839.
https://doi.org/10.1039/D0CE00501K
Malenov DP, Zarić SD. Strong stacking interactions at large horizontal displacements of tropylium and cyclooctatetraenide ligands of transition metal complexes: crystallographic and DFT study. in CrystEngComm. 2020;22(22):3831-3839.
doi:10.1039/D0CE00501K .
Malenov, Dušan P., Zarić, Snežana D., "Strong stacking interactions at large horizontal displacements of tropylium and cyclooctatetraenide ligands of transition metal complexes: crystallographic and DFT study" in CrystEngComm, 22, no. 22 (2020):3831-3839,
https://doi.org/10.1039/D0CE00501K . .
3
2
3
2

Stacking Interactions between Indenyl Ligands of Transition Metal Complexes: Crystallographic and Density Functional Study

Malenov, Dušan P.; Zarić, Snežana D.

(American Chemical Society, 2020)

TY  - JOUR
AU  - Malenov, Dušan P.
AU  - Zarić, Snežana D.
PY  - 2020
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4345
AB  - The analysis of crystal structures deposited in the Cambridge Structural Database showed that indenyl ligands of transition metal complexes prefer to form stacking interactions with one of the three geometries: two of them (types 1 and 2) at small horizontal displacements and one (type 3) at large horizontal displacements. Density functional theory calculations on several model molecules showed that types 1 and 2 are minima at potential energy surfaces, with substantial interaction energies that surpass −8.0 kcal/mol. Type 3 has a small energy contribution (around −2.0 kcal/mol) to the stability of supramolecular structures; however, it is combined with simultaneous stronger stacking or aromatic C–H/π interactions. Stacking of indenyl ligands is significantly stronger than the stacking of corresponding cyclopentadienyl ligands (−3.0 kcal/mol), due to the larger size of the indenyl ligand. The strength of stacking interactions depends on the electrostatic potential surface of indenyl ligands, depending on the nature and number of the other ligands of the transition metal.
PB  - American Chemical Society
T2  - Crystal Growth & Design
T1  - Stacking Interactions between Indenyl Ligands of Transition Metal Complexes: Crystallographic and Density Functional Study
VL  - 20
IS  - 7
SP  - 4491
EP  - 4502
DO  - 10.1021/acs.cgd.0c00303
ER  - 
@article{
author = "Malenov, Dušan P. and Zarić, Snežana D.",
year = "2020",
abstract = "The analysis of crystal structures deposited in the Cambridge Structural Database showed that indenyl ligands of transition metal complexes prefer to form stacking interactions with one of the three geometries: two of them (types 1 and 2) at small horizontal displacements and one (type 3) at large horizontal displacements. Density functional theory calculations on several model molecules showed that types 1 and 2 are minima at potential energy surfaces, with substantial interaction energies that surpass −8.0 kcal/mol. Type 3 has a small energy contribution (around −2.0 kcal/mol) to the stability of supramolecular structures; however, it is combined with simultaneous stronger stacking or aromatic C–H/π interactions. Stacking of indenyl ligands is significantly stronger than the stacking of corresponding cyclopentadienyl ligands (−3.0 kcal/mol), due to the larger size of the indenyl ligand. The strength of stacking interactions depends on the electrostatic potential surface of indenyl ligands, depending on the nature and number of the other ligands of the transition metal.",
publisher = "American Chemical Society",
journal = "Crystal Growth & Design",
title = "Stacking Interactions between Indenyl Ligands of Transition Metal Complexes: Crystallographic and Density Functional Study",
volume = "20",
number = "7",
pages = "4491-4502",
doi = "10.1021/acs.cgd.0c00303"
}
Malenov, D. P.,& Zarić, S. D.. (2020). Stacking Interactions between Indenyl Ligands of Transition Metal Complexes: Crystallographic and Density Functional Study. in Crystal Growth & Design
American Chemical Society., 20(7), 4491-4502.
https://doi.org/10.1021/acs.cgd.0c00303
Malenov DP, Zarić SD. Stacking Interactions between Indenyl Ligands of Transition Metal Complexes: Crystallographic and Density Functional Study. in Crystal Growth & Design. 2020;20(7):4491-4502.
doi:10.1021/acs.cgd.0c00303 .
Malenov, Dušan P., Zarić, Snežana D., "Stacking Interactions between Indenyl Ligands of Transition Metal Complexes: Crystallographic and Density Functional Study" in Crystal Growth & Design, 20, no. 7 (2020):4491-4502,
https://doi.org/10.1021/acs.cgd.0c00303 . .
2
4
2
4
3

π-π interactions in organic, coordination, and organometallic compounds

Ninković, Dragan B.; Malenov, Dušan P.; Blagojević Filipović, Jelena P.; Živković, Jelena M.; Zarić, Snežana D.

(2019)

TY  - CONF
AU  - Ninković, Dragan B.
AU  - Malenov, Dušan P.
AU  - Blagojević Filipović, Jelena P.
AU  - Živković, Jelena M.
AU  - Zarić, Snežana D.
PY  - 2019
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/6369
C3  - 1st International Conference on Noncovalent Interactions (ICNI-2019)
T1  - π-π interactions in organic, coordination, and organometallic compounds
UR  - https://hdl.handle.net/21.15107/rcub_cherry_6369
ER  - 
@conference{
author = "Ninković, Dragan B. and Malenov, Dušan P. and Blagojević Filipović, Jelena P. and Živković, Jelena M. and Zarić, Snežana D.",
year = "2019",
journal = "1st International Conference on Noncovalent Interactions (ICNI-2019)",
title = "π-π interactions in organic, coordination, and organometallic compounds",
url = "https://hdl.handle.net/21.15107/rcub_cherry_6369"
}
Ninković, D. B., Malenov, D. P., Blagojević Filipović, J. P., Živković, J. M.,& Zarić, S. D.. (2019). π-π interactions in organic, coordination, and organometallic compounds. in 1st International Conference on Noncovalent Interactions (ICNI-2019).
https://hdl.handle.net/21.15107/rcub_cherry_6369
Ninković DB, Malenov DP, Blagojević Filipović JP, Živković JM, Zarić SD. π-π interactions in organic, coordination, and organometallic compounds. in 1st International Conference on Noncovalent Interactions (ICNI-2019). 2019;.
https://hdl.handle.net/21.15107/rcub_cherry_6369 .
Ninković, Dragan B., Malenov, Dušan P., Blagojević Filipović, Jelena P., Živković, Jelena M., Zarić, Snežana D., "π-π interactions in organic, coordination, and organometallic compounds" in 1st International Conference on Noncovalent Interactions (ICNI-2019) (2019),
https://hdl.handle.net/21.15107/rcub_cherry_6369 .

Нековалентне интеракције комплекса метала и ароматичних молекула

Ninković, Dragan; Veljković, Dušan Ž.; Malenov, Dušan P.; Milovanović, Milan R.; Živković, Jelena M.; Stanković, Ivana M.; Veljković, Ivana S.; Medaković, Vesna; Blagojević Filipović, Jelena P.; Vojislavljević-Vasilev, Dubravka; Zarić, Snežana D.

(Српско кристалографско друштво, 2019)

TY  - CONF
AU  - Ninković, Dragan
AU  - Veljković, Dušan Ž.
AU  - Malenov, Dušan P.
AU  - Milovanović, Milan R.
AU  - Živković, Jelena M.
AU  - Stanković, Ivana M.
AU  - Veljković, Ivana S.
AU  - Medaković, Vesna
AU  - Blagojević Filipović, Jelena P.
AU  - Vojislavljević-Vasilev, Dubravka
AU  - Zarić, Snežana D.
PY  - 2019
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5266
AB  - Наше истраживање се заснива на анализи података у кристалним структурама
из Кембичке базе структурних података (CSD) и на квантнo хемијским
прорачунима. Анализа података из CSD-а омогућава да се препознају интеракције у
кристалним структурама и да се опишу геометрије ових интеракција, док помоћу
квантно-хемијских прорачуна можемо проценити интеракционе енергије и пронаћи
најстабилније геометрије интеракција. Користећи ову методологију успели смо да
препознамо и опишемо неколико нових типова интеракција.
Наше проучавање интеракција планарних метал-хелатних прстенова показало је
могућност стекинг интеракција са органским ароматичним прстеновима и
интеракције између два хелатна прстена. Израчунате енергије указују на јаке
стекинг интеракције метал-хелатних прстенова; стекинг метал-хелатних прстенова
је јачи од стекинга између два молекула бензена. Испитивања интеракција
координираних молекула воде и амонијака указују на јаче водоничне везе и јаче
ОH/π и NH/π интеракције координираних у односу на некоординоване молекуле
воде и амонијака. Прорачуни ОH/М интеракција између металног јона у квадратнo
планарним комплексима и молекулa воде указују да су ове интеракције међу
најјачим водоничним везама у било ком молекулском систему.
Студије о ароматичним молекулима указују на стекинг интеракције са великим
хоризонталним померањима између два ароматична молекула са значајно јаким
интеракцијама, енергија је 70% најјаче стекинг интеракције. Наши подаци такође
указују на то да су интеракције алифатичних прстенова са ароматичним прстеном
јаче од интеракција између два ароматична молекула, док су
алифатично/ароматичне интеракције веома честе у протеинским структурама.
AB  - Our research is based on analyzing data in crystal structures from the Cambridge
Structural Database (CSD) and on quantum chemical calculations. The analysis of the
data from the CSD enable to recognize interactions in crystal structures and to describe
the geometries of these interactions, while by quantum chemical calculations we can
evaluate interaction energies and find the most stable interaction geometries. Using this
methodology we were able to recognize and describe several new types of noncovalent
interactions.
Our study of planar metal-chelate rings interactions showed possibility of chelate ring
stacking interactions with organic aromatic rings, and stacking interactions between two
chelate rings. The calculated energies indicate strong stacking interactions of metalchelate rings; the stacking of metal-chelate rings is stronger than stacking between two
benzene molecules. Studies of interactions of coordinated water and ammonia indicate
stronger hydrogen bonds and stronger OH/π and NH/π interactions of coordinated in
comparison to noncoordianted water and ammonia. The calculations on OH/M interactions between metal ion in square-planar complexes and water molecule indicate that
these interactions are among the strongest hydrogen bonds in any molecular system.
The studies on aromatic molecules indicate stacking interactions at large horizontal
dispacements between two aromatic molecules with significantly strong interacitons, the
energy is 70% of the strongest stacking geometry. Our data also indicate that stacking
interactions of an aliphatic rings with an aromatic ring are stonger than interactions between two aromatic molecules, while aliphatic/aromatic interactions are very frequent in
protein structures.
PB  - Српско кристалографско друштво
C3  - XXVI Конференција Српског кристалографског друштва, Књига апстраката
T1  - Нековалентне интеракције комплекса метала и ароматичних молекула
T1  - Noncovalent interactions of metal complexes and aromatic molecules
UR  - https://hdl.handle.net/21.15107/rcub_cherry_5266
ER  - 
@conference{
author = "Ninković, Dragan and Veljković, Dušan Ž. and Malenov, Dušan P. and Milovanović, Milan R. and Živković, Jelena M. and Stanković, Ivana M. and Veljković, Ivana S. and Medaković, Vesna and Blagojević Filipović, Jelena P. and Vojislavljević-Vasilev, Dubravka and Zarić, Snežana D.",
year = "2019",
abstract = "Наше истраживање се заснива на анализи података у кристалним структурама
из Кембичке базе структурних података (CSD) и на квантнo хемијским
прорачунима. Анализа података из CSD-а омогућава да се препознају интеракције у
кристалним структурама и да се опишу геометрије ових интеракција, док помоћу
квантно-хемијских прорачуна можемо проценити интеракционе енергије и пронаћи
најстабилније геометрије интеракција. Користећи ову методологију успели смо да
препознамо и опишемо неколико нових типова интеракција.
Наше проучавање интеракција планарних метал-хелатних прстенова показало је
могућност стекинг интеракција са органским ароматичним прстеновима и
интеракције између два хелатна прстена. Израчунате енергије указују на јаке
стекинг интеракције метал-хелатних прстенова; стекинг метал-хелатних прстенова
је јачи од стекинга између два молекула бензена. Испитивања интеракција
координираних молекула воде и амонијака указују на јаче водоничне везе и јаче
ОH/π и NH/π интеракције координираних у односу на некоординоване молекуле
воде и амонијака. Прорачуни ОH/М интеракција између металног јона у квадратнo
планарним комплексима и молекулa воде указују да су ове интеракције међу
најјачим водоничним везама у било ком молекулском систему.
Студије о ароматичним молекулима указују на стекинг интеракције са великим
хоризонталним померањима између два ароматична молекула са значајно јаким
интеракцијама, енергија је 70% најјаче стекинг интеракције. Наши подаци такође
указују на то да су интеракције алифатичних прстенова са ароматичним прстеном
јаче од интеракција између два ароматична молекула, док су
алифатично/ароматичне интеракције веома честе у протеинским структурама., Our research is based on analyzing data in crystal structures from the Cambridge
Structural Database (CSD) and on quantum chemical calculations. The analysis of the
data from the CSD enable to recognize interactions in crystal structures and to describe
the geometries of these interactions, while by quantum chemical calculations we can
evaluate interaction energies and find the most stable interaction geometries. Using this
methodology we were able to recognize and describe several new types of noncovalent
interactions.
Our study of planar metal-chelate rings interactions showed possibility of chelate ring
stacking interactions with organic aromatic rings, and stacking interactions between two
chelate rings. The calculated energies indicate strong stacking interactions of metalchelate rings; the stacking of metal-chelate rings is stronger than stacking between two
benzene molecules. Studies of interactions of coordinated water and ammonia indicate
stronger hydrogen bonds and stronger OH/π and NH/π interactions of coordinated in
comparison to noncoordianted water and ammonia. The calculations on OH/M interactions between metal ion in square-planar complexes and water molecule indicate that
these interactions are among the strongest hydrogen bonds in any molecular system.
The studies on aromatic molecules indicate stacking interactions at large horizontal
dispacements between two aromatic molecules with significantly strong interacitons, the
energy is 70% of the strongest stacking geometry. Our data also indicate that stacking
interactions of an aliphatic rings with an aromatic ring are stonger than interactions between two aromatic molecules, while aliphatic/aromatic interactions are very frequent in
protein structures.",
publisher = "Српско кристалографско друштво",
journal = "XXVI Конференција Српског кристалографског друштва, Књига апстраката",
title = "Нековалентне интеракције комплекса метала и ароматичних молекула, Noncovalent interactions of metal complexes and aromatic molecules",
url = "https://hdl.handle.net/21.15107/rcub_cherry_5266"
}
Ninković, D., Veljković, D. Ž., Malenov, D. P., Milovanović, M. R., Živković, J. M., Stanković, I. M., Veljković, I. S., Medaković, V., Blagojević Filipović, J. P., Vojislavljević-Vasilev, D.,& Zarić, S. D.. (2019). Нековалентне интеракције комплекса метала и ароматичних молекула. in XXVI Конференција Српског кристалографског друштва, Књига апстраката
Српско кристалографско друштво..
https://hdl.handle.net/21.15107/rcub_cherry_5266
Ninković D, Veljković DŽ, Malenov DP, Milovanović MR, Živković JM, Stanković IM, Veljković IS, Medaković V, Blagojević Filipović JP, Vojislavljević-Vasilev D, Zarić SD. Нековалентне интеракције комплекса метала и ароматичних молекула. in XXVI Конференција Српског кристалографског друштва, Књига апстраката. 2019;.
https://hdl.handle.net/21.15107/rcub_cherry_5266 .
Ninković, Dragan, Veljković, Dušan Ž., Malenov, Dušan P., Milovanović, Milan R., Živković, Jelena M., Stanković, Ivana M., Veljković, Ivana S., Medaković, Vesna, Blagojević Filipović, Jelena P., Vojislavljević-Vasilev, Dubravka, Zarić, Snežana D., "Нековалентне интеракције комплекса метала и ароматичних молекула" in XXVI Конференција Српског кристалографског друштва, Књига апстраката (2019),
https://hdl.handle.net/21.15107/rcub_cherry_5266 .

Noncovalent interactions of metal complexes

Ninković, Dragan; Malenov, Dušan P.; Veljković, Dušan Ž.; Andrić, Jelena M.; Vojislavljević-Vasilev, Dubravka; Veljković, Ivana S.; Zarić, Snežana D.

(2019)

TY  - CONF
AU  - Ninković, Dragan
AU  - Malenov, Dušan P.
AU  - Veljković, Dušan Ž.
AU  - Andrić, Jelena M.
AU  - Vojislavljević-Vasilev, Dubravka
AU  - Veljković, Ivana S.
AU  - Zarić, Snežana D.
PY  - 2019
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5378
AB  - We studied noncovalent interactions of metal complexes and described several new 
types of these interactions. Our studies are based on analyzing data in crystal structures 
from the Cambridge Structural Database (CSD) and on quantum chemical calculations. 
The analysis of the data from the CSD enable to recognize interactions in crystal 
structures and to describe the geometries of these interactions, while by quantum 
chemical calculations we can evaluate interaction energies and find the most stable 
interaction geometries.
Our study of planar metal-chelate rings interactions, based on data in the CSD, showed 
possibility of chelate ring stacking interactions with organic aromatic rings, and 
stacking interactions between two chelate rings in crystal structures. The quantum 
chemical calculations indicate strong stacking interactions of metal-chelate rings; the 
stacking of metal- chelate rings is stronger than stacking between two benzene 
molecules.
Studies of interactions of coordinated water and ammonia indicate stronger hydrogen 
bonds and stronger OH/π and NH/π interactions of coordinated in comparison to 
noncoordianted water and ammonia. Namely in the crystal structures the interaction 
distances are shorter, while the calculations show larger interactions energies.
The calculations on OH/M interactions between metal ion in square-planar complexes 
and water molecule indicate that these interactions are among the strongest hydrogen 
bonds in any molecular system.
C3  - XVII International Conference on Coordination and Bioinorganic Chemistry, Progressive Trends in Coordination, Bioinorganic, and Applied Inorganic Chemistry, Smolenice, Slovakia, June 2-7, 2019
T1  - Noncovalent interactions of metal complexes
SP  - 122
EP  - 122
UR  - https://hdl.handle.net/21.15107/rcub_cherry_5378
ER  - 
@conference{
author = "Ninković, Dragan and Malenov, Dušan P. and Veljković, Dušan Ž. and Andrić, Jelena M. and Vojislavljević-Vasilev, Dubravka and Veljković, Ivana S. and Zarić, Snežana D.",
year = "2019",
abstract = "We studied noncovalent interactions of metal complexes and described several new 
types of these interactions. Our studies are based on analyzing data in crystal structures 
from the Cambridge Structural Database (CSD) and on quantum chemical calculations. 
The analysis of the data from the CSD enable to recognize interactions in crystal 
structures and to describe the geometries of these interactions, while by quantum 
chemical calculations we can evaluate interaction energies and find the most stable 
interaction geometries.
Our study of planar metal-chelate rings interactions, based on data in the CSD, showed 
possibility of chelate ring stacking interactions with organic aromatic rings, and 
stacking interactions between two chelate rings in crystal structures. The quantum 
chemical calculations indicate strong stacking interactions of metal-chelate rings; the 
stacking of metal- chelate rings is stronger than stacking between two benzene 
molecules.
Studies of interactions of coordinated water and ammonia indicate stronger hydrogen 
bonds and stronger OH/π and NH/π interactions of coordinated in comparison to 
noncoordianted water and ammonia. Namely in the crystal structures the interaction 
distances are shorter, while the calculations show larger interactions energies.
The calculations on OH/M interactions between metal ion in square-planar complexes 
and water molecule indicate that these interactions are among the strongest hydrogen 
bonds in any molecular system.",
journal = "XVII International Conference on Coordination and Bioinorganic Chemistry, Progressive Trends in Coordination, Bioinorganic, and Applied Inorganic Chemistry, Smolenice, Slovakia, June 2-7, 2019",
title = "Noncovalent interactions of metal complexes",
pages = "122-122",
url = "https://hdl.handle.net/21.15107/rcub_cherry_5378"
}
Ninković, D., Malenov, D. P., Veljković, D. Ž., Andrić, J. M., Vojislavljević-Vasilev, D., Veljković, I. S.,& Zarić, S. D.. (2019). Noncovalent interactions of metal complexes. in XVII International Conference on Coordination and Bioinorganic Chemistry, Progressive Trends in Coordination, Bioinorganic, and Applied Inorganic Chemistry, Smolenice, Slovakia, June 2-7, 2019, 122-122.
https://hdl.handle.net/21.15107/rcub_cherry_5378
Ninković D, Malenov DP, Veljković DŽ, Andrić JM, Vojislavljević-Vasilev D, Veljković IS, Zarić SD. Noncovalent interactions of metal complexes. in XVII International Conference on Coordination and Bioinorganic Chemistry, Progressive Trends in Coordination, Bioinorganic, and Applied Inorganic Chemistry, Smolenice, Slovakia, June 2-7, 2019. 2019;:122-122.
https://hdl.handle.net/21.15107/rcub_cherry_5378 .
Ninković, Dragan, Malenov, Dušan P., Veljković, Dušan Ž., Andrić, Jelena M., Vojislavljević-Vasilev, Dubravka, Veljković, Ivana S., Zarić, Snežana D., "Noncovalent interactions of metal complexes" in XVII International Conference on Coordination and Bioinorganic Chemistry, Progressive Trends in Coordination, Bioinorganic, and Applied Inorganic Chemistry, Smolenice, Slovakia, June 2-7, 2019 (2019):122-122,
https://hdl.handle.net/21.15107/rcub_cherry_5378 .