Savovic, J.

Link to this page

Authority KeyName Variants
orcid::0000-0001-7828-6385
  • Savovic, J. (1)
  • Savovic, Jelena (1)
Projects

Author's Bibliography

Spectrochemical analysis of powdered biological samples using transversely excited atmospheric carbon dioxide laser plasma excitation

Živković, Sanja; Momčilović, Miloš; Staicu, Angela; Mutić, Jelena; Trtica, Milan; Savovic, Jelena

(Pergamon-Elsevier Science Ltd, Oxford, 2017)

TY  - JOUR
AU  - Živković, Sanja
AU  - Momčilović, Miloš
AU  - Staicu, Angela
AU  - Mutić, Jelena
AU  - Trtica, Milan
AU  - Savovic, Jelena
PY  - 2017
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/2413
AB  - The aim of this study was to develop a simple laser induced breakdown spectroscopy (LIBS) method for quantitative elemental analysis of powdered biological materials based on laboratory prepared calibration samples. The analysis was done using ungated single pulse LIBS in ambient air at atmospheric pressure. Transversely-Excited Atmospheric pressure (TEA) CO2 laser was used as an energy source for plasma generation on samples. The material used for the analysis was a blue-green alga Spirulina, widely used in food and pharmaceutical industries and also in a few biotechnological applications. To demonstrate the analytical potential of this particular LIBS system the obtained spectra were compared to the spectra obtained using a commercial LIBS system based on pulsed Nd:YAG laser. A single sample of known concentration was used to estimate detection limits for Ba, Ca, Fe, Mg, Mn, Si and Sr and compare detection power of these two LIES systems. TEA CO2 laser based LIES was also applied for quantitative analysis of the elements in powder Spirulina samples. Analytical curves for Ba, Fe, Mg, Mn and Sr were constructed using laboratory produced matrix-matched calibration samples. Inductively coupled plasma optical emission spectroscopy (ICP-OES) was used as the reference technique for elemental quantification, and reasonably well agreement between ICP and LIBS data was obtained. Results confirm that, in respect to its sensitivity and precision, TEA CO2 laser based LIBS can be successfully applied for quantitative analysis of macro and micro-elements in algal samples. The fact that nearly all classes of materials can be prepared as powders implies that the proposed method could be easily extended to a quantitative analysis of different kinds of materials, organic, biological or inorganic. (C) 2017 Elsevier B.V. All rights reserved.
PB  - Pergamon-Elsevier Science Ltd, Oxford
T2  - Spectrochimica Acta. Part B: Atomic Spectroscopy
T1  - Spectrochemical analysis of powdered biological samples using transversely excited atmospheric carbon dioxide laser plasma excitation
VL  - 128
SP  - 22
EP  - 29
DO  - 10.1016/j.sab.2016.12.009
ER  - 
@article{
author = "Živković, Sanja and Momčilović, Miloš and Staicu, Angela and Mutić, Jelena and Trtica, Milan and Savovic, Jelena",
year = "2017",
abstract = "The aim of this study was to develop a simple laser induced breakdown spectroscopy (LIBS) method for quantitative elemental analysis of powdered biological materials based on laboratory prepared calibration samples. The analysis was done using ungated single pulse LIBS in ambient air at atmospheric pressure. Transversely-Excited Atmospheric pressure (TEA) CO2 laser was used as an energy source for plasma generation on samples. The material used for the analysis was a blue-green alga Spirulina, widely used in food and pharmaceutical industries and also in a few biotechnological applications. To demonstrate the analytical potential of this particular LIBS system the obtained spectra were compared to the spectra obtained using a commercial LIBS system based on pulsed Nd:YAG laser. A single sample of known concentration was used to estimate detection limits for Ba, Ca, Fe, Mg, Mn, Si and Sr and compare detection power of these two LIES systems. TEA CO2 laser based LIES was also applied for quantitative analysis of the elements in powder Spirulina samples. Analytical curves for Ba, Fe, Mg, Mn and Sr were constructed using laboratory produced matrix-matched calibration samples. Inductively coupled plasma optical emission spectroscopy (ICP-OES) was used as the reference technique for elemental quantification, and reasonably well agreement between ICP and LIBS data was obtained. Results confirm that, in respect to its sensitivity and precision, TEA CO2 laser based LIBS can be successfully applied for quantitative analysis of macro and micro-elements in algal samples. The fact that nearly all classes of materials can be prepared as powders implies that the proposed method could be easily extended to a quantitative analysis of different kinds of materials, organic, biological or inorganic. (C) 2017 Elsevier B.V. All rights reserved.",
publisher = "Pergamon-Elsevier Science Ltd, Oxford",
journal = "Spectrochimica Acta. Part B: Atomic Spectroscopy",
title = "Spectrochemical analysis of powdered biological samples using transversely excited atmospheric carbon dioxide laser plasma excitation",
volume = "128",
pages = "22-29",
doi = "10.1016/j.sab.2016.12.009"
}
Živković, S., Momčilović, M., Staicu, A., Mutić, J., Trtica, M.,& Savovic, J.. (2017). Spectrochemical analysis of powdered biological samples using transversely excited atmospheric carbon dioxide laser plasma excitation. in Spectrochimica Acta. Part B: Atomic Spectroscopy
Pergamon-Elsevier Science Ltd, Oxford., 128, 22-29.
https://doi.org/10.1016/j.sab.2016.12.009
Živković S, Momčilović M, Staicu A, Mutić J, Trtica M, Savovic J. Spectrochemical analysis of powdered biological samples using transversely excited atmospheric carbon dioxide laser plasma excitation. in Spectrochimica Acta. Part B: Atomic Spectroscopy. 2017;128:22-29.
doi:10.1016/j.sab.2016.12.009 .
Živković, Sanja, Momčilović, Miloš, Staicu, Angela, Mutić, Jelena, Trtica, Milan, Savovic, Jelena, "Spectrochemical analysis of powdered biological samples using transversely excited atmospheric carbon dioxide laser plasma excitation" in Spectrochimica Acta. Part B: Atomic Spectroscopy, 128 (2017):22-29,
https://doi.org/10.1016/j.sab.2016.12.009 . .
19
11
21
16

Elemental analysis of aluminum alloys by Laser Induced Breakdown Spectroscopy based on TEA CO2 laser

Živković, Sanja; Savovic, J.; Trtica, M.; Mutić, Jelena; Momčilović, Miloš

(Elsevier Science Sa, Lausanne, 2017)

TY  - JOUR
AU  - Živković, Sanja
AU  - Savovic, J.
AU  - Trtica, M.
AU  - Mutić, Jelena
AU  - Momčilović, Miloš
PY  - 2017
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/2412
AB  - The applicability of nanosecond infrared Transversely Excited Atmospheric (TEA) CO2 laser induced plasma for spectrochemical analysis of aluminum alloys was investigated. The plasma was generated by focusing a pulsed TEA CO2 laser that emits at 10.6 mu m on the Al target in ambient air at atmospheric pressure. The temporal profile of the laser pulse is composed of a 100 ns peak followed by a slowly decaying tail of about 2 mu s. The output pulse energy was approximately 160 mJ, thus the peak output power was estimated to be around 1.6 MW. Time-Integrated Space-Resolved Laser Induced Breakdown Spectroscopy (TISR-LIBS) was employed to obtain the emission spectra. The maximum intensity of emission, with sharp and well resolved spectral lines that were almost free of the background continuum, was obtained from plasma region 2 mm from the target surface. Linear calibration curves for Mg, Cr, Cu and Fe were obtained using aluminum alloy spectrochemical standards. The limits of detection for the investigated elements were in the 2-73 ppm range. Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) was used as a reference technique to estimate the accuracy of LIBS determination by use of control samples with known compositions. Comparison of the obtained results with those available in the literature confirms that LIBS system based on TEA CO2 laser, in combination with TISR spectral measurements, can be successfully applied to qualitative and quantitative determinations of minor elements in aluminum based alloys. (C) 2017 Elsevier B.V. All rights reserved.
PB  - Elsevier Science Sa, Lausanne
T2  - Journal of Alloys and Compounds
T1  - Elemental analysis of aluminum alloys by Laser Induced Breakdown Spectroscopy based on TEA CO2 laser
VL  - 700
SP  - 175
EP  - 184
DO  - 10.1016/j.jallcom.2017.01.060
ER  - 
@article{
author = "Živković, Sanja and Savovic, J. and Trtica, M. and Mutić, Jelena and Momčilović, Miloš",
year = "2017",
abstract = "The applicability of nanosecond infrared Transversely Excited Atmospheric (TEA) CO2 laser induced plasma for spectrochemical analysis of aluminum alloys was investigated. The plasma was generated by focusing a pulsed TEA CO2 laser that emits at 10.6 mu m on the Al target in ambient air at atmospheric pressure. The temporal profile of the laser pulse is composed of a 100 ns peak followed by a slowly decaying tail of about 2 mu s. The output pulse energy was approximately 160 mJ, thus the peak output power was estimated to be around 1.6 MW. Time-Integrated Space-Resolved Laser Induced Breakdown Spectroscopy (TISR-LIBS) was employed to obtain the emission spectra. The maximum intensity of emission, with sharp and well resolved spectral lines that were almost free of the background continuum, was obtained from plasma region 2 mm from the target surface. Linear calibration curves for Mg, Cr, Cu and Fe were obtained using aluminum alloy spectrochemical standards. The limits of detection for the investigated elements were in the 2-73 ppm range. Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) was used as a reference technique to estimate the accuracy of LIBS determination by use of control samples with known compositions. Comparison of the obtained results with those available in the literature confirms that LIBS system based on TEA CO2 laser, in combination with TISR spectral measurements, can be successfully applied to qualitative and quantitative determinations of minor elements in aluminum based alloys. (C) 2017 Elsevier B.V. All rights reserved.",
publisher = "Elsevier Science Sa, Lausanne",
journal = "Journal of Alloys and Compounds",
title = "Elemental analysis of aluminum alloys by Laser Induced Breakdown Spectroscopy based on TEA CO2 laser",
volume = "700",
pages = "175-184",
doi = "10.1016/j.jallcom.2017.01.060"
}
Živković, S., Savovic, J., Trtica, M., Mutić, J.,& Momčilović, M.. (2017). Elemental analysis of aluminum alloys by Laser Induced Breakdown Spectroscopy based on TEA CO2 laser. in Journal of Alloys and Compounds
Elsevier Science Sa, Lausanne., 700, 175-184.
https://doi.org/10.1016/j.jallcom.2017.01.060
Živković S, Savovic J, Trtica M, Mutić J, Momčilović M. Elemental analysis of aluminum alloys by Laser Induced Breakdown Spectroscopy based on TEA CO2 laser. in Journal of Alloys and Compounds. 2017;700:175-184.
doi:10.1016/j.jallcom.2017.01.060 .
Živković, Sanja, Savovic, J., Trtica, M., Mutić, Jelena, Momčilović, Miloš, "Elemental analysis of aluminum alloys by Laser Induced Breakdown Spectroscopy based on TEA CO2 laser" in Journal of Alloys and Compounds, 700 (2017):175-184,
https://doi.org/10.1016/j.jallcom.2017.01.060 . .
23
18
24
21