Milošević, Olivera B.

Link to this page

Authority KeyName Variants
orcid::0000-0001-7010-265X
  • Milošević, Olivera B. (13)
Projects

Author's Bibliography

NIR photo-driven upconversion in NaYF4:Yb,Er/PLGA particles for in vitro bioimaging of cancer cells

Mančić, Lidija; Đukić-Vuković, Aleksandra; Dinić, Ivana; Nikolić, Marko G.; Rabasović, Mihailo D.; Krmpot, Aleksandar J.; Costa, Antonio M. L. M.; Trišić, Dijana; Lazarević, Miloš; Mojović, Ljiljana; Milošević, Olivera B.

(Elsevier Science Bv, Amsterdam, 2018)

TY  - JOUR
AU  - Mančić, Lidija
AU  - Đukić-Vuković, Aleksandra
AU  - Dinić, Ivana
AU  - Nikolić, Marko G.
AU  - Rabasović, Mihailo D.
AU  - Krmpot, Aleksandar J.
AU  - Costa, Antonio M. L. M.
AU  - Trišić, Dijana
AU  - Lazarević, Miloš
AU  - Mojović, Ljiljana
AU  - Milošević, Olivera B.
PY  - 2018
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/2205
AB  - Lanthanide-doped fluoride up-converting nanoparticles (UCNPs) represent the new class of imaging contrast agents which hold great potential for overcoming existing problems associated with traditionally used dyes, proteins and quantum dots. In this study, a new kind of hybrid NaYF4:Yb,Er/PLGA nanoparticles for efficient biolabeling were prepared through one-pot solvothermal synthesis route. Morphological and structural characteristics of the as-designed particles were obtained using X-ray powder diffraction (XRPD), scanning and transmission electron microscopy (SEM/TEM), energy dispersive spectroscopy (EDS), Fourier transform infrared (FTIR) and photoluminescence (PL) spectroscopy, while their cytotoxicity as well as up-conversion (UC) labeling capability were tested in vitro toward human gingival cells (HGC) and oral squamous cell carcinoma (OSCC). The results revealed coexistence of the cubic (Fm-3m) and hexagonal (P6(3)/m) phase in spherical and irregularly shaped nanoparticles, respectively. PLGA [Poly(lactic-co-glycolic acid)] ligands attached at the surface of UCNPs particles provide their enhanced cellular uptake and enable high-quality cells imaging through a near-infrared (NIR) laser scanning microscopy (lambda(ex) = 980 nm). Moreover, the fact that NaYF4:Yb,Er/PLGA UCNPs show low cytotoxicity against HGC over the whole concentration range (10-50 mu g/mL) while a dose dependent viability of OSCC is obtained indicates that these might be a promising candidates for targeted cancer cell therapy.
PB  - Elsevier Science Bv, Amsterdam
T2  - Materials Science and Engineering. C: Materials for Biological Applications
T1  - NIR photo-driven upconversion in NaYF4:Yb,Er/PLGA particles for in vitro bioimaging of cancer cells
VL  - 91
SP  - 597
EP  - 605
DO  - 10.1016/j.msec.2018.05.081
ER  - 
@article{
author = "Mančić, Lidija and Đukić-Vuković, Aleksandra and Dinić, Ivana and Nikolić, Marko G. and Rabasović, Mihailo D. and Krmpot, Aleksandar J. and Costa, Antonio M. L. M. and Trišić, Dijana and Lazarević, Miloš and Mojović, Ljiljana and Milošević, Olivera B.",
year = "2018",
abstract = "Lanthanide-doped fluoride up-converting nanoparticles (UCNPs) represent the new class of imaging contrast agents which hold great potential for overcoming existing problems associated with traditionally used dyes, proteins and quantum dots. In this study, a new kind of hybrid NaYF4:Yb,Er/PLGA nanoparticles for efficient biolabeling were prepared through one-pot solvothermal synthesis route. Morphological and structural characteristics of the as-designed particles were obtained using X-ray powder diffraction (XRPD), scanning and transmission electron microscopy (SEM/TEM), energy dispersive spectroscopy (EDS), Fourier transform infrared (FTIR) and photoluminescence (PL) spectroscopy, while their cytotoxicity as well as up-conversion (UC) labeling capability were tested in vitro toward human gingival cells (HGC) and oral squamous cell carcinoma (OSCC). The results revealed coexistence of the cubic (Fm-3m) and hexagonal (P6(3)/m) phase in spherical and irregularly shaped nanoparticles, respectively. PLGA [Poly(lactic-co-glycolic acid)] ligands attached at the surface of UCNPs particles provide their enhanced cellular uptake and enable high-quality cells imaging through a near-infrared (NIR) laser scanning microscopy (lambda(ex) = 980 nm). Moreover, the fact that NaYF4:Yb,Er/PLGA UCNPs show low cytotoxicity against HGC over the whole concentration range (10-50 mu g/mL) while a dose dependent viability of OSCC is obtained indicates that these might be a promising candidates for targeted cancer cell therapy.",
publisher = "Elsevier Science Bv, Amsterdam",
journal = "Materials Science and Engineering. C: Materials for Biological Applications",
title = "NIR photo-driven upconversion in NaYF4:Yb,Er/PLGA particles for in vitro bioimaging of cancer cells",
volume = "91",
pages = "597-605",
doi = "10.1016/j.msec.2018.05.081"
}
Mančić, L., Đukić-Vuković, A., Dinić, I., Nikolić, M. G., Rabasović, M. D., Krmpot, A. J., Costa, A. M. L. M., Trišić, D., Lazarević, M., Mojović, L.,& Milošević, O. B.. (2018). NIR photo-driven upconversion in NaYF4:Yb,Er/PLGA particles for in vitro bioimaging of cancer cells. in Materials Science and Engineering. C: Materials for Biological Applications
Elsevier Science Bv, Amsterdam., 91, 597-605.
https://doi.org/10.1016/j.msec.2018.05.081
Mančić L, Đukić-Vuković A, Dinić I, Nikolić MG, Rabasović MD, Krmpot AJ, Costa AMLM, Trišić D, Lazarević M, Mojović L, Milošević OB. NIR photo-driven upconversion in NaYF4:Yb,Er/PLGA particles for in vitro bioimaging of cancer cells. in Materials Science and Engineering. C: Materials for Biological Applications. 2018;91:597-605.
doi:10.1016/j.msec.2018.05.081 .
Mančić, Lidija, Đukić-Vuković, Aleksandra, Dinić, Ivana, Nikolić, Marko G., Rabasović, Mihailo D., Krmpot, Aleksandar J., Costa, Antonio M. L. M., Trišić, Dijana, Lazarević, Miloš, Mojović, Ljiljana, Milošević, Olivera B., "NIR photo-driven upconversion in NaYF4:Yb,Er/PLGA particles for in vitro bioimaging of cancer cells" in Materials Science and Engineering. C: Materials for Biological Applications, 91 (2018):597-605,
https://doi.org/10.1016/j.msec.2018.05.081 . .
21
13
19
17

One-step synthesis of amino-functionalized up-converting NaYF4:Yb,Er nanoparticles for in vitro cell imaging

Mančić, Lidija; Đukić-Vuković, Aleksandra; Dinić, Ivana; Nikolić, Marko G.; Rabasović, Mihailo D.; Krmpot, Aleksandar J.; Costa, Antonio M. L. M.; Marinkovic, Bojan A.; Mojović, Ljiljana; Milošević, Olivera B.

(Royal Soc Chemistry, Cambridge, 2018)

TY  - JOUR
AU  - Mančić, Lidija
AU  - Đukić-Vuković, Aleksandra
AU  - Dinić, Ivana
AU  - Nikolić, Marko G.
AU  - Rabasović, Mihailo D.
AU  - Krmpot, Aleksandar J.
AU  - Costa, Antonio M. L. M.
AU  - Marinkovic, Bojan A.
AU  - Mojović, Ljiljana
AU  - Milošević, Olivera B.
PY  - 2018
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/2225
AB  - The emerging up-conversion nanoparticles (UCNPs) offer a wide range of biotechnology applications, from biomarkers and deep tissue imaging, to single molecule tracking and drug delivery. Their successful conjugation to biocompatible agents is crucial for specific molecules recognition and usually requires multiple steps which may lead to low reproducibility. Here, we report a simple and rapid one-step procedure for in situ synthesis of biocompatible amino-functionalized NaYF4:Yb,Er UCNPs that could be used for NIR-driven fluorescence cell labeling. X-ray diffraction showed that UCNPs synthesized through chitosan-assisted solvothermal processing are monophasic and crystallize in a cubic alpha phase. Scanning and transmission electron microscopy revealed that the obtained crystals are spherical in shape with a mean diameter of 120 nm. Photoluminescence spectra indicated weaker green (H-2(11/2), S-4(3/2) - gt  (4)/(15/2)) and stronger red emission (F-4(9/2) - gt  (4)/(15/2)), as a result of enhanced non-radiative (4)/(11/2) - gt  (4)/(13/2) Er3+ relaxation. The presence of chitosan groups at the surface of UCNPs was confirmed by Fourier transform infrared spectroscopy, thermogravimetry and X-ray photoelectron spectroscopy. This provides their enhanced internalization in cells, at low concentration of 10 mu g ml(-1), without suppression of cell viability after 24 h of exposure. Furthermore, upon 980 nm laser irradiation, the amino-functionalized NaYF4:Yb,Er UCNPs were successfully used in vitro for labeling of two human cell types, normal gingival and oral squamous cell carcinoma.
PB  - Royal Soc Chemistry, Cambridge
T2  - RSC Advances
T1  - One-step synthesis of amino-functionalized up-converting NaYF4:Yb,Er nanoparticles for in vitro cell imaging
VL  - 8
IS  - 48
SP  - 27429
EP  - 27437
DO  - 10.1039/c8ra04178d
ER  - 
@article{
author = "Mančić, Lidija and Đukić-Vuković, Aleksandra and Dinić, Ivana and Nikolić, Marko G. and Rabasović, Mihailo D. and Krmpot, Aleksandar J. and Costa, Antonio M. L. M. and Marinkovic, Bojan A. and Mojović, Ljiljana and Milošević, Olivera B.",
year = "2018",
abstract = "The emerging up-conversion nanoparticles (UCNPs) offer a wide range of biotechnology applications, from biomarkers and deep tissue imaging, to single molecule tracking and drug delivery. Their successful conjugation to biocompatible agents is crucial for specific molecules recognition and usually requires multiple steps which may lead to low reproducibility. Here, we report a simple and rapid one-step procedure for in situ synthesis of biocompatible amino-functionalized NaYF4:Yb,Er UCNPs that could be used for NIR-driven fluorescence cell labeling. X-ray diffraction showed that UCNPs synthesized through chitosan-assisted solvothermal processing are monophasic and crystallize in a cubic alpha phase. Scanning and transmission electron microscopy revealed that the obtained crystals are spherical in shape with a mean diameter of 120 nm. Photoluminescence spectra indicated weaker green (H-2(11/2), S-4(3/2) - gt  (4)/(15/2)) and stronger red emission (F-4(9/2) - gt  (4)/(15/2)), as a result of enhanced non-radiative (4)/(11/2) - gt  (4)/(13/2) Er3+ relaxation. The presence of chitosan groups at the surface of UCNPs was confirmed by Fourier transform infrared spectroscopy, thermogravimetry and X-ray photoelectron spectroscopy. This provides their enhanced internalization in cells, at low concentration of 10 mu g ml(-1), without suppression of cell viability after 24 h of exposure. Furthermore, upon 980 nm laser irradiation, the amino-functionalized NaYF4:Yb,Er UCNPs were successfully used in vitro for labeling of two human cell types, normal gingival and oral squamous cell carcinoma.",
publisher = "Royal Soc Chemistry, Cambridge",
journal = "RSC Advances",
title = "One-step synthesis of amino-functionalized up-converting NaYF4:Yb,Er nanoparticles for in vitro cell imaging",
volume = "8",
number = "48",
pages = "27429-27437",
doi = "10.1039/c8ra04178d"
}
Mančić, L., Đukić-Vuković, A., Dinić, I., Nikolić, M. G., Rabasović, M. D., Krmpot, A. J., Costa, A. M. L. M., Marinkovic, B. A., Mojović, L.,& Milošević, O. B.. (2018). One-step synthesis of amino-functionalized up-converting NaYF4:Yb,Er nanoparticles for in vitro cell imaging. in RSC Advances
Royal Soc Chemistry, Cambridge., 8(48), 27429-27437.
https://doi.org/10.1039/c8ra04178d
Mančić L, Đukić-Vuković A, Dinić I, Nikolić MG, Rabasović MD, Krmpot AJ, Costa AMLM, Marinkovic BA, Mojović L, Milošević OB. One-step synthesis of amino-functionalized up-converting NaYF4:Yb,Er nanoparticles for in vitro cell imaging. in RSC Advances. 2018;8(48):27429-27437.
doi:10.1039/c8ra04178d .
Mančić, Lidija, Đukić-Vuković, Aleksandra, Dinić, Ivana, Nikolić, Marko G., Rabasović, Mihailo D., Krmpot, Aleksandar J., Costa, Antonio M. L. M., Marinkovic, Bojan A., Mojović, Ljiljana, Milošević, Olivera B., "One-step synthesis of amino-functionalized up-converting NaYF4:Yb,Er nanoparticles for in vitro cell imaging" in RSC Advances, 8, no. 48 (2018):27429-27437,
https://doi.org/10.1039/c8ra04178d . .
9
6
9
7

Polyacrilic Acid and Chitosan Assisted Solvothermal Synthesis of Up-converting NaYF4: Yb,Er Particles

Vuković, Marina; Dinić, Ivana; Mančić, Lidija; Nikolić, Marko G.; Rabasović, Mihailo D.; Milošević, Olivera B.

(Belgrade : Serbian Academy of Sciences and Arts, 2018)

TY  - CONF
AU  - Vuković, Marina
AU  - Dinić, Ivana
AU  - Mančić, Lidija
AU  - Nikolić, Marko G.
AU  - Rabasović, Mihailo D.
AU  - Milošević, Olivera B.
PY  - 2018
UR  - http://dais.sanu.ac.rs/123456789/3627
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/2773
AB  - There is a growing interest for development of a facile and reproducible approach  for the synthesis of biocompatible lanthanide doped up-converting nanoparticles (UCNPs) for deep tissue imaging and targeted drug delivery. Synthesis of such particles is usually performed through the decomposition of organometallic compounds, followed either with a ligands exchange or with a biocompatible layer coating. In this work, biocompatible NaYF4:Yb,Er (17 mol% Yb; 3 mol% Er) nanoparticles were synthesized by one-pot hydrothermal processing with an assistance of chitosan (Ch) or polyacrylic acid (PAA). Obtained powders were analyzed by X-ray powder diffraction (XRPD, Bruker D8 Discovery), field emission scanning electron microscopy (FE-SEM, Zeiss, DSM 960), transmission electron microscopy (TEM, JEOL JEM 2010), Fourier transform infrared (FTIR, Thermo Scientific Nicolet 6700) and photoluminescence (PL, Spex Fluorolog with C31034 cooled photomultiplier) spectroscopy. The results showed that although both powders crystallize in the same crystal arrangement (cubic, Fm-3m), particles size, shape and optical properties are dependent on the polymer used.
PB  - Belgrade : Serbian Academy of Sciences and Arts
C3  - Program and Book of Abstracts / First International Conference on Electron Microscopy of Nanostructures ELMINA 2018, August 27-29, 2018, Belgrade, Serbia
T1  - Polyacrilic Acid and Chitosan Assisted Solvothermal Synthesis of Up-converting NaYF4: Yb,Er Particles
SP  - 195
EP  - 197
UR  - https://hdl.handle.net/21.15107/rcub_cherry_2773
ER  - 
@conference{
author = "Vuković, Marina and Dinić, Ivana and Mančić, Lidija and Nikolić, Marko G. and Rabasović, Mihailo D. and Milošević, Olivera B.",
year = "2018",
abstract = "There is a growing interest for development of a facile and reproducible approach  for the synthesis of biocompatible lanthanide doped up-converting nanoparticles (UCNPs) for deep tissue imaging and targeted drug delivery. Synthesis of such particles is usually performed through the decomposition of organometallic compounds, followed either with a ligands exchange or with a biocompatible layer coating. In this work, biocompatible NaYF4:Yb,Er (17 mol% Yb; 3 mol% Er) nanoparticles were synthesized by one-pot hydrothermal processing with an assistance of chitosan (Ch) or polyacrylic acid (PAA). Obtained powders were analyzed by X-ray powder diffraction (XRPD, Bruker D8 Discovery), field emission scanning electron microscopy (FE-SEM, Zeiss, DSM 960), transmission electron microscopy (TEM, JEOL JEM 2010), Fourier transform infrared (FTIR, Thermo Scientific Nicolet 6700) and photoluminescence (PL, Spex Fluorolog with C31034 cooled photomultiplier) spectroscopy. The results showed that although both powders crystallize in the same crystal arrangement (cubic, Fm-3m), particles size, shape and optical properties are dependent on the polymer used.",
publisher = "Belgrade : Serbian Academy of Sciences and Arts",
journal = "Program and Book of Abstracts / First International Conference on Electron Microscopy of Nanostructures ELMINA 2018, August 27-29, 2018, Belgrade, Serbia",
title = "Polyacrilic Acid and Chitosan Assisted Solvothermal Synthesis of Up-converting NaYF4: Yb,Er Particles",
pages = "195-197",
url = "https://hdl.handle.net/21.15107/rcub_cherry_2773"
}
Vuković, M., Dinić, I., Mančić, L., Nikolić, M. G., Rabasović, M. D.,& Milošević, O. B.. (2018). Polyacrilic Acid and Chitosan Assisted Solvothermal Synthesis of Up-converting NaYF4: Yb,Er Particles. in Program and Book of Abstracts / First International Conference on Electron Microscopy of Nanostructures ELMINA 2018, August 27-29, 2018, Belgrade, Serbia
Belgrade : Serbian Academy of Sciences and Arts., 195-197.
https://hdl.handle.net/21.15107/rcub_cherry_2773
Vuković M, Dinić I, Mančić L, Nikolić MG, Rabasović MD, Milošević OB. Polyacrilic Acid and Chitosan Assisted Solvothermal Synthesis of Up-converting NaYF4: Yb,Er Particles. in Program and Book of Abstracts / First International Conference on Electron Microscopy of Nanostructures ELMINA 2018, August 27-29, 2018, Belgrade, Serbia. 2018;:195-197.
https://hdl.handle.net/21.15107/rcub_cherry_2773 .
Vuković, Marina, Dinić, Ivana, Mančić, Lidija, Nikolić, Marko G., Rabasović, Mihailo D., Milošević, Olivera B., "Polyacrilic Acid and Chitosan Assisted Solvothermal Synthesis of Up-converting NaYF4: Yb,Er Particles" in Program and Book of Abstracts / First International Conference on Electron Microscopy of Nanostructures ELMINA 2018, August 27-29, 2018, Belgrade, Serbia (2018):195-197,
https://hdl.handle.net/21.15107/rcub_cherry_2773 .

One-pot synthesis of biocompatible NaYF4:Yb,Er nanoparticles for cell labeling

Dinić, Ivana; Vuković, Marina; Mančić, Lidija; Krmpot, Aleksandar J.; Milošević, Olivera B.

(Belgrade : Materials Research Society of Serbia, 2018)

TY  - CONF
AU  - Dinić, Ivana
AU  - Vuković, Marina
AU  - Mančić, Lidija
AU  - Krmpot, Aleksandar J.
AU  - Milošević, Olivera B.
PY  - 2018
UR  - http://dais.sanu.ac.rs/123456789/3635
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/2774
AB  - In modern medical research, great attention has been focused to the development of the new biomarkers which include up-converting nanoparticles (UCNPs). Their optical response is triggered by NIR radiation that achieves deeper tissue penetration when compared with traditionally used fluorophores. In this work, biocompatible NaYF4: Yb, Er nanoparticles were synthesized by polymer assisted one-pot solvothermal processing using chitosan or poly(lacticco- glycolic acid). X-ray powder diffraction and electron microscopy results revealed differences in crystal arrangement and morphology of the as-synthesized particles. Fourier transform infrared spectroscopy confirmed the presence of corresponding polymers moiety on UCNPs surface providing their biocompatibility and low cytotoxicity towards human gingival fibroblasts (HFG). As a consequence of efficient up-conversion, prominent green emission (between 512-533nm and between 533-560nm) as well as red emission (630-690nm) were recorded in the particles photoluminescence spectra, and these are applied further in the visualization of the HFG using the laser scanning microscopy with a NIR laser source.
PB  - Belgrade : Materials Research Society of Serbia
C3  - Programme and The Book of Abstracts / Twentieth Annual Conference YUCOMAT 2018, Herceg Novi, September 3-7, 2018
T1  - One-pot synthesis of biocompatible NaYF4:Yb,Er nanoparticles for cell labeling
SP  - 116
EP  - 116
UR  - https://hdl.handle.net/21.15107/rcub_cherry_2774
ER  - 
@conference{
author = "Dinić, Ivana and Vuković, Marina and Mančić, Lidija and Krmpot, Aleksandar J. and Milošević, Olivera B.",
year = "2018",
abstract = "In modern medical research, great attention has been focused to the development of the new biomarkers which include up-converting nanoparticles (UCNPs). Their optical response is triggered by NIR radiation that achieves deeper tissue penetration when compared with traditionally used fluorophores. In this work, biocompatible NaYF4: Yb, Er nanoparticles were synthesized by polymer assisted one-pot solvothermal processing using chitosan or poly(lacticco- glycolic acid). X-ray powder diffraction and electron microscopy results revealed differences in crystal arrangement and morphology of the as-synthesized particles. Fourier transform infrared spectroscopy confirmed the presence of corresponding polymers moiety on UCNPs surface providing their biocompatibility and low cytotoxicity towards human gingival fibroblasts (HFG). As a consequence of efficient up-conversion, prominent green emission (between 512-533nm and between 533-560nm) as well as red emission (630-690nm) were recorded in the particles photoluminescence spectra, and these are applied further in the visualization of the HFG using the laser scanning microscopy with a NIR laser source.",
publisher = "Belgrade : Materials Research Society of Serbia",
journal = "Programme and The Book of Abstracts / Twentieth Annual Conference YUCOMAT 2018, Herceg Novi, September 3-7, 2018",
title = "One-pot synthesis of biocompatible NaYF4:Yb,Er nanoparticles for cell labeling",
pages = "116-116",
url = "https://hdl.handle.net/21.15107/rcub_cherry_2774"
}
Dinić, I., Vuković, M., Mančić, L., Krmpot, A. J.,& Milošević, O. B.. (2018). One-pot synthesis of biocompatible NaYF4:Yb,Er nanoparticles for cell labeling. in Programme and The Book of Abstracts / Twentieth Annual Conference YUCOMAT 2018, Herceg Novi, September 3-7, 2018
Belgrade : Materials Research Society of Serbia., 116-116.
https://hdl.handle.net/21.15107/rcub_cherry_2774
Dinić I, Vuković M, Mančić L, Krmpot AJ, Milošević OB. One-pot synthesis of biocompatible NaYF4:Yb,Er nanoparticles for cell labeling. in Programme and The Book of Abstracts / Twentieth Annual Conference YUCOMAT 2018, Herceg Novi, September 3-7, 2018. 2018;:116-116.
https://hdl.handle.net/21.15107/rcub_cherry_2774 .
Dinić, Ivana, Vuković, Marina, Mančić, Lidija, Krmpot, Aleksandar J., Milošević, Olivera B., "One-pot synthesis of biocompatible NaYF4:Yb,Er nanoparticles for cell labeling" in Programme and The Book of Abstracts / Twentieth Annual Conference YUCOMAT 2018, Herceg Novi, September 3-7, 2018 (2018):116-116,
https://hdl.handle.net/21.15107/rcub_cherry_2774 .

Compositional and structural dependence of up-converting rare earth fluorides obtained through EDTA assisted hydro/solvothermal synthesis

Dinić, Ivana; Mančić, Lidija; Rabanal, Maria Eugenia; Yamamoto, Kazuhiro; Ohara, Satoshi; Tamura, Sayaka; Koji, Tomita; Costa, Antonio M. L. M.; Marinkovic, Bojan A.; Milošević, Olivera B.

(Elsevier Science Bv, Amsterdam, 2017)

TY  - JOUR
AU  - Dinić, Ivana
AU  - Mančić, Lidija
AU  - Rabanal, Maria Eugenia
AU  - Yamamoto, Kazuhiro
AU  - Ohara, Satoshi
AU  - Tamura, Sayaka
AU  - Koji, Tomita
AU  - Costa, Antonio M. L. M.
AU  - Marinkovic, Bojan A.
AU  - Milošević, Olivera B.
PY  - 2017
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/2424
AB  - In this feature article, we highlight our works on compositional and structural dependence of up converting rare earth (RE) fluorides obtained through ethylenediamine tetraacetic acid (EDTA) assisted hydrothermal synthesis. Various nanostructures were obtained by tuning of experimental conditions, such as precursor's concentration, degree of doping, reaction time and solvent used during synthesis. We correlated in detail the structural, morphological and optical properties of YF3 and NaYF4 compounds co-doped with Yb3+ and Er3+ (introduced in total mol% of 8 and 20). For this purpose, X-ray powder diffraction, scanning and transmission electron microscopy, energy dispersive X-ray and Furrier transform infrared spectroscopy, as well as, the photoluminescence spectra and decay times were recorded and analyzed. The particle size and phase content were found to be dependent on the nucleation rate, which, in turn, was governed by the precursor concentration, degree of doping and solvent type. The transformation from cubic to hexagonal NaYF4:Yb3+/Er3+ phase was found to be sensitive to the reaction time and precursors concentration, while the crystallization of orthorhombic YF3:Yb3+/Er3+ phase is achieved through lowering of dopants concentration or by changing of solvent during hydrothermal treatment. The up-conversion photoluminescence demonstrated morphology and crystal phase dependence and is found to be superior in microcrystalline samples, independent on their phase composition. (C) 2016 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Technology japan. All rights reserved.
PB  - Elsevier Science Bv, Amsterdam
T2  - Advanced Powder Technology
T1  - Compositional and structural dependence of up-converting rare earth fluorides obtained through EDTA assisted hydro/solvothermal synthesis
VL  - 28
IS  - 1
SP  - 73
EP  - 82
DO  - 10.1016/j.apt.2016.09.021
ER  - 
@article{
author = "Dinić, Ivana and Mančić, Lidija and Rabanal, Maria Eugenia and Yamamoto, Kazuhiro and Ohara, Satoshi and Tamura, Sayaka and Koji, Tomita and Costa, Antonio M. L. M. and Marinkovic, Bojan A. and Milošević, Olivera B.",
year = "2017",
abstract = "In this feature article, we highlight our works on compositional and structural dependence of up converting rare earth (RE) fluorides obtained through ethylenediamine tetraacetic acid (EDTA) assisted hydrothermal synthesis. Various nanostructures were obtained by tuning of experimental conditions, such as precursor's concentration, degree of doping, reaction time and solvent used during synthesis. We correlated in detail the structural, morphological and optical properties of YF3 and NaYF4 compounds co-doped with Yb3+ and Er3+ (introduced in total mol% of 8 and 20). For this purpose, X-ray powder diffraction, scanning and transmission electron microscopy, energy dispersive X-ray and Furrier transform infrared spectroscopy, as well as, the photoluminescence spectra and decay times were recorded and analyzed. The particle size and phase content were found to be dependent on the nucleation rate, which, in turn, was governed by the precursor concentration, degree of doping and solvent type. The transformation from cubic to hexagonal NaYF4:Yb3+/Er3+ phase was found to be sensitive to the reaction time and precursors concentration, while the crystallization of orthorhombic YF3:Yb3+/Er3+ phase is achieved through lowering of dopants concentration or by changing of solvent during hydrothermal treatment. The up-conversion photoluminescence demonstrated morphology and crystal phase dependence and is found to be superior in microcrystalline samples, independent on their phase composition. (C) 2016 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Technology japan. All rights reserved.",
publisher = "Elsevier Science Bv, Amsterdam",
journal = "Advanced Powder Technology",
title = "Compositional and structural dependence of up-converting rare earth fluorides obtained through EDTA assisted hydro/solvothermal synthesis",
volume = "28",
number = "1",
pages = "73-82",
doi = "10.1016/j.apt.2016.09.021"
}
Dinić, I., Mančić, L., Rabanal, M. E., Yamamoto, K., Ohara, S., Tamura, S., Koji, T., Costa, A. M. L. M., Marinkovic, B. A.,& Milošević, O. B.. (2017). Compositional and structural dependence of up-converting rare earth fluorides obtained through EDTA assisted hydro/solvothermal synthesis. in Advanced Powder Technology
Elsevier Science Bv, Amsterdam., 28(1), 73-82.
https://doi.org/10.1016/j.apt.2016.09.021
Dinić I, Mančić L, Rabanal ME, Yamamoto K, Ohara S, Tamura S, Koji T, Costa AMLM, Marinkovic BA, Milošević OB. Compositional and structural dependence of up-converting rare earth fluorides obtained through EDTA assisted hydro/solvothermal synthesis. in Advanced Powder Technology. 2017;28(1):73-82.
doi:10.1016/j.apt.2016.09.021 .
Dinić, Ivana, Mančić, Lidija, Rabanal, Maria Eugenia, Yamamoto, Kazuhiro, Ohara, Satoshi, Tamura, Sayaka, Koji, Tomita, Costa, Antonio M. L. M., Marinkovic, Bojan A., Milošević, Olivera B., "Compositional and structural dependence of up-converting rare earth fluorides obtained through EDTA assisted hydro/solvothermal synthesis" in Advanced Powder Technology, 28, no. 1 (2017):73-82,
https://doi.org/10.1016/j.apt.2016.09.021 . .
17
9
15
16

One-step synthesis of NIR-responsive NaYF4:Yb,Er@Chitosane nanoparticles for biomedical application

Lekić, Marina; Krmpot, Aleksandar J.; Dinić, Ivana; Đukić-Vuković, Aleksandra; Mojović, L.; Nikolić, Marko G.; Rabasović, Mihailo D.; Krmpot, Aleksandar J.; Milošević, Olivera B.; Mančić, Lidija

(Belgrade : Institute of Physics Belgrade, 2017)

TY  - CONF
AU  - Dinić, Ivana
AU  - Đukić-Vuković, Aleksandra
AU  - Mojović, L.
AU  - Nikolić, Marko G.
AU  - Rabasović, Mihailo D.
AU  - Krmpot, Aleksandar J.
AU  - Milošević, Olivera B.
AU  - Mančić, Lidija
PY  - 2017
UR  - http://dais.sanu.ac.rs/123456789/15423
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/2770
AB  - There is a great technological interest in synthesis of lanthanide doped upconverting nanoparticles with specific morphological characteristics and efficient luminescence response suitable for biomedical use [1]. A conventional approach for generation of such particles comprises decomposition of organometallic compoundsin an oxygen-free environment and additional ligand exchange [2,3]. The biocompatible and water soluble NaYF4:Yb,Er@Chitosane particles used in this study were synthesized through facile one-pot hydrothermal synthesis and were characterized using X-ray powder diffraction (XRPD), Fourier-transform infrared (FTIR) spectroscopy, field emission scanning and transmission electron microscopy (FESEM and TEM) and photoluminesce measurement (PL). Due to the presence of the amino groups at their surface these particles exhibit excellent hydrophilic properties and low cytotoxicity against human gingival fibroblasts (HGF), which was proven by MTT assay. Furthermore, upon 980 nm laser irradiation the as-prepared particles were successfully used for in-vitro visualization of the primary cell cultures of head and neck squamous carcinoma cells (HNSCC). In a NaYF4:Yb,Er phase upconversion is enabled by the sequential absorption of two or more near-infrared photons by Yb3+ and subsequent energy transfer to the long-lived metastable electron states of Er3+ which produces luminescence emission at visible spectra after relaxation.
PB  - Belgrade : Institute of Physics Belgrade
C3  - Abstracts of Tutorial, Keynote, Invited Lectures, Progress Reports and Contributed Papers of the Sixth International School and Conference on Photonics PHOTONICA2017, 28 August – 1 September 2017, Belgrade Serbia
T1  - One-step synthesis of NIR-responsive NaYF4:Yb,Er@Chitosane nanoparticles for biomedical application
SP  - 81
EP  - 81
UR  - https://hdl.handle.net/21.15107/rcub_cherry_2770
ER  - 
@conference{
editor = "Lekić, Marina, Krmpot, Aleksandar J.",
author = "Dinić, Ivana and Đukić-Vuković, Aleksandra and Mojović, L. and Nikolić, Marko G. and Rabasović, Mihailo D. and Krmpot, Aleksandar J. and Milošević, Olivera B. and Mančić, Lidija",
year = "2017",
abstract = "There is a great technological interest in synthesis of lanthanide doped upconverting nanoparticles with specific morphological characteristics and efficient luminescence response suitable for biomedical use [1]. A conventional approach for generation of such particles comprises decomposition of organometallic compoundsin an oxygen-free environment and additional ligand exchange [2,3]. The biocompatible and water soluble NaYF4:Yb,Er@Chitosane particles used in this study were synthesized through facile one-pot hydrothermal synthesis and were characterized using X-ray powder diffraction (XRPD), Fourier-transform infrared (FTIR) spectroscopy, field emission scanning and transmission electron microscopy (FESEM and TEM) and photoluminesce measurement (PL). Due to the presence of the amino groups at their surface these particles exhibit excellent hydrophilic properties and low cytotoxicity against human gingival fibroblasts (HGF), which was proven by MTT assay. Furthermore, upon 980 nm laser irradiation the as-prepared particles were successfully used for in-vitro visualization of the primary cell cultures of head and neck squamous carcinoma cells (HNSCC). In a NaYF4:Yb,Er phase upconversion is enabled by the sequential absorption of two or more near-infrared photons by Yb3+ and subsequent energy transfer to the long-lived metastable electron states of Er3+ which produces luminescence emission at visible spectra after relaxation.",
publisher = "Belgrade : Institute of Physics Belgrade",
journal = "Abstracts of Tutorial, Keynote, Invited Lectures, Progress Reports and Contributed Papers of the Sixth International School and Conference on Photonics PHOTONICA2017, 28 August – 1 September 2017, Belgrade Serbia",
title = "One-step synthesis of NIR-responsive NaYF4:Yb,Er@Chitosane nanoparticles for biomedical application",
pages = "81-81",
url = "https://hdl.handle.net/21.15107/rcub_cherry_2770"
}
Lekić, M., Krmpot, A. J., Dinić, I., Đukić-Vuković, A., Mojović, L., Nikolić, M. G., Rabasović, M. D., Krmpot, A. J., Milošević, O. B.,& Mančić, L.. (2017). One-step synthesis of NIR-responsive NaYF4:Yb,Er@Chitosane nanoparticles for biomedical application. in Abstracts of Tutorial, Keynote, Invited Lectures, Progress Reports and Contributed Papers of the Sixth International School and Conference on Photonics PHOTONICA2017, 28 August – 1 September 2017, Belgrade Serbia
Belgrade : Institute of Physics Belgrade., 81-81.
https://hdl.handle.net/21.15107/rcub_cherry_2770
Lekić M, Krmpot AJ, Dinić I, Đukić-Vuković A, Mojović L, Nikolić MG, Rabasović MD, Krmpot AJ, Milošević OB, Mančić L. One-step synthesis of NIR-responsive NaYF4:Yb,Er@Chitosane nanoparticles for biomedical application. in Abstracts of Tutorial, Keynote, Invited Lectures, Progress Reports and Contributed Papers of the Sixth International School and Conference on Photonics PHOTONICA2017, 28 August – 1 September 2017, Belgrade Serbia. 2017;:81-81.
https://hdl.handle.net/21.15107/rcub_cherry_2770 .
Lekić, Marina, Krmpot, Aleksandar J., Dinić, Ivana, Đukić-Vuković, Aleksandra, Mojović, L., Nikolić, Marko G., Rabasović, Mihailo D., Krmpot, Aleksandar J., Milošević, Olivera B., Mančić, Lidija, "One-step synthesis of NIR-responsive NaYF4:Yb,Er@Chitosane nanoparticles for biomedical application" in Abstracts of Tutorial, Keynote, Invited Lectures, Progress Reports and Contributed Papers of the Sixth International School and Conference on Photonics PHOTONICA2017, 28 August – 1 September 2017, Belgrade Serbia (2017):81-81,
https://hdl.handle.net/21.15107/rcub_cherry_2770 .

Photo-driven upconversion in NaYF4:Yb,Er@chitosane particles for cancer cells bioimaging

Marković, Smilja; Dinić, Ivana; Đukić-Vuković, Aleksandra; Nikolić, Marko G.; Milošević, Olivera B.; Mančić, Lidija

(Belgrade : Institute of Technical Sciences of SASA, 2017)

TY  - CONF
AU  - Dinić, Ivana
AU  - Đukić-Vuković, Aleksandra
AU  - Nikolić, Marko G.
AU  - Milošević, Olivera B.
AU  - Mančić, Lidija
PY  - 2017
UR  - http://dais.sanu.ac.rs/123456789/15448
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/2771
AB  - Lanthanide doped up-converting nanoparticles (UCNPs) have significant role in biomedical field, especially in cell imaging and target drug delivery, due to their convenient luminescent properties. For that purpose UCNPs should have the specific morphological and luminescent characteristics. In this study the biocompatible NaYF4:Yb,Er@Chitosane particles were synthesized through one-step hydrothermal synthesis. Obtained particles were characterized in detail using X-ray powder diffraction (XRPD), Fourier-transform infrared (FTIR) spectroscopy, field emission scanning and transmission electron microscopy (FESEM and TEM) and photoluminesce measurement (PL). Structural refinement data show the presence of cubic (Fm-3m) phase in spherical shaped nanoparticles size up to 200 nm, while the FTIR analysis revealed the presence of chitosan on the particle surface which have no influence on the luminescence efficiency of the UCNPs. Cytotoxicity as well as cell labeling capability of synthesized UCNPs were tested in vitro on the human gingival fibroblasts (HGF) and head and neck squamous carcinoma cells (HNSCC). The results show excellent biocompatibility against HGF, and successful in- vitro visualization of HNSCC cell cultures upon 980 nm laser irradiation.
PB  - Belgrade : Institute of Technical Sciences of SASA
C3  - Program and the Book of Abstracts / Sixteenth Young Researchers' Conference Materials Sciences and Engineering, December 6-8, 2017, Belgrade, Serbia
T1  - Photo-driven upconversion in NaYF4:Yb,Er@chitosane particles for cancer cells bioimaging
SP  - 2
EP  - 2
UR  - https://hdl.handle.net/21.15107/rcub_cherry_2771
ER  - 
@conference{
editor = "Marković, Smilja",
author = "Dinić, Ivana and Đukić-Vuković, Aleksandra and Nikolić, Marko G. and Milošević, Olivera B. and Mančić, Lidija",
year = "2017",
abstract = "Lanthanide doped up-converting nanoparticles (UCNPs) have significant role in biomedical field, especially in cell imaging and target drug delivery, due to their convenient luminescent properties. For that purpose UCNPs should have the specific morphological and luminescent characteristics. In this study the biocompatible NaYF4:Yb,Er@Chitosane particles were synthesized through one-step hydrothermal synthesis. Obtained particles were characterized in detail using X-ray powder diffraction (XRPD), Fourier-transform infrared (FTIR) spectroscopy, field emission scanning and transmission electron microscopy (FESEM and TEM) and photoluminesce measurement (PL). Structural refinement data show the presence of cubic (Fm-3m) phase in spherical shaped nanoparticles size up to 200 nm, while the FTIR analysis revealed the presence of chitosan on the particle surface which have no influence on the luminescence efficiency of the UCNPs. Cytotoxicity as well as cell labeling capability of synthesized UCNPs were tested in vitro on the human gingival fibroblasts (HGF) and head and neck squamous carcinoma cells (HNSCC). The results show excellent biocompatibility against HGF, and successful in- vitro visualization of HNSCC cell cultures upon 980 nm laser irradiation.",
publisher = "Belgrade : Institute of Technical Sciences of SASA",
journal = "Program and the Book of Abstracts / Sixteenth Young Researchers' Conference Materials Sciences and Engineering, December 6-8, 2017, Belgrade, Serbia",
title = "Photo-driven upconversion in NaYF4:Yb,Er@chitosane particles for cancer cells bioimaging",
pages = "2-2",
url = "https://hdl.handle.net/21.15107/rcub_cherry_2771"
}
Marković, S., Dinić, I., Đukić-Vuković, A., Nikolić, M. G., Milošević, O. B.,& Mančić, L.. (2017). Photo-driven upconversion in NaYF4:Yb,Er@chitosane particles for cancer cells bioimaging. in Program and the Book of Abstracts / Sixteenth Young Researchers' Conference Materials Sciences and Engineering, December 6-8, 2017, Belgrade, Serbia
Belgrade : Institute of Technical Sciences of SASA., 2-2.
https://hdl.handle.net/21.15107/rcub_cherry_2771
Marković S, Dinić I, Đukić-Vuković A, Nikolić MG, Milošević OB, Mančić L. Photo-driven upconversion in NaYF4:Yb,Er@chitosane particles for cancer cells bioimaging. in Program and the Book of Abstracts / Sixteenth Young Researchers' Conference Materials Sciences and Engineering, December 6-8, 2017, Belgrade, Serbia. 2017;:2-2.
https://hdl.handle.net/21.15107/rcub_cherry_2771 .
Marković, Smilja, Dinić, Ivana, Đukić-Vuković, Aleksandra, Nikolić, Marko G., Milošević, Olivera B., Mančić, Lidija, "Photo-driven upconversion in NaYF4:Yb,Er@chitosane particles for cancer cells bioimaging" in Program and the Book of Abstracts / Sixteenth Young Researchers' Conference Materials Sciences and Engineering, December 6-8, 2017, Belgrade, Serbia (2017):2-2,
https://hdl.handle.net/21.15107/rcub_cherry_2771 .

Facile synthesis of hydrophilic polymer-capped upconverting NaYF4:Yb,Er particles

Mitić, Vojislav V.; Mančić, Lidija; Obradović, Nina; Dinić, Ivana; Mančić, Lidija; Nikolić, Marko G.; Radulović, Katarina; Marinković, Bojan A.; Milošević, Olivera B.

(Belgrade : Serbian Ceramic Society, 2017)

TY  - CONF
AU  - Dinić, Ivana
AU  - Mančić, Lidija
AU  - Nikolić, Marko G.
AU  - Radulović, Katarina
AU  - Marinković, Bojan A.
AU  - Milošević, Olivera B.
PY  - 2017
UR  - http://dais.sanu.ac.rs/123456789/2361
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/2772
AB  - Over the last decade, solvothermal decomposition of organometallic compounds has been indicated as one of the most convenient method for the synthesis of monodisperse lanthanide doped upconverting fluorides. Due to their hydrophobic nature such particles could not be used for a conjugation of the molecular targeting agents which is necessary for optical imaging of biological tissues. In this work, hydrophilic NaYF4:Yb,Er (17 mol% Yb; 3mol% Er) nanoparticles were synthesized by facile one-pot hydrothermal synthesis performed with a help of chitosan (CS) and poly(acrylic acid) (PAA). Obtained powders were analyzed by X-ray powder diffraction (XRPD), field emission scanning electron microscopy (FESEM), Fourier transform infrared (FTIR) and photoluminescence (PL) spectroscopy. The obtained results implied that particle size, shape and surface characteristics are dependent on the polymer choice. Although both powders crystallize in the same crystal arrangement (cubic, Fm-3m) more intense red emission, assigned to the Er3+ 4F9/2 → 4I15/2 electronic transitions, characterize spherical NaYF4:Yb,Er@CS particles. To asses a biological safety of their use, viability of the human gingival fibroblasts (HFG) was additionally tested by a colorimetric MTT assay.
PB  - Belgrade : Serbian Ceramic Society
C3  - Serbian Ceramic Society Conference Advanced Ceramics and Application VI:  Program and the Book of Abstracts
T1  - Facile synthesis of hydrophilic polymer-capped upconverting NaYF4:Yb,Er particles
UR  - https://hdl.handle.net/21.15107/rcub_cherry_2772
ER  - 
@conference{
editor = "Mitić, Vojislav V., Mančić, Lidija, Obradović, Nina",
author = "Dinić, Ivana and Mančić, Lidija and Nikolić, Marko G. and Radulović, Katarina and Marinković, Bojan A. and Milošević, Olivera B.",
year = "2017",
abstract = "Over the last decade, solvothermal decomposition of organometallic compounds has been indicated as one of the most convenient method for the synthesis of monodisperse lanthanide doped upconverting fluorides. Due to their hydrophobic nature such particles could not be used for a conjugation of the molecular targeting agents which is necessary for optical imaging of biological tissues. In this work, hydrophilic NaYF4:Yb,Er (17 mol% Yb; 3mol% Er) nanoparticles were synthesized by facile one-pot hydrothermal synthesis performed with a help of chitosan (CS) and poly(acrylic acid) (PAA). Obtained powders were analyzed by X-ray powder diffraction (XRPD), field emission scanning electron microscopy (FESEM), Fourier transform infrared (FTIR) and photoluminescence (PL) spectroscopy. The obtained results implied that particle size, shape and surface characteristics are dependent on the polymer choice. Although both powders crystallize in the same crystal arrangement (cubic, Fm-3m) more intense red emission, assigned to the Er3+ 4F9/2 → 4I15/2 electronic transitions, characterize spherical NaYF4:Yb,Er@CS particles. To asses a biological safety of their use, viability of the human gingival fibroblasts (HFG) was additionally tested by a colorimetric MTT assay.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Serbian Ceramic Society Conference Advanced Ceramics and Application VI:  Program and the Book of Abstracts",
title = "Facile synthesis of hydrophilic polymer-capped upconverting NaYF4:Yb,Er particles",
url = "https://hdl.handle.net/21.15107/rcub_cherry_2772"
}
Mitić, V. V., Mančić, L., Obradović, N., Dinić, I., Mančić, L., Nikolić, M. G., Radulović, K., Marinković, B. A.,& Milošević, O. B.. (2017). Facile synthesis of hydrophilic polymer-capped upconverting NaYF4:Yb,Er particles. in Serbian Ceramic Society Conference Advanced Ceramics and Application VI:  Program and the Book of Abstracts
Belgrade : Serbian Ceramic Society..
https://hdl.handle.net/21.15107/rcub_cherry_2772
Mitić VV, Mančić L, Obradović N, Dinić I, Mančić L, Nikolić MG, Radulović K, Marinković BA, Milošević OB. Facile synthesis of hydrophilic polymer-capped upconverting NaYF4:Yb,Er particles. in Serbian Ceramic Society Conference Advanced Ceramics and Application VI:  Program and the Book of Abstracts. 2017;.
https://hdl.handle.net/21.15107/rcub_cherry_2772 .
Mitić, Vojislav V., Mančić, Lidija, Obradović, Nina, Dinić, Ivana, Mančić, Lidija, Nikolić, Marko G., Radulović, Katarina, Marinković, Bojan A., Milošević, Olivera B., "Facile synthesis of hydrophilic polymer-capped upconverting NaYF4:Yb,Er particles" in Serbian Ceramic Society Conference Advanced Ceramics and Application VI:  Program and the Book of Abstracts (2017),
https://hdl.handle.net/21.15107/rcub_cherry_2772 .

PEG and PVP assisted solvothermal synthesis of NaYF4:Yb3+/Er3+ up-conversion nanoparticles

Dinić, Ivana; Rabanal, Maria Eugenia; Yamamoto, Kazuhiro; Tan, Zhenquan; Ohara, Satoshi; Mančić, Lidija; Milošević, Olivera B.

(Elsevier Science Bv, Amsterdam, 2016)

TY  - JOUR
AU  - Dinić, Ivana
AU  - Rabanal, Maria Eugenia
AU  - Yamamoto, Kazuhiro
AU  - Tan, Zhenquan
AU  - Ohara, Satoshi
AU  - Mančić, Lidija
AU  - Milošević, Olivera B.
PY  - 2016
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/2263
AB  - Owing to their unique optical properties, up-converting rare earth fluorides have attracted extensive attention in recent years. Varieties of synthesis procedures which generate nano-and micro-crystals with controllable compositions have been reported. In the vast majority, surfactants, complexing agents and solvents play essential role in controlling particles morphology and surface characteristics. Here we report on a rapid solvothermal synthesis (200 degrees C, 2 h) of either PEG or PVP capped NaYF4:Yb3+/Er3+ particles. Their structural, morphological and luminescence characteristics have been studied based on X-ray powder diffractometry (XRPD), Fourier transform infrared spectroscopy (FTIR), energy dispersive spectroscopy (EDS), high resolution transmission electron microscopy (HRTEM) and photoluminescence measurements. Both polymers proved to be a good structure directing agents enabling generation of the well crystalline polymer coated up-converting particles with efficient emissions in visible spectrum. It was shown that generation of the hexagonal P63/m beta-NaYF4:Yb3+/Er3+ phase with the most efficient green emission (CIE 0.31, 0.66) is enhanced when PVP is used during synthesis, while promotion of the cubic Fm-3m alpha-NaYF4:Yb3+/Er3+ phase that has a yellowish spectral output (CIE 0.41, 0.56) was observed in the particles produced in the presence of PEG. Beneficial effect on the luminescence intensity was observed with additional particles annealing in argon atmosphere. (C) 2015 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Technology Japan. All rights reserved.
PB  - Elsevier Science Bv, Amsterdam
T2  - Advanced Powder Technology
T1  - PEG and PVP assisted solvothermal synthesis of NaYF4:Yb3+/Er3+ up-conversion nanoparticles
VL  - 27
IS  - 3
SP  - 845
EP  - 853
DO  - 10.1016/j.apt.2015.11.010
ER  - 
@article{
author = "Dinić, Ivana and Rabanal, Maria Eugenia and Yamamoto, Kazuhiro and Tan, Zhenquan and Ohara, Satoshi and Mančić, Lidija and Milošević, Olivera B.",
year = "2016",
abstract = "Owing to their unique optical properties, up-converting rare earth fluorides have attracted extensive attention in recent years. Varieties of synthesis procedures which generate nano-and micro-crystals with controllable compositions have been reported. In the vast majority, surfactants, complexing agents and solvents play essential role in controlling particles morphology and surface characteristics. Here we report on a rapid solvothermal synthesis (200 degrees C, 2 h) of either PEG or PVP capped NaYF4:Yb3+/Er3+ particles. Their structural, morphological and luminescence characteristics have been studied based on X-ray powder diffractometry (XRPD), Fourier transform infrared spectroscopy (FTIR), energy dispersive spectroscopy (EDS), high resolution transmission electron microscopy (HRTEM) and photoluminescence measurements. Both polymers proved to be a good structure directing agents enabling generation of the well crystalline polymer coated up-converting particles with efficient emissions in visible spectrum. It was shown that generation of the hexagonal P63/m beta-NaYF4:Yb3+/Er3+ phase with the most efficient green emission (CIE 0.31, 0.66) is enhanced when PVP is used during synthesis, while promotion of the cubic Fm-3m alpha-NaYF4:Yb3+/Er3+ phase that has a yellowish spectral output (CIE 0.41, 0.56) was observed in the particles produced in the presence of PEG. Beneficial effect on the luminescence intensity was observed with additional particles annealing in argon atmosphere. (C) 2015 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Technology Japan. All rights reserved.",
publisher = "Elsevier Science Bv, Amsterdam",
journal = "Advanced Powder Technology",
title = "PEG and PVP assisted solvothermal synthesis of NaYF4:Yb3+/Er3+ up-conversion nanoparticles",
volume = "27",
number = "3",
pages = "845-853",
doi = "10.1016/j.apt.2015.11.010"
}
Dinić, I., Rabanal, M. E., Yamamoto, K., Tan, Z., Ohara, S., Mančić, L.,& Milošević, O. B.. (2016). PEG and PVP assisted solvothermal synthesis of NaYF4:Yb3+/Er3+ up-conversion nanoparticles. in Advanced Powder Technology
Elsevier Science Bv, Amsterdam., 27(3), 845-853.
https://doi.org/10.1016/j.apt.2015.11.010
Dinić I, Rabanal ME, Yamamoto K, Tan Z, Ohara S, Mančić L, Milošević OB. PEG and PVP assisted solvothermal synthesis of NaYF4:Yb3+/Er3+ up-conversion nanoparticles. in Advanced Powder Technology. 2016;27(3):845-853.
doi:10.1016/j.apt.2015.11.010 .
Dinić, Ivana, Rabanal, Maria Eugenia, Yamamoto, Kazuhiro, Tan, Zhenquan, Ohara, Satoshi, Mančić, Lidija, Milošević, Olivera B., "PEG and PVP assisted solvothermal synthesis of NaYF4:Yb3+/Er3+ up-conversion nanoparticles" in Advanced Powder Technology, 27, no. 3 (2016):845-853,
https://doi.org/10.1016/j.apt.2015.11.010 . .
17
13
19
16

Ethylenediaminetetraacetic acid (EDTA) assisted hydro/solvothermal synthesis of up-converting rare earth fluorides

Dinić, Ivana; Nikolić, Marko G.; Rabanal, Maria Eugenia; Milošević, Olivera B.; Mančić, Lidija

(Belgrade : Institute of Technical Sciences of SASA, 2016)

TY  - CONF
AU  - Dinić, Ivana
AU  - Nikolić, Marko G.
AU  - Rabanal, Maria Eugenia
AU  - Milošević, Olivera B.
AU  - Mančić, Lidija
PY  - 2016
UR  - http://dais.sanu.ac.rs/123456789/885
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/2780
AB  - Over the last decade, a lot of effort was directed toward developing of the representative methodologies for the preparation of up-converting (UC) particles which exhibit a unique narrow visible emission when excited by lower-energy photon radiation. This work presents the impact of different processing parameters on structural, morphological and optical properties of up-converting (UC) rare earth fluorides obtained by hydro/solvothermal synthesis. Monodisperse NaYF4:Yb3+/Er3+ particles with different morphology, size and crystal phase were synthesized with a help of ethylenediaminetetraacetic acid (EDTA) through adjusting the precursor concentration, degree of doping, polarity of solvent and reaction time. They are characterized by X-ray powder diffraction, scanning and transmission electron microscopy, energy dispersive X-ray and Furrier transform infrared spectroscopy, as well as photoluminescence measurements. It was shown that particle size and phase composition are dependent on the precursor concentration, type of solvent and doping degree, while the cubic to hexagonal transformation of NaYF4:Yb3+/Er3+ phase is affected by the reaction time. The crystallization of the orthorhombic YF3:Yb3+/Er3+ phase is established either after decreasing concentration of dopants or increasing polarity of solvents. All of the synthesized particles exhibited efficient up-conversion emission which can be tuned from pure green to the yellowish-orange through control of particles size and phase composition.
PB  - Belgrade : Institute of Technical Sciences of SASA
C3  - Program and the Book of Abstracts / Fifteenth Young Researchers' Conference Materials Sciences and Engineering, December 7-9, 2016, Belgrade
T1  - Ethylenediaminetetraacetic acid (EDTA) assisted hydro/solvothermal synthesis of up-converting rare earth fluorides
SP  - 39
EP  - 39
UR  - https://hdl.handle.net/21.15107/rcub_cherry_2780
ER  - 
@conference{
author = "Dinić, Ivana and Nikolić, Marko G. and Rabanal, Maria Eugenia and Milošević, Olivera B. and Mančić, Lidija",
year = "2016",
abstract = "Over the last decade, a lot of effort was directed toward developing of the representative methodologies for the preparation of up-converting (UC) particles which exhibit a unique narrow visible emission when excited by lower-energy photon radiation. This work presents the impact of different processing parameters on structural, morphological and optical properties of up-converting (UC) rare earth fluorides obtained by hydro/solvothermal synthesis. Monodisperse NaYF4:Yb3+/Er3+ particles with different morphology, size and crystal phase were synthesized with a help of ethylenediaminetetraacetic acid (EDTA) through adjusting the precursor concentration, degree of doping, polarity of solvent and reaction time. They are characterized by X-ray powder diffraction, scanning and transmission electron microscopy, energy dispersive X-ray and Furrier transform infrared spectroscopy, as well as photoluminescence measurements. It was shown that particle size and phase composition are dependent on the precursor concentration, type of solvent and doping degree, while the cubic to hexagonal transformation of NaYF4:Yb3+/Er3+ phase is affected by the reaction time. The crystallization of the orthorhombic YF3:Yb3+/Er3+ phase is established either after decreasing concentration of dopants or increasing polarity of solvents. All of the synthesized particles exhibited efficient up-conversion emission which can be tuned from pure green to the yellowish-orange through control of particles size and phase composition.",
publisher = "Belgrade : Institute of Technical Sciences of SASA",
journal = "Program and the Book of Abstracts / Fifteenth Young Researchers' Conference Materials Sciences and Engineering, December 7-9, 2016, Belgrade",
title = "Ethylenediaminetetraacetic acid (EDTA) assisted hydro/solvothermal synthesis of up-converting rare earth fluorides",
pages = "39-39",
url = "https://hdl.handle.net/21.15107/rcub_cherry_2780"
}
Dinić, I., Nikolić, M. G., Rabanal, M. E., Milošević, O. B.,& Mančić, L.. (2016). Ethylenediaminetetraacetic acid (EDTA) assisted hydro/solvothermal synthesis of up-converting rare earth fluorides. in Program and the Book of Abstracts / Fifteenth Young Researchers' Conference Materials Sciences and Engineering, December 7-9, 2016, Belgrade
Belgrade : Institute of Technical Sciences of SASA., 39-39.
https://hdl.handle.net/21.15107/rcub_cherry_2780
Dinić I, Nikolić MG, Rabanal ME, Milošević OB, Mančić L. Ethylenediaminetetraacetic acid (EDTA) assisted hydro/solvothermal synthesis of up-converting rare earth fluorides. in Program and the Book of Abstracts / Fifteenth Young Researchers' Conference Materials Sciences and Engineering, December 7-9, 2016, Belgrade. 2016;:39-39.
https://hdl.handle.net/21.15107/rcub_cherry_2780 .
Dinić, Ivana, Nikolić, Marko G., Rabanal, Maria Eugenia, Milošević, Olivera B., Mančić, Lidija, "Ethylenediaminetetraacetic acid (EDTA) assisted hydro/solvothermal synthesis of up-converting rare earth fluorides" in Program and the Book of Abstracts / Fifteenth Young Researchers' Conference Materials Sciences and Engineering, December 7-9, 2016, Belgrade (2016):39-39,
https://hdl.handle.net/21.15107/rcub_cherry_2780 .

Hydrothermal synthesis of optically active rare earth fluorides

Dinić, Ivana; Mančić, Lidija; Rabanal, Maria Eugenia; Milošević, Olivera B.

(Novi Sad : Faculty of Technology, University of Novi Sad, 2015)

TY  - CONF
AU  - Dinić, Ivana
AU  - Mančić, Lidija
AU  - Rabanal, Maria Eugenia
AU  - Milošević, Olivera B.
PY  - 2015
UR  - http://dais.sanu.ac.rs/123456789/743
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/2778
AB  - Hydrothermal method has great interest in recent years for synthesis of nano- and micro- crystals of upconverting rare earth (RE) fluorides, with controlled morphology and high purity, under high temperatures and pressures. Some surfactants (ethylenediaminetetraacetic acid (EDTA), polyvinylpyrrolidone (PVP), oleic acid (OA)) along with different type of solvents are added in order to control size, morphology and crystalline phases of particles. In this work Yb3+/Er3+ co-doped YF3 and NaYF4 fine powders were synthesized using the hydro/solvo thermal method in the present of EDTA as a complexing agent. Effect of the processing parameters on the particles crystal structure, morphology and optical properties were estimated on the basis of X-ray diffractometry (XRPD), scanning electron microscopy (SEM) and photoluminescence measurement. It was shown that in terms of increased concentration of RE ions in aqueous solvent media the hexagonal β-NaYF4:Yb3+/Er3+ phase with the most efficient green emission were synthesized. On the other side, the occurrence of cubic α-NaYF4:Yb3+/Er3+ and orthorhombic YF3:Yb3+/Er3+ were observed with a decrease of the RE ions when ethanol is used as a solvent. All of the samples provide intense green emission after been excited with infrared light (λ = 978 nm), which is assigned to the Er3+ (2H11/2, 4S3/2) → 4I15/2 electronic transitions.
PB  - Novi Sad : Faculty of Technology, University of Novi Sad
C3  - Programme and book of abstracts / 11th Students' Meeting [and] ESR [Early Stage Researchers] Workshop, COST IC1208 Conference for Young Scientists in Ceramics, October 21-24, 2015, Novi Sad
T1  - Hydrothermal synthesis of optically active rare earth fluorides
SP  - 58
EP  - 59
UR  - https://hdl.handle.net/21.15107/rcub_cherry_2778
ER  - 
@conference{
author = "Dinić, Ivana and Mančić, Lidija and Rabanal, Maria Eugenia and Milošević, Olivera B.",
year = "2015",
abstract = "Hydrothermal method has great interest in recent years for synthesis of nano- and micro- crystals of upconverting rare earth (RE) fluorides, with controlled morphology and high purity, under high temperatures and pressures. Some surfactants (ethylenediaminetetraacetic acid (EDTA), polyvinylpyrrolidone (PVP), oleic acid (OA)) along with different type of solvents are added in order to control size, morphology and crystalline phases of particles. In this work Yb3+/Er3+ co-doped YF3 and NaYF4 fine powders were synthesized using the hydro/solvo thermal method in the present of EDTA as a complexing agent. Effect of the processing parameters on the particles crystal structure, morphology and optical properties were estimated on the basis of X-ray diffractometry (XRPD), scanning electron microscopy (SEM) and photoluminescence measurement. It was shown that in terms of increased concentration of RE ions in aqueous solvent media the hexagonal β-NaYF4:Yb3+/Er3+ phase with the most efficient green emission were synthesized. On the other side, the occurrence of cubic α-NaYF4:Yb3+/Er3+ and orthorhombic YF3:Yb3+/Er3+ were observed with a decrease of the RE ions when ethanol is used as a solvent. All of the samples provide intense green emission after been excited with infrared light (λ = 978 nm), which is assigned to the Er3+ (2H11/2, 4S3/2) → 4I15/2 electronic transitions.",
publisher = "Novi Sad : Faculty of Technology, University of Novi Sad",
journal = "Programme and book of abstracts / 11th Students' Meeting [and] ESR [Early Stage Researchers] Workshop, COST IC1208 Conference for Young Scientists in Ceramics, October 21-24, 2015, Novi Sad",
title = "Hydrothermal synthesis of optically active rare earth fluorides",
pages = "58-59",
url = "https://hdl.handle.net/21.15107/rcub_cherry_2778"
}
Dinić, I., Mančić, L., Rabanal, M. E.,& Milošević, O. B.. (2015). Hydrothermal synthesis of optically active rare earth fluorides. in Programme and book of abstracts / 11th Students' Meeting [and] ESR [Early Stage Researchers] Workshop, COST IC1208 Conference for Young Scientists in Ceramics, October 21-24, 2015, Novi Sad
Novi Sad : Faculty of Technology, University of Novi Sad., 58-59.
https://hdl.handle.net/21.15107/rcub_cherry_2778
Dinić I, Mančić L, Rabanal ME, Milošević OB. Hydrothermal synthesis of optically active rare earth fluorides. in Programme and book of abstracts / 11th Students' Meeting [and] ESR [Early Stage Researchers] Workshop, COST IC1208 Conference for Young Scientists in Ceramics, October 21-24, 2015, Novi Sad. 2015;:58-59.
https://hdl.handle.net/21.15107/rcub_cherry_2778 .
Dinić, Ivana, Mančić, Lidija, Rabanal, Maria Eugenia, Milošević, Olivera B., "Hydrothermal synthesis of optically active rare earth fluorides" in Programme and book of abstracts / 11th Students' Meeting [and] ESR [Early Stage Researchers] Workshop, COST IC1208 Conference for Young Scientists in Ceramics, October 21-24, 2015, Novi Sad (2015):58-59,
https://hdl.handle.net/21.15107/rcub_cherry_2778 .

Hydro/solvo-thermal synthesis of surface modified NaYF4 co-doped Yb3+/Er3+ up-conversion nanoparticles

Dinić, Ivana; Mančić, Lidija; Rabanal, Maria Eugenia; Milošević, Olivera B.

(Belgrade : Institute of Technical Sciences of SASA, 2015)

TY  - CONF
AU  - Dinić, Ivana
AU  - Mančić, Lidija
AU  - Rabanal, Maria Eugenia
AU  - Milošević, Olivera B.
PY  - 2015
UR  - http://dais.sanu.ac.rs/123456789/832
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/2779
AB  - Surface modified up-conversion rare earth fluorides have attracted attention in recent years. Owing to their unique optical properties they can be used for biomedical application such as bio-detection, fluorescene imaging and in drug delivery systems. Different synthesis methods which generate nano- and micro-crystals with controllable compositions have been reported. For improved control of size, shape and morphology of the particles surfactants or structure directing agents are used. In this work PEG or PVP capped NaYF4 particles were synthesized using hydro/solvo-thermal synthesis at 200 ºC (3h). Their structural, morphological and luminescence characteristics have been studied based on X-ray powder diffractometry (XRPD), Fourier transform infrared spectroscopy (FTIR), energy dispersive spectroscopy (EDS), scanning and transmission electron microscopy (SEM/TEM) and photoluminescence measurements. Both polymers proved to be a good structure directing agents enabling generation of the well crystalline polymer coated upconverting particles with efficient emissions in visible spectrum. It was shown that generation of the hexagonal P63/m β- NaYF4:Yb3+/Er3+ phase with the most efficient green emission (CIE 0.31, 0.66) is enhanced when PVP is used during synthesis, while formation of the cubic Fm-3m α-NaYF4:Yb3+/Er3+ phase that has a yellowish spectral output (CIE 0.41, 0.56) was observed in the particles produced in the presence of PEG. Increase of the luminescence intensity was achieved with additional particles annealing in argon atmosphere at 400 ºC (5h).
PB  - Belgrade : Institute of Technical Sciences of SASA
C3  - Program and the Book of Abstracts / Fourteenth Young Researchers' Conference Materials Sciences and Engineering, December 9-11, 2015, Belgrade, Serbia
T1  - Hydro/solvo-thermal synthesis of surface modified NaYF4 co-doped Yb3+/Er3+ up-conversion nanoparticles
SP  - 20
EP  - 20
UR  - https://hdl.handle.net/21.15107/rcub_cherry_2779
ER  - 
@conference{
author = "Dinić, Ivana and Mančić, Lidija and Rabanal, Maria Eugenia and Milošević, Olivera B.",
year = "2015",
abstract = "Surface modified up-conversion rare earth fluorides have attracted attention in recent years. Owing to their unique optical properties they can be used for biomedical application such as bio-detection, fluorescene imaging and in drug delivery systems. Different synthesis methods which generate nano- and micro-crystals with controllable compositions have been reported. For improved control of size, shape and morphology of the particles surfactants or structure directing agents are used. In this work PEG or PVP capped NaYF4 particles were synthesized using hydro/solvo-thermal synthesis at 200 ºC (3h). Their structural, morphological and luminescence characteristics have been studied based on X-ray powder diffractometry (XRPD), Fourier transform infrared spectroscopy (FTIR), energy dispersive spectroscopy (EDS), scanning and transmission electron microscopy (SEM/TEM) and photoluminescence measurements. Both polymers proved to be a good structure directing agents enabling generation of the well crystalline polymer coated upconverting particles with efficient emissions in visible spectrum. It was shown that generation of the hexagonal P63/m β- NaYF4:Yb3+/Er3+ phase with the most efficient green emission (CIE 0.31, 0.66) is enhanced when PVP is used during synthesis, while formation of the cubic Fm-3m α-NaYF4:Yb3+/Er3+ phase that has a yellowish spectral output (CIE 0.41, 0.56) was observed in the particles produced in the presence of PEG. Increase of the luminescence intensity was achieved with additional particles annealing in argon atmosphere at 400 ºC (5h).",
publisher = "Belgrade : Institute of Technical Sciences of SASA",
journal = "Program and the Book of Abstracts / Fourteenth Young Researchers' Conference Materials Sciences and Engineering, December 9-11, 2015, Belgrade, Serbia",
title = "Hydro/solvo-thermal synthesis of surface modified NaYF4 co-doped Yb3+/Er3+ up-conversion nanoparticles",
pages = "20-20",
url = "https://hdl.handle.net/21.15107/rcub_cherry_2779"
}
Dinić, I., Mančić, L., Rabanal, M. E.,& Milošević, O. B.. (2015). Hydro/solvo-thermal synthesis of surface modified NaYF4 co-doped Yb3+/Er3+ up-conversion nanoparticles. in Program and the Book of Abstracts / Fourteenth Young Researchers' Conference Materials Sciences and Engineering, December 9-11, 2015, Belgrade, Serbia
Belgrade : Institute of Technical Sciences of SASA., 20-20.
https://hdl.handle.net/21.15107/rcub_cherry_2779
Dinić I, Mančić L, Rabanal ME, Milošević OB. Hydro/solvo-thermal synthesis of surface modified NaYF4 co-doped Yb3+/Er3+ up-conversion nanoparticles. in Program and the Book of Abstracts / Fourteenth Young Researchers' Conference Materials Sciences and Engineering, December 9-11, 2015, Belgrade, Serbia. 2015;:20-20.
https://hdl.handle.net/21.15107/rcub_cherry_2779 .
Dinić, Ivana, Mančić, Lidija, Rabanal, Maria Eugenia, Milošević, Olivera B., "Hydro/solvo-thermal synthesis of surface modified NaYF4 co-doped Yb3+/Er3+ up-conversion nanoparticles" in Program and the Book of Abstracts / Fourteenth Young Researchers' Conference Materials Sciences and Engineering, December 9-11, 2015, Belgrade, Serbia (2015):20-20,
https://hdl.handle.net/21.15107/rcub_cherry_2779 .

Surfactants Assisted Hydrothermal Synthesis of NaYF4 co-doped Yb3+/Er3+ Up-conversion Nanoparticles

Dinić, Ivana; Dugandžić, Ivan; Mančić, Lidija; Rabanal, Maria Eugenia; Milošević, Olivera B.

(Belgrade : Serbian Ceramic Society, 2014)

TY  - CONF
AU  - Dinić, Ivana
AU  - Dugandžić, Ivan
AU  - Mančić, Lidija
AU  - Rabanal, Maria Eugenia
AU  - Milošević, Olivera B.
PY  - 2014
UR  - http://dais.sanu.ac.rs/123456789/605
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/2777
AB  - In the past few years there is a great interest for synthesis of the surface modified upconversion nanoparticles that can be used for biomedical application such as bio-detection, fluorescene imaging and drug delivery. Thanks to their enhanced tissue penetration depth, improved stability against photo-bleaching and low cytotoxicity Ln-doped fluorides have been recognized as novel near-infrared fluorophores. Among them, NaYF4 is considered to be one of the most efficient low phonon energy host for Ln-ions doping, particularly its hexagonal form which poses multisite character of the crystal lattice. In this work NaYF4 nanoparticles co-doped with Yb3+ and Er3+ were synthesized using the hydrothermal method at 200 ºC (3h) in the presence of polyvinylpyrrolidone (PVP) and polyethylene glycol (PEG), used as surfactants and structure directing agents also. Obtained particles were analyzed by X-ray powder diffractometry (XRPD), Furrier transform infrared spectroscopy (FTIR) and scanning/transmission electron microscopy (SEM/TEM). It was shown that addition of PVP enhance the crystallization of hexagonal NaYF4:Yb3+, Er3+ phase which provide more intense green emission CIE (0.31, 0.66), assigned to the Er3+(2H11/2, 4S3/2) → 4I15/2 electronic transitions, after been excited with infrared light (λ=978 nm).
PB  - Belgrade : Serbian Ceramic Society
C3  - Advanced Ceramics and Application : new frontiers in multifunctional material science and processing : program and the book of abstracts / III Serbian Ceramic Society Conference, 29th September - 1st October, Belgrade, 2014
T1  - Surfactants Assisted Hydrothermal Synthesis of NaYF4 co-doped Yb3+/Er3+ Up-conversion Nanoparticles
SP  - 88
EP  - 88
UR  - https://hdl.handle.net/21.15107/rcub_cherry_2777
ER  - 
@conference{
author = "Dinić, Ivana and Dugandžić, Ivan and Mančić, Lidija and Rabanal, Maria Eugenia and Milošević, Olivera B.",
year = "2014",
abstract = "In the past few years there is a great interest for synthesis of the surface modified upconversion nanoparticles that can be used for biomedical application such as bio-detection, fluorescene imaging and drug delivery. Thanks to their enhanced tissue penetration depth, improved stability against photo-bleaching and low cytotoxicity Ln-doped fluorides have been recognized as novel near-infrared fluorophores. Among them, NaYF4 is considered to be one of the most efficient low phonon energy host for Ln-ions doping, particularly its hexagonal form which poses multisite character of the crystal lattice. In this work NaYF4 nanoparticles co-doped with Yb3+ and Er3+ were synthesized using the hydrothermal method at 200 ºC (3h) in the presence of polyvinylpyrrolidone (PVP) and polyethylene glycol (PEG), used as surfactants and structure directing agents also. Obtained particles were analyzed by X-ray powder diffractometry (XRPD), Furrier transform infrared spectroscopy (FTIR) and scanning/transmission electron microscopy (SEM/TEM). It was shown that addition of PVP enhance the crystallization of hexagonal NaYF4:Yb3+, Er3+ phase which provide more intense green emission CIE (0.31, 0.66), assigned to the Er3+(2H11/2, 4S3/2) → 4I15/2 electronic transitions, after been excited with infrared light (λ=978 nm).",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Advanced Ceramics and Application : new frontiers in multifunctional material science and processing : program and the book of abstracts / III Serbian Ceramic Society Conference, 29th September - 1st October, Belgrade, 2014",
title = "Surfactants Assisted Hydrothermal Synthesis of NaYF4 co-doped Yb3+/Er3+ Up-conversion Nanoparticles",
pages = "88-88",
url = "https://hdl.handle.net/21.15107/rcub_cherry_2777"
}
Dinić, I., Dugandžić, I., Mančić, L., Rabanal, M. E.,& Milošević, O. B.. (2014). Surfactants Assisted Hydrothermal Synthesis of NaYF4 co-doped Yb3+/Er3+ Up-conversion Nanoparticles. in Advanced Ceramics and Application : new frontiers in multifunctional material science and processing : program and the book of abstracts / III Serbian Ceramic Society Conference, 29th September - 1st October, Belgrade, 2014
Belgrade : Serbian Ceramic Society., 88-88.
https://hdl.handle.net/21.15107/rcub_cherry_2777
Dinić I, Dugandžić I, Mančić L, Rabanal ME, Milošević OB. Surfactants Assisted Hydrothermal Synthesis of NaYF4 co-doped Yb3+/Er3+ Up-conversion Nanoparticles. in Advanced Ceramics and Application : new frontiers in multifunctional material science and processing : program and the book of abstracts / III Serbian Ceramic Society Conference, 29th September - 1st October, Belgrade, 2014. 2014;:88-88.
https://hdl.handle.net/21.15107/rcub_cherry_2777 .
Dinić, Ivana, Dugandžić, Ivan, Mančić, Lidija, Rabanal, Maria Eugenia, Milošević, Olivera B., "Surfactants Assisted Hydrothermal Synthesis of NaYF4 co-doped Yb3+/Er3+ Up-conversion Nanoparticles" in Advanced Ceramics and Application : new frontiers in multifunctional material science and processing : program and the book of abstracts / III Serbian Ceramic Society Conference, 29th September - 1st October, Belgrade, 2014 (2014):88-88,
https://hdl.handle.net/21.15107/rcub_cherry_2777 .