Popović, Nikolina

Link to this page

Authority KeyName Variants
orcid::0000-0001-6774-3739
  • Popović, Nikolina (13)

Author's Bibliography

Dopamine-modified pectin for a Streptomyces cyaneus laccase induced microbeads formation, immobilization, and textile dyes decolorization

Popović, Nikolina; Stanišić, Marija; Ilić Đurđić, Karla; Prodanović, Olivera; Polović, Natalija; Prodanović, Radivoje

(Elsevier, 2021)

TY  - JOUR
AU  - Popović, Nikolina
AU  - Stanišić, Marija
AU  - Ilić Đurđić, Karla
AU  - Prodanović, Olivera
AU  - Polović, Natalija
AU  - Prodanović, Radivoje
PY  - 2021
UR  - https://www.sciencedirect.com/science/article/pii/S235218642100047X
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/4493
AB  - Pectins are a group of heterologous polysaccharides capable of forming hydrogels and applicable in many industrial processes. A new type of modified pectin was synthesized by periodate oxidation and reductive amination with dopamine and sodium cyanoborohydride. The success of modification was confirmed by UV–Vis,FTIR, and 1H NMR spectroscopy. The obtained dopamine-pectin could form hydrogels by ionic crosslinking of carboxyl groups with calcium or by crosslinking phenol groups with laccase. For enzymatic crosslinking with laccase from Streptomyces cyaneus expressed in E. coli, isolation and purification of the enzyme was done. Using emulsion-based enzymatic crosslinking polymerization, dopamine-pectin microbeads with immobilized laccase were made. The immobilized laccase showed improved thermal and pH stability in comparison to the free enzyme. The immobilized biocatalyst effectively decolorized various dyes: Amido Black 10B, Reactive Black 5, and Evans Blue. After ten cycles of repeated use, the microbead immobilized laccase could still decolorize 60% and 36% of Amido Black 10B and Reactive Black 5, respectively.
PB  - Elsevier
T2  - Environmental Technology & Innovation
T2  - Environmental Technology & InnovationEnvironmental Technology & Innovation
T1  - Dopamine-modified pectin for a Streptomyces cyaneus laccase induced microbeads formation, immobilization, and textile dyes decolorization
VL  - 22
SP  - 101399
DO  - 10.1016/j.eti.2021.101399
ER  - 
@article{
author = "Popović, Nikolina and Stanišić, Marija and Ilić Đurđić, Karla and Prodanović, Olivera and Polović, Natalija and Prodanović, Radivoje",
year = "2021",
abstract = "Pectins are a group of heterologous polysaccharides capable of forming hydrogels and applicable in many industrial processes. A new type of modified pectin was synthesized by periodate oxidation and reductive amination with dopamine and sodium cyanoborohydride. The success of modification was confirmed by UV–Vis,FTIR, and 1H NMR spectroscopy. The obtained dopamine-pectin could form hydrogels by ionic crosslinking of carboxyl groups with calcium or by crosslinking phenol groups with laccase. For enzymatic crosslinking with laccase from Streptomyces cyaneus expressed in E. coli, isolation and purification of the enzyme was done. Using emulsion-based enzymatic crosslinking polymerization, dopamine-pectin microbeads with immobilized laccase were made. The immobilized laccase showed improved thermal and pH stability in comparison to the free enzyme. The immobilized biocatalyst effectively decolorized various dyes: Amido Black 10B, Reactive Black 5, and Evans Blue. After ten cycles of repeated use, the microbead immobilized laccase could still decolorize 60% and 36% of Amido Black 10B and Reactive Black 5, respectively.",
publisher = "Elsevier",
journal = "Environmental Technology & Innovation, Environmental Technology & InnovationEnvironmental Technology & Innovation",
title = "Dopamine-modified pectin for a Streptomyces cyaneus laccase induced microbeads formation, immobilization, and textile dyes decolorization",
volume = "22",
pages = "101399",
doi = "10.1016/j.eti.2021.101399"
}
Popović, N., Stanišić, M., Ilić Đurđić, K., Prodanović, O., Polović, N.,& Prodanović, R.. (2021). Dopamine-modified pectin for a Streptomyces cyaneus laccase induced microbeads formation, immobilization, and textile dyes decolorization. in Environmental Technology & Innovation
Elsevier., 22, 101399.
https://doi.org/10.1016/j.eti.2021.101399
Popović N, Stanišić M, Ilić Đurđić K, Prodanović O, Polović N, Prodanović R. Dopamine-modified pectin for a Streptomyces cyaneus laccase induced microbeads formation, immobilization, and textile dyes decolorization. in Environmental Technology & Innovation. 2021;22:101399.
doi:10.1016/j.eti.2021.101399 .
Popović, Nikolina, Stanišić, Marija, Ilić Đurđić, Karla, Prodanović, Olivera, Polović, Natalija, Prodanović, Radivoje, "Dopamine-modified pectin for a Streptomyces cyaneus laccase induced microbeads formation, immobilization, and textile dyes decolorization" in Environmental Technology & Innovation, 22 (2021):101399,
https://doi.org/10.1016/j.eti.2021.101399 . .
1
1
1

Supplementary data for the article: Popović, N.; Stanišić, M.; Ilić Đurđić, K.; Prodanović, O.; Polović, N.; Prodanović, R. Dopamine-Modified Pectin for a Streptomyces Cyaneus Laccase Induced Microbeads Formation, Immobilization, and Textile Dyes Decolorization. Environmental Technology & Innovation 2021, 22, 101399. https://doi.org/10.1016/j.eti.2021.101399.

Popović, Nikolina; Stanišić, Marija; Ilić Đurđić, Karla; Prodanović, Olivera; Polović, Natalija; Prodanović, Radivoje

(Elsevier, 2021)

TY  - DATA
AU  - Popović, Nikolina
AU  - Stanišić, Marija
AU  - Ilić Đurđić, Karla
AU  - Prodanović, Olivera
AU  - Polović, Natalija
AU  - Prodanović, Radivoje
PY  - 2021
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/4493
PB  - Elsevier
T2  - Environmental Technology & Innovation
T2  - Environmental Technology & InnovationEnvironmental Technology & Innovation
T1  - Supplementary data for the article: Popović, N.; Stanišić, M.; Ilić Đurđić, K.; Prodanović, O.; Polović, N.; Prodanović, R. Dopamine-Modified Pectin for a Streptomyces Cyaneus Laccase Induced Microbeads Formation, Immobilization, and Textile Dyes Decolorization. Environmental Technology & Innovation 2021, 22, 101399. https://doi.org/10.1016/j.eti.2021.101399.
ER  - 
@misc{
author = "Popović, Nikolina and Stanišić, Marija and Ilić Đurđić, Karla and Prodanović, Olivera and Polović, Natalija and Prodanović, Radivoje",
year = "2021",
publisher = "Elsevier",
journal = "Environmental Technology & Innovation, Environmental Technology & InnovationEnvironmental Technology & Innovation",
title = "Supplementary data for the article: Popović, N.; Stanišić, M.; Ilić Đurđić, K.; Prodanović, O.; Polović, N.; Prodanović, R. Dopamine-Modified Pectin for a Streptomyces Cyaneus Laccase Induced Microbeads Formation, Immobilization, and Textile Dyes Decolorization. Environmental Technology & Innovation 2021, 22, 101399. https://doi.org/10.1016/j.eti.2021.101399."
}
Popović, N., Stanišić, M., Ilić Đurđić, K., Prodanović, O., Polović, N.,& Prodanović, R.. (2021). Supplementary data for the article: Popović, N.; Stanišić, M.; Ilić Đurđić, K.; Prodanović, O.; Polović, N.; Prodanović, R. Dopamine-Modified Pectin for a Streptomyces Cyaneus Laccase Induced Microbeads Formation, Immobilization, and Textile Dyes Decolorization. Environmental Technology & Innovation 2021, 22, 101399. https://doi.org/10.1016/j.eti.2021.101399.. in Environmental Technology & Innovation
Elsevier..
Popović N, Stanišić M, Ilić Đurđić K, Prodanović O, Polović N, Prodanović R. Supplementary data for the article: Popović, N.; Stanišić, M.; Ilić Đurđić, K.; Prodanović, O.; Polović, N.; Prodanović, R. Dopamine-Modified Pectin for a Streptomyces Cyaneus Laccase Induced Microbeads Formation, Immobilization, and Textile Dyes Decolorization. Environmental Technology & Innovation 2021, 22, 101399. https://doi.org/10.1016/j.eti.2021.101399.. in Environmental Technology & Innovation. 2021;..
Popović, Nikolina, Stanišić, Marija, Ilić Đurđić, Karla, Prodanović, Olivera, Polović, Natalija, Prodanović, Radivoje, "Supplementary data for the article: Popović, N.; Stanišić, M.; Ilić Đurđić, K.; Prodanović, O.; Polović, N.; Prodanović, R. Dopamine-Modified Pectin for a Streptomyces Cyaneus Laccase Induced Microbeads Formation, Immobilization, and Textile Dyes Decolorization. Environmental Technology & Innovation 2021, 22, 101399. https://doi.org/10.1016/j.eti.2021.101399." in Environmental Technology & Innovation (2021).

Improved degradation of azo dyes by lignin peroxidase following mutagenesis at two sites near the catalytic pocket and the application of peroxidase-coated yeast cell walls

Ilić Đurđić, Karla; Ostafe, Raluca; Prodanović, Olivera; Đurđević Đelmaš, Aleksandra; Popović, Nikolina; Fischer, Rainer; Schillberg, Stefan; Prodanović, Radivoje

(Springer, 2021)

TY  - JOUR
AU  - Ilić Đurđić, Karla
AU  - Ostafe, Raluca
AU  - Prodanović, Olivera
AU  - Đurđević Đelmaš, Aleksandra
AU  - Popović, Nikolina
AU  - Fischer, Rainer
AU  - Schillberg, Stefan
AU  - Prodanović, Radivoje
PY  - 2021
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/4101
AB  - The enzymatic degradation of azo dyes is a promising alternative to ineffective chemical and physical remediation methods. Lignin peroxidase (LiP) from Phanerochaete chrysosporium is a heme-containing lignin-degrading oxidoreductase that catalyzes the peroxide-dependent oxidation of diverse molecules, including industrial dyes. This enzyme is therefore ideal as a starting point for protein engineering. Accordingly, we subjected two positions (165 and 264) in the environment of the catalytic Trp171 residue to saturation mutagenesis, and the resulting library of 104 independent clones was expressed on the surface of yeast cells. This yeast display library was used for the selection of variants with the ability to break down structurally-distinct azo dyes more efficiently. We identified mutants with up to 10-fold greater affinity than wild-type LiP for three diverse azo dyes (Evans blue, amido black 10B and Guinea green) and up to 13-fold higher catalytic activity. Additionally, cell wall fragments displaying mutant LiP enzymes were prepared by toluene-induced cell lysis, achieving significant increases in both enzyme activity and stability compared to a whole-cell biocatalyst. LiP-coated cell wall fragments retained their initial dye degradation activity after 10 reaction cycles each lasting 8 h. The best-performing mutants removed up to 2.5-fold more of each dye than the wild-type LiP in multiple reaction cycles.
PB  - Springer
T2  - Frontiers of Environmental Science & Engineering
T2  - Frontiers of Environmental Science & EngineeringFront. Environ. Sci. Eng.
T1  - Improved degradation of azo dyes by lignin peroxidase following mutagenesis at two sites near the catalytic pocket and the application of peroxidase-coated yeast cell walls
VL  - 15
IS  - 2
SP  - 19
DO  - 10.1007/s11783-020-1311-4
ER  - 
@article{
author = "Ilić Đurđić, Karla and Ostafe, Raluca and Prodanović, Olivera and Đurđević Đelmaš, Aleksandra and Popović, Nikolina and Fischer, Rainer and Schillberg, Stefan and Prodanović, Radivoje",
year = "2021",
abstract = "The enzymatic degradation of azo dyes is a promising alternative to ineffective chemical and physical remediation methods. Lignin peroxidase (LiP) from Phanerochaete chrysosporium is a heme-containing lignin-degrading oxidoreductase that catalyzes the peroxide-dependent oxidation of diverse molecules, including industrial dyes. This enzyme is therefore ideal as a starting point for protein engineering. Accordingly, we subjected two positions (165 and 264) in the environment of the catalytic Trp171 residue to saturation mutagenesis, and the resulting library of 104 independent clones was expressed on the surface of yeast cells. This yeast display library was used for the selection of variants with the ability to break down structurally-distinct azo dyes more efficiently. We identified mutants with up to 10-fold greater affinity than wild-type LiP for three diverse azo dyes (Evans blue, amido black 10B and Guinea green) and up to 13-fold higher catalytic activity. Additionally, cell wall fragments displaying mutant LiP enzymes were prepared by toluene-induced cell lysis, achieving significant increases in both enzyme activity and stability compared to a whole-cell biocatalyst. LiP-coated cell wall fragments retained their initial dye degradation activity after 10 reaction cycles each lasting 8 h. The best-performing mutants removed up to 2.5-fold more of each dye than the wild-type LiP in multiple reaction cycles.",
publisher = "Springer",
journal = "Frontiers of Environmental Science & Engineering, Frontiers of Environmental Science & EngineeringFront. Environ. Sci. Eng.",
title = "Improved degradation of azo dyes by lignin peroxidase following mutagenesis at two sites near the catalytic pocket and the application of peroxidase-coated yeast cell walls",
volume = "15",
number = "2",
pages = "19",
doi = "10.1007/s11783-020-1311-4"
}
Ilić Đurđić, K., Ostafe, R., Prodanović, O., Đurđević Đelmaš, A., Popović, N., Fischer, R., Schillberg, S.,& Prodanović, R.. (2021). Improved degradation of azo dyes by lignin peroxidase following mutagenesis at two sites near the catalytic pocket and the application of peroxidase-coated yeast cell walls. in Frontiers of Environmental Science & Engineering
Springer., 15(2), 19.
https://doi.org/10.1007/s11783-020-1311-4
Ilić Đurđić K, Ostafe R, Prodanović O, Đurđević Đelmaš A, Popović N, Fischer R, Schillberg S, Prodanović R. Improved degradation of azo dyes by lignin peroxidase following mutagenesis at two sites near the catalytic pocket and the application of peroxidase-coated yeast cell walls. in Frontiers of Environmental Science & Engineering. 2021;15(2):19.
doi:10.1007/s11783-020-1311-4 .
Ilić Đurđić, Karla, Ostafe, Raluca, Prodanović, Olivera, Đurđević Đelmaš, Aleksandra, Popović, Nikolina, Fischer, Rainer, Schillberg, Stefan, Prodanović, Radivoje, "Improved degradation of azo dyes by lignin peroxidase following mutagenesis at two sites near the catalytic pocket and the application of peroxidase-coated yeast cell walls" in Frontiers of Environmental Science & Engineering, 15, no. 2 (2021):19,
https://doi.org/10.1007/s11783-020-1311-4 . .
4
4
3

Supplementary data for the article: Ilić Đurđić, K.; Ostafe, R.; Prodanović, O.; Đurđević Đelmaš, A.; Popović, N.; Fischer, R.; Schillberg, S.; Prodanović, R. Improved Degradation of Azo Dyes by Lignin Peroxidase Following Mutagenesis at Two Sites near the Catalytic Pocket and the Application of Peroxidase-Coated Yeast Cell Walls. Front. Environ. Sci. Eng. 2020, 15 (2), 19. https://doi.org/10.1007/s11783-020-1311-4

Ilić Đurđić, Karla; Ostafe, Raluca; Prodanović, Olivera; Đurđević Đelmaš, Aleksandra; Popović, Nikolina; Fischer, Rainer; Schillberg, Stefan; Prodanović, Radivoje

(Springer, 2021)

TY  - DATA
AU  - Ilić Đurđić, Karla
AU  - Ostafe, Raluca
AU  - Prodanović, Olivera
AU  - Đurđević Đelmaš, Aleksandra
AU  - Popović, Nikolina
AU  - Fischer, Rainer
AU  - Schillberg, Stefan
AU  - Prodanović, Radivoje
PY  - 2021
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/4103
PB  - Springer
T2  - Frontiers of Environmental Science & EngineeringFront. Environ. Sci. Eng.
T1  - Supplementary data for the article: Ilić Đurđić, K.; Ostafe, R.; Prodanović, O.; Đurđević Đelmaš, A.; Popović, N.; Fischer, R.; Schillberg, S.; Prodanović, R. Improved Degradation of Azo Dyes by Lignin Peroxidase Following Mutagenesis at Two Sites near the Catalytic Pocket and the Application of Peroxidase-Coated Yeast Cell Walls. Front. Environ. Sci. Eng. 2020, 15 (2), 19. https://doi.org/10.1007/s11783-020-1311-4
ER  - 
@misc{
author = "Ilić Đurđić, Karla and Ostafe, Raluca and Prodanović, Olivera and Đurđević Đelmaš, Aleksandra and Popović, Nikolina and Fischer, Rainer and Schillberg, Stefan and Prodanović, Radivoje",
year = "2021",
publisher = "Springer",
journal = "Frontiers of Environmental Science & EngineeringFront. Environ. Sci. Eng.",
title = "Supplementary data for the article: Ilić Đurđić, K.; Ostafe, R.; Prodanović, O.; Đurđević Đelmaš, A.; Popović, N.; Fischer, R.; Schillberg, S.; Prodanović, R. Improved Degradation of Azo Dyes by Lignin Peroxidase Following Mutagenesis at Two Sites near the Catalytic Pocket and the Application of Peroxidase-Coated Yeast Cell Walls. Front. Environ. Sci. Eng. 2020, 15 (2), 19. https://doi.org/10.1007/s11783-020-1311-4"
}
Ilić Đurđić, K., Ostafe, R., Prodanović, O., Đurđević Đelmaš, A., Popović, N., Fischer, R., Schillberg, S.,& Prodanović, R.. (2021). Supplementary data for the article: Ilić Đurđić, K.; Ostafe, R.; Prodanović, O.; Đurđević Đelmaš, A.; Popović, N.; Fischer, R.; Schillberg, S.; Prodanović, R. Improved Degradation of Azo Dyes by Lignin Peroxidase Following Mutagenesis at Two Sites near the Catalytic Pocket and the Application of Peroxidase-Coated Yeast Cell Walls. Front. Environ. Sci. Eng. 2020, 15 (2), 19. https://doi.org/10.1007/s11783-020-1311-4. in Frontiers of Environmental Science & EngineeringFront. Environ. Sci. Eng.
Springer..
Ilić Đurđić K, Ostafe R, Prodanović O, Đurđević Đelmaš A, Popović N, Fischer R, Schillberg S, Prodanović R. Supplementary data for the article: Ilić Đurđić, K.; Ostafe, R.; Prodanović, O.; Đurđević Đelmaš, A.; Popović, N.; Fischer, R.; Schillberg, S.; Prodanović, R. Improved Degradation of Azo Dyes by Lignin Peroxidase Following Mutagenesis at Two Sites near the Catalytic Pocket and the Application of Peroxidase-Coated Yeast Cell Walls. Front. Environ. Sci. Eng. 2020, 15 (2), 19. https://doi.org/10.1007/s11783-020-1311-4. in Frontiers of Environmental Science & EngineeringFront. Environ. Sci. Eng.. 2021;..
Ilić Đurđić, Karla, Ostafe, Raluca, Prodanović, Olivera, Đurđević Đelmaš, Aleksandra, Popović, Nikolina, Fischer, Rainer, Schillberg, Stefan, Prodanović, Radivoje, "Supplementary data for the article: Ilić Đurđić, K.; Ostafe, R.; Prodanović, O.; Đurđević Đelmaš, A.; Popović, N.; Fischer, R.; Schillberg, S.; Prodanović, R. Improved Degradation of Azo Dyes by Lignin Peroxidase Following Mutagenesis at Two Sites near the Catalytic Pocket and the Application of Peroxidase-Coated Yeast Cell Walls. Front. Environ. Sci. Eng. 2020, 15 (2), 19. https://doi.org/10.1007/s11783-020-1311-4" in Frontiers of Environmental Science & EngineeringFront. Environ. Sci. Eng. (2021).

Immobilization of yeast cell walls with surface displayed laccase from Streptomyces cyaneus within dopamine-alginate beads for dye decolorization

Popović, Nikolina; Pržulj, Dunja; Mladenović, Maja; Prodanović, Olivera; Ece, Selin; Ilić Đurđić, Karla; Ostafe, Raluca; Fischer, Rainer; Prodanović, Radivoje

(2021)

TY  - JOUR
AU  - Popović, Nikolina
AU  - Pržulj, Dunja
AU  - Mladenović, Maja
AU  - Prodanović, Olivera
AU  - Ece, Selin
AU  - Ilić Đurđić, Karla
AU  - Ostafe, Raluca
AU  - Fischer, Rainer
AU  - Prodanović, Radivoje
PY  - 2021
UR  - https://www.sciencedirect.com/science/article/pii/S0141813021008813
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/4404
AB  - High amounts of toxic textile dyes are released into the environment due to coloring and wastewaters treatment processes' inefficiency. To remove dyes from the environment and wastewaters, researchers focused on applying immobilized enzymes due to mild reaction conditions and enzyme nontoxicity. Laccases are oxidases with wide substrate specificity, capable of degradation of many different dye types. Laccase from Streptomyces cyaneus was expressed on the surface of Saccharomyces cerevisiae EBY100 cells. The specific activity of surface-displayed laccase was increased by toluene-induced lysis to 3.1 U/g of cell walls. For cell wall laccase immobilization within hydrogel beads, alginate was modified by dopamine using periodate oxidation and reductive amination and characterized by UV–Vis, FTIR, and NMR spectroscopy. Cell wall laccase was immobilized within alginate and dopamine-alginate beads additionally cross-linked by oxygen and laccase. The immobilized enzyme's specific activity was two times higher using dopamine-alginate compared to native alginate beads, and immobilization yield increased 16 times. Cell wall laccase immobilized within dopamine-alginate beads decolorized Amido Black 10B, Reactive Black 5, Evans Blue, and Remazol Brilliant Blue with 100% efficiency and after ten rounds of multiple-use retained decolorization efficiency of 90% with Evans Blue and 61% with Amido Black.
T2  - International Journal of Biological Macromolecules
T1  - Immobilization of yeast cell walls with surface displayed laccase from Streptomyces cyaneus within dopamine-alginate beads for dye decolorization
VL  - 181
SP  - 1072
EP  - 1080
DO  - 10.1016/j.ijbiomac.2021.04.115
ER  - 
@article{
author = "Popović, Nikolina and Pržulj, Dunja and Mladenović, Maja and Prodanović, Olivera and Ece, Selin and Ilić Đurđić, Karla and Ostafe, Raluca and Fischer, Rainer and Prodanović, Radivoje",
year = "2021",
abstract = "High amounts of toxic textile dyes are released into the environment due to coloring and wastewaters treatment processes' inefficiency. To remove dyes from the environment and wastewaters, researchers focused on applying immobilized enzymes due to mild reaction conditions and enzyme nontoxicity. Laccases are oxidases with wide substrate specificity, capable of degradation of many different dye types. Laccase from Streptomyces cyaneus was expressed on the surface of Saccharomyces cerevisiae EBY100 cells. The specific activity of surface-displayed laccase was increased by toluene-induced lysis to 3.1 U/g of cell walls. For cell wall laccase immobilization within hydrogel beads, alginate was modified by dopamine using periodate oxidation and reductive amination and characterized by UV–Vis, FTIR, and NMR spectroscopy. Cell wall laccase was immobilized within alginate and dopamine-alginate beads additionally cross-linked by oxygen and laccase. The immobilized enzyme's specific activity was two times higher using dopamine-alginate compared to native alginate beads, and immobilization yield increased 16 times. Cell wall laccase immobilized within dopamine-alginate beads decolorized Amido Black 10B, Reactive Black 5, Evans Blue, and Remazol Brilliant Blue with 100% efficiency and after ten rounds of multiple-use retained decolorization efficiency of 90% with Evans Blue and 61% with Amido Black.",
journal = "International Journal of Biological Macromolecules",
title = "Immobilization of yeast cell walls with surface displayed laccase from Streptomyces cyaneus within dopamine-alginate beads for dye decolorization",
volume = "181",
pages = "1072-1080",
doi = "10.1016/j.ijbiomac.2021.04.115"
}
Popović, N., Pržulj, D., Mladenović, M., Prodanović, O., Ece, S., Ilić Đurđić, K., Ostafe, R., Fischer, R.,& Prodanović, R.. (2021). Immobilization of yeast cell walls with surface displayed laccase from Streptomyces cyaneus within dopamine-alginate beads for dye decolorization. in International Journal of Biological Macromolecules, 181, 1072-1080.
https://doi.org/10.1016/j.ijbiomac.2021.04.115
Popović N, Pržulj D, Mladenović M, Prodanović O, Ece S, Ilić Đurđić K, Ostafe R, Fischer R, Prodanović R. Immobilization of yeast cell walls with surface displayed laccase from Streptomyces cyaneus within dopamine-alginate beads for dye decolorization. in International Journal of Biological Macromolecules. 2021;181:1072-1080.
doi:10.1016/j.ijbiomac.2021.04.115 .
Popović, Nikolina, Pržulj, Dunja, Mladenović, Maja, Prodanović, Olivera, Ece, Selin, Ilić Đurđić, Karla, Ostafe, Raluca, Fischer, Rainer, Prodanović, Radivoje, "Immobilization of yeast cell walls with surface displayed laccase from Streptomyces cyaneus within dopamine-alginate beads for dye decolorization" in International Journal of Biological Macromolecules, 181 (2021):1072-1080,
https://doi.org/10.1016/j.ijbiomac.2021.04.115 . .
3
1
1

Supplementary data for the article: Popović, N.; Pržulj, D.; Mladenović, M.; Prodanović, O.; Ece, S.; Ilić Đurđić, K.; Ostafe, R.; Fischer, R.; Prodanović, R. Immobilization of Yeast Cell Walls with Surface Displayed Laccase from Streptomyces Cyaneus within Dopamine-Alginate Beads for Dye Decolorization. International Journal of Biological Macromolecules 2021, 181, 1072–1080. https://doi.org/10.1016/j.ijbiomac.2021.04.115.

Popović, Nikolina; Pržulj, Dunja; Mladenović, Maja; Prodanović, Olivera; Ece, Selin; Ilić Đurđić, Karla; Ostafe, Raluca; Fischer, Rainer; Prodanović, Radivoje

(2021)

TY  - DATA
AU  - Popović, Nikolina
AU  - Pržulj, Dunja
AU  - Mladenović, Maja
AU  - Prodanović, Olivera
AU  - Ece, Selin
AU  - Ilić Đurđić, Karla
AU  - Ostafe, Raluca
AU  - Fischer, Rainer
AU  - Prodanović, Radivoje
PY  - 2021
UR  - https://www.sciencedirect.com/science/article/pii/S0141813021008813
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/4405
T2  - International Journal of Biological Macromolecules
T1  - Supplementary data for the article: Popović, N.; Pržulj, D.; Mladenović, M.; Prodanović, O.; Ece, S.; Ilić Đurđić, K.; Ostafe, R.; Fischer, R.; Prodanović, R. Immobilization of Yeast Cell Walls with Surface Displayed Laccase from Streptomyces Cyaneus within Dopamine-Alginate Beads for Dye Decolorization. International Journal of Biological Macromolecules 2021, 181, 1072–1080. https://doi.org/10.1016/j.ijbiomac.2021.04.115.
ER  - 
@misc{
author = "Popović, Nikolina and Pržulj, Dunja and Mladenović, Maja and Prodanović, Olivera and Ece, Selin and Ilić Đurđić, Karla and Ostafe, Raluca and Fischer, Rainer and Prodanović, Radivoje",
year = "2021",
journal = "International Journal of Biological Macromolecules",
title = "Supplementary data for the article: Popović, N.; Pržulj, D.; Mladenović, M.; Prodanović, O.; Ece, S.; Ilić Đurđić, K.; Ostafe, R.; Fischer, R.; Prodanović, R. Immobilization of Yeast Cell Walls with Surface Displayed Laccase from Streptomyces Cyaneus within Dopamine-Alginate Beads for Dye Decolorization. International Journal of Biological Macromolecules 2021, 181, 1072–1080. https://doi.org/10.1016/j.ijbiomac.2021.04.115."
}
Popović, N., Pržulj, D., Mladenović, M., Prodanović, O., Ece, S., Ilić Đurđić, K., Ostafe, R., Fischer, R.,& Prodanović, R.. (2021). Supplementary data for the article: Popović, N.; Pržulj, D.; Mladenović, M.; Prodanović, O.; Ece, S.; Ilić Đurđić, K.; Ostafe, R.; Fischer, R.; Prodanović, R. Immobilization of Yeast Cell Walls with Surface Displayed Laccase from Streptomyces Cyaneus within Dopamine-Alginate Beads for Dye Decolorization. International Journal of Biological Macromolecules 2021, 181, 1072–1080. https://doi.org/10.1016/j.ijbiomac.2021.04.115.. in International Journal of Biological Macromolecules.
Popović N, Pržulj D, Mladenović M, Prodanović O, Ece S, Ilić Đurđić K, Ostafe R, Fischer R, Prodanović R. Supplementary data for the article: Popović, N.; Pržulj, D.; Mladenović, M.; Prodanović, O.; Ece, S.; Ilić Đurđić, K.; Ostafe, R.; Fischer, R.; Prodanović, R. Immobilization of Yeast Cell Walls with Surface Displayed Laccase from Streptomyces Cyaneus within Dopamine-Alginate Beads for Dye Decolorization. International Journal of Biological Macromolecules 2021, 181, 1072–1080. https://doi.org/10.1016/j.ijbiomac.2021.04.115.. in International Journal of Biological Macromolecules. 2021;..
Popović, Nikolina, Pržulj, Dunja, Mladenović, Maja, Prodanović, Olivera, Ece, Selin, Ilić Đurđić, Karla, Ostafe, Raluca, Fischer, Rainer, Prodanović, Radivoje, "Supplementary data for the article: Popović, N.; Pržulj, D.; Mladenović, M.; Prodanović, O.; Ece, S.; Ilić Đurđić, K.; Ostafe, R.; Fischer, R.; Prodanović, R. Immobilization of Yeast Cell Walls with Surface Displayed Laccase from Streptomyces Cyaneus within Dopamine-Alginate Beads for Dye Decolorization. International Journal of Biological Macromolecules 2021, 181, 1072–1080. https://doi.org/10.1016/j.ijbiomac.2021.04.115." in International Journal of Biological Macromolecules (2021).

Immobilization of yeast cell walls with surface displayed laccase from Streptomyces cyaneus within dopamine-alginate beads for dye decolorization

Popović, Nikolina; Pržulj, Dunja; Mladenović, Maja; Prodanović, Olivera; Ece, Selin; Ilić Đurđić, Karla; Ostafe, Raluca; Fischer, Rainer; Prodanović, Radivoje

(2021)

TY  - JOUR
AU  - Popović, Nikolina
AU  - Pržulj, Dunja
AU  - Mladenović, Maja
AU  - Prodanović, Olivera
AU  - Ece, Selin
AU  - Ilić Đurđić, Karla
AU  - Ostafe, Raluca
AU  - Fischer, Rainer
AU  - Prodanović, Radivoje
PY  - 2021
UR  - https://www.sciencedirect.com/science/article/pii/S0141813021008813
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/4406
AB  - High amounts of toxic textile dyes are released into the environment due to coloring and wastewaters treatment processes' inefficiency. To remove dyes from the environment and wastewaters, researchers focused on applying immobilized enzymes due to mild reaction conditions and enzyme nontoxicity. Laccases are oxidases with wide substrate specificity, capable of degradation of many different dye types. Laccase from Streptomyces cyaneus was expressed on the surface of Saccharomyces cerevisiae EBY100 cells. The specific activity of surface-displayed laccase was increased by toluene-induced lysis to 3.1 U/g of cell walls. For cell wall laccase immobilization within hydrogel beads, alginate was modified by dopamine using periodate oxidation and reductive amination and characterized by UV–Vis, FTIR, and NMR spectroscopy. Cell wall laccase was immobilized within alginate and dopamine-alginate beads additionally cross-linked by oxygen and laccase. The immobilized enzyme's specific activity was two times higher using dopamine-alginate compared to native alginate beads, and immobilization yield increased 16 times. Cell wall laccase immobilized within dopamine-alginate beads decolorized Amido Black 10B, Reactive Black 5, Evans Blue, and Remazol Brilliant Blue with 100% efficiency and after ten rounds of multiple-use retained decolorization efficiency of 90% with Evans Blue and 61% with Amido Black.
T2  - International Journal of Biological Macromolecules
T1  - Immobilization of yeast cell walls with surface displayed laccase from Streptomyces cyaneus within dopamine-alginate beads for dye decolorization
VL  - 181
SP  - 1072
EP  - 1080
DO  - 10.1016/j.ijbiomac.2021.04.115
ER  - 
@article{
author = "Popović, Nikolina and Pržulj, Dunja and Mladenović, Maja and Prodanović, Olivera and Ece, Selin and Ilić Đurđić, Karla and Ostafe, Raluca and Fischer, Rainer and Prodanović, Radivoje",
year = "2021",
abstract = "High amounts of toxic textile dyes are released into the environment due to coloring and wastewaters treatment processes' inefficiency. To remove dyes from the environment and wastewaters, researchers focused on applying immobilized enzymes due to mild reaction conditions and enzyme nontoxicity. Laccases are oxidases with wide substrate specificity, capable of degradation of many different dye types. Laccase from Streptomyces cyaneus was expressed on the surface of Saccharomyces cerevisiae EBY100 cells. The specific activity of surface-displayed laccase was increased by toluene-induced lysis to 3.1 U/g of cell walls. For cell wall laccase immobilization within hydrogel beads, alginate was modified by dopamine using periodate oxidation and reductive amination and characterized by UV–Vis, FTIR, and NMR spectroscopy. Cell wall laccase was immobilized within alginate and dopamine-alginate beads additionally cross-linked by oxygen and laccase. The immobilized enzyme's specific activity was two times higher using dopamine-alginate compared to native alginate beads, and immobilization yield increased 16 times. Cell wall laccase immobilized within dopamine-alginate beads decolorized Amido Black 10B, Reactive Black 5, Evans Blue, and Remazol Brilliant Blue with 100% efficiency and after ten rounds of multiple-use retained decolorization efficiency of 90% with Evans Blue and 61% with Amido Black.",
journal = "International Journal of Biological Macromolecules",
title = "Immobilization of yeast cell walls with surface displayed laccase from Streptomyces cyaneus within dopamine-alginate beads for dye decolorization",
volume = "181",
pages = "1072-1080",
doi = "10.1016/j.ijbiomac.2021.04.115"
}
Popović, N., Pržulj, D., Mladenović, M., Prodanović, O., Ece, S., Ilić Đurđić, K., Ostafe, R., Fischer, R.,& Prodanović, R.. (2021). Immobilization of yeast cell walls with surface displayed laccase from Streptomyces cyaneus within dopamine-alginate beads for dye decolorization. in International Journal of Biological Macromolecules, 181, 1072-1080.
https://doi.org/10.1016/j.ijbiomac.2021.04.115
Popović N, Pržulj D, Mladenović M, Prodanović O, Ece S, Ilić Đurđić K, Ostafe R, Fischer R, Prodanović R. Immobilization of yeast cell walls with surface displayed laccase from Streptomyces cyaneus within dopamine-alginate beads for dye decolorization. in International Journal of Biological Macromolecules. 2021;181:1072-1080.
doi:10.1016/j.ijbiomac.2021.04.115 .
Popović, Nikolina, Pržulj, Dunja, Mladenović, Maja, Prodanović, Olivera, Ece, Selin, Ilić Đurđić, Karla, Ostafe, Raluca, Fischer, Rainer, Prodanović, Radivoje, "Immobilization of yeast cell walls with surface displayed laccase from Streptomyces cyaneus within dopamine-alginate beads for dye decolorization" in International Journal of Biological Macromolecules, 181 (2021):1072-1080,
https://doi.org/10.1016/j.ijbiomac.2021.04.115 . .
3
1
1

Saturation mutagenesis to improve the degradation of azo dyes by versatile peroxidase and application in form of VP-coated yeast cell walls

Ilić Đurđić, Karla; Ostafe, Raluca; Đurđević Đelmaš, Aleksandra; Popović, Nikolina; Schillberg, Stefan; Fischer, Rainer; Prodanović, Radivoje

(Elsevier, 2020)

TY  - JOUR
AU  - Ilić Đurđić, Karla
AU  - Ostafe, Raluca
AU  - Đurđević Đelmaš, Aleksandra
AU  - Popović, Nikolina
AU  - Schillberg, Stefan
AU  - Fischer, Rainer
AU  - Prodanović, Radivoje
PY  - 2020
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/3834
AB  - Azo dyes are toxic and carcinogenic synthetic pigments that accumulate as pollutants in aquatic bodies near textile factories. The pigments are structurally diverse, and bioremediation is mostly limited to single dye compounds or related groups. Versatile peroxidase (VP) from Pleurotus eryngii is a heme-containing peroxidase with a broad substrate spectrum that can break down many structurally distinct pollutants, including azo dyes. The utilization of this enzyme could be facilitated by engineering to modify its catalytic activity and substrate range. We used saturation mutagenesis to alter two amino acids in the catalytic tryptophan environment of VP (V160 and A260). Library screening with three azo dyes revealed that these two positions had a significant influence on substrate specificity. We were able to isolate and sequence VP variants with up to 16-fold higher catalytic efficiency for different azo dyes. The same approach could be used to select for VP variants that catalyze the degradation of many other types of pollutants. To allow multiple cycles of dye degradation, we immobilized VP on the surface of yeast cells and used washed cell wall fragments after lysis. VP embedded in the cell wall retained ∼70 % of its initial activity after 10 cycles of dye degradation each lasting 12 h, making this platform ideal for the bioremediation of environments contaminated with azo dyes.
PB  - Elsevier
T2  - Enzyme and Microbial Technology
T1  - Saturation mutagenesis to improve the degradation of azo dyes by versatile peroxidase and application in form of VP-coated yeast cell walls
VL  - 136
SP  - e109509
DO  - 10.1016/j.enzmictec.2020.109509
ER  - 
@article{
author = "Ilić Đurđić, Karla and Ostafe, Raluca and Đurđević Đelmaš, Aleksandra and Popović, Nikolina and Schillberg, Stefan and Fischer, Rainer and Prodanović, Radivoje",
year = "2020",
abstract = "Azo dyes are toxic and carcinogenic synthetic pigments that accumulate as pollutants in aquatic bodies near textile factories. The pigments are structurally diverse, and bioremediation is mostly limited to single dye compounds or related groups. Versatile peroxidase (VP) from Pleurotus eryngii is a heme-containing peroxidase with a broad substrate spectrum that can break down many structurally distinct pollutants, including azo dyes. The utilization of this enzyme could be facilitated by engineering to modify its catalytic activity and substrate range. We used saturation mutagenesis to alter two amino acids in the catalytic tryptophan environment of VP (V160 and A260). Library screening with three azo dyes revealed that these two positions had a significant influence on substrate specificity. We were able to isolate and sequence VP variants with up to 16-fold higher catalytic efficiency for different azo dyes. The same approach could be used to select for VP variants that catalyze the degradation of many other types of pollutants. To allow multiple cycles of dye degradation, we immobilized VP on the surface of yeast cells and used washed cell wall fragments after lysis. VP embedded in the cell wall retained ∼70 % of its initial activity after 10 cycles of dye degradation each lasting 12 h, making this platform ideal for the bioremediation of environments contaminated with azo dyes.",
publisher = "Elsevier",
journal = "Enzyme and Microbial Technology",
title = "Saturation mutagenesis to improve the degradation of azo dyes by versatile peroxidase and application in form of VP-coated yeast cell walls",
volume = "136",
pages = "e109509",
doi = "10.1016/j.enzmictec.2020.109509"
}
Ilić Đurđić, K., Ostafe, R., Đurđević Đelmaš, A., Popović, N., Schillberg, S., Fischer, R.,& Prodanović, R.. (2020). Saturation mutagenesis to improve the degradation of azo dyes by versatile peroxidase and application in form of VP-coated yeast cell walls. in Enzyme and Microbial Technology
Elsevier., 136, e109509.
https://doi.org/10.1016/j.enzmictec.2020.109509
Ilić Đurđić K, Ostafe R, Đurđević Đelmaš A, Popović N, Schillberg S, Fischer R, Prodanović R. Saturation mutagenesis to improve the degradation of azo dyes by versatile peroxidase and application in form of VP-coated yeast cell walls. in Enzyme and Microbial Technology. 2020;136:e109509.
doi:10.1016/j.enzmictec.2020.109509 .
Ilić Đurđić, Karla, Ostafe, Raluca, Đurđević Đelmaš, Aleksandra, Popović, Nikolina, Schillberg, Stefan, Fischer, Rainer, Prodanović, Radivoje, "Saturation mutagenesis to improve the degradation of azo dyes by versatile peroxidase and application in form of VP-coated yeast cell walls" in Enzyme and Microbial Technology, 136 (2020):e109509,
https://doi.org/10.1016/j.enzmictec.2020.109509 . .
10
5
7

Saturation mutagenesis to improve the degradation of azo dyes by versatile peroxidase and application in form of VP-coated yeast cell walls

Ilić Đurđić, Karla; Ostafe, Raluca; Đurđević Đelmaš, Aleksandra; Popović, Nikolina; Schillberg, Stefan; Fischer, Rainer; Prodanović, Radivoje

(Elsevier, 2020)

TY  - JOUR
AU  - Ilić Đurđić, Karla
AU  - Ostafe, Raluca
AU  - Đurđević Đelmaš, Aleksandra
AU  - Popović, Nikolina
AU  - Schillberg, Stefan
AU  - Fischer, Rainer
AU  - Prodanović, Radivoje
PY  - 2020
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/3835
AB  - Azo dyes are toxic and carcinogenic synthetic pigments that accumulate as pollutants in aquatic bodies near textile factories. The pigments are structurally diverse, and bioremediation is mostly limited to single dye compounds or related groups. Versatile peroxidase (VP) from Pleurotus eryngii is a heme-containing peroxidase with a broad substrate spectrum that can break down many structurally distinct pollutants, including azo dyes. The utilization of this enzyme could be facilitated by engineering to modify its catalytic activity and substrate range. We used saturation mutagenesis to alter two amino acids in the catalytic tryptophan environment of VP (V160 and A260). Library screening with three azo dyes revealed that these two positions had a significant influence on substrate specificity. We were able to isolate and sequence VP variants with up to 16-fold higher catalytic efficiency for different azo dyes. The same approach could be used to select for VP variants that catalyze the degradation of many other types of pollutants. To allow multiple cycles of dye degradation, we immobilized VP on the surface of yeast cells and used washed cell wall fragments after lysis. VP embedded in the cell wall retained ∼70 % of its initial activity after 10 cycles of dye degradation each lasting 12 h, making this platform ideal for the bioremediation of environments contaminated with azo dyes.
PB  - Elsevier
T2  - Enzyme and Microbial Technology
T1  - Saturation mutagenesis to improve the degradation of azo dyes by versatile peroxidase and application in form of VP-coated yeast cell walls
VL  - 136
SP  - e109509
DO  - 10.1016/j.enzmictec.2020.109509
ER  - 
@article{
author = "Ilić Đurđić, Karla and Ostafe, Raluca and Đurđević Đelmaš, Aleksandra and Popović, Nikolina and Schillberg, Stefan and Fischer, Rainer and Prodanović, Radivoje",
year = "2020",
abstract = "Azo dyes are toxic and carcinogenic synthetic pigments that accumulate as pollutants in aquatic bodies near textile factories. The pigments are structurally diverse, and bioremediation is mostly limited to single dye compounds or related groups. Versatile peroxidase (VP) from Pleurotus eryngii is a heme-containing peroxidase with a broad substrate spectrum that can break down many structurally distinct pollutants, including azo dyes. The utilization of this enzyme could be facilitated by engineering to modify its catalytic activity and substrate range. We used saturation mutagenesis to alter two amino acids in the catalytic tryptophan environment of VP (V160 and A260). Library screening with three azo dyes revealed that these two positions had a significant influence on substrate specificity. We were able to isolate and sequence VP variants with up to 16-fold higher catalytic efficiency for different azo dyes. The same approach could be used to select for VP variants that catalyze the degradation of many other types of pollutants. To allow multiple cycles of dye degradation, we immobilized VP on the surface of yeast cells and used washed cell wall fragments after lysis. VP embedded in the cell wall retained ∼70 % of its initial activity after 10 cycles of dye degradation each lasting 12 h, making this platform ideal for the bioremediation of environments contaminated with azo dyes.",
publisher = "Elsevier",
journal = "Enzyme and Microbial Technology",
title = "Saturation mutagenesis to improve the degradation of azo dyes by versatile peroxidase and application in form of VP-coated yeast cell walls",
volume = "136",
pages = "e109509",
doi = "10.1016/j.enzmictec.2020.109509"
}
Ilić Đurđić, K., Ostafe, R., Đurđević Đelmaš, A., Popović, N., Schillberg, S., Fischer, R.,& Prodanović, R.. (2020). Saturation mutagenesis to improve the degradation of azo dyes by versatile peroxidase and application in form of VP-coated yeast cell walls. in Enzyme and Microbial Technology
Elsevier., 136, e109509.
https://doi.org/10.1016/j.enzmictec.2020.109509
Ilić Đurđić K, Ostafe R, Đurđević Đelmaš A, Popović N, Schillberg S, Fischer R, Prodanović R. Saturation mutagenesis to improve the degradation of azo dyes by versatile peroxidase and application in form of VP-coated yeast cell walls. in Enzyme and Microbial Technology. 2020;136:e109509.
doi:10.1016/j.enzmictec.2020.109509 .
Ilić Đurđić, Karla, Ostafe, Raluca, Đurđević Đelmaš, Aleksandra, Popović, Nikolina, Schillberg, Stefan, Fischer, Rainer, Prodanović, Radivoje, "Saturation mutagenesis to improve the degradation of azo dyes by versatile peroxidase and application in form of VP-coated yeast cell walls" in Enzyme and Microbial Technology, 136 (2020):e109509,
https://doi.org/10.1016/j.enzmictec.2020.109509 . .
10
5
7

Supplementary data for article: Ilić Đurđić, K.; Ostafe, R.; Đurđević Đelmaš, A.; Popović, N.; Schillberg, S.; Fischer, R.; Prodanović, R. Saturation Mutagenesis to Improve the Degradation of Azo Dyes by Versatile Peroxidase and Application in Form of VP-Coated Yeast Cell Walls. Enzyme and Microbial Technology 2020, 136. https://doi.org/10.1016/j.enzmictec.2020.109509

Ilić Đurđić, Karla; Ostafe, Raluca; Đurđević Đelmaš, Aleksandra; Popović, Nikolina; Schillberg, Stefan; Fischer, Rainer; Prodanović, Radivoje

(Elsevier, 2020)

TY  - DATA
AU  - Ilić Đurđić, Karla
AU  - Ostafe, Raluca
AU  - Đurđević Đelmaš, Aleksandra
AU  - Popović, Nikolina
AU  - Schillberg, Stefan
AU  - Fischer, Rainer
AU  - Prodanović, Radivoje
PY  - 2020
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/3836
PB  - Elsevier
T2  - Enzyme and Microbial Technology
T1  - Supplementary data for article: Ilić Đurđić, K.; Ostafe, R.; Đurđević Đelmaš, A.; Popović, N.; Schillberg, S.; Fischer, R.;  Prodanović, R. Saturation Mutagenesis to Improve the Degradation of Azo Dyes by Versatile Peroxidase and Application in Form of VP-Coated Yeast Cell Walls. Enzyme and Microbial Technology 2020, 136. https://doi.org/10.1016/j.enzmictec.2020.109509
ER  - 
@misc{
author = "Ilić Đurđić, Karla and Ostafe, Raluca and Đurđević Đelmaš, Aleksandra and Popović, Nikolina and Schillberg, Stefan and Fischer, Rainer and Prodanović, Radivoje",
year = "2020",
publisher = "Elsevier",
journal = "Enzyme and Microbial Technology",
title = "Supplementary data for article: Ilić Đurđić, K.; Ostafe, R.; Đurđević Đelmaš, A.; Popović, N.; Schillberg, S.; Fischer, R.;  Prodanović, R. Saturation Mutagenesis to Improve the Degradation of Azo Dyes by Versatile Peroxidase and Application in Form of VP-Coated Yeast Cell Walls. Enzyme and Microbial Technology 2020, 136. https://doi.org/10.1016/j.enzmictec.2020.109509"
}
Ilić Đurđić, K., Ostafe, R., Đurđević Đelmaš, A., Popović, N., Schillberg, S., Fischer, R.,& Prodanović, R.. (2020). Supplementary data for article: Ilić Đurđić, K.; Ostafe, R.; Đurđević Đelmaš, A.; Popović, N.; Schillberg, S.; Fischer, R.;  Prodanović, R. Saturation Mutagenesis to Improve the Degradation of Azo Dyes by Versatile Peroxidase and Application in Form of VP-Coated Yeast Cell Walls. Enzyme and Microbial Technology 2020, 136. https://doi.org/10.1016/j.enzmictec.2020.109509. in Enzyme and Microbial Technology
Elsevier..
Ilić Đurđić K, Ostafe R, Đurđević Đelmaš A, Popović N, Schillberg S, Fischer R, Prodanović R. Supplementary data for article: Ilić Đurđić, K.; Ostafe, R.; Đurđević Đelmaš, A.; Popović, N.; Schillberg, S.; Fischer, R.;  Prodanović, R. Saturation Mutagenesis to Improve the Degradation of Azo Dyes by Versatile Peroxidase and Application in Form of VP-Coated Yeast Cell Walls. Enzyme and Microbial Technology 2020, 136. https://doi.org/10.1016/j.enzmictec.2020.109509. in Enzyme and Microbial Technology. 2020;..
Ilić Đurđić, Karla, Ostafe, Raluca, Đurđević Đelmaš, Aleksandra, Popović, Nikolina, Schillberg, Stefan, Fischer, Rainer, Prodanović, Radivoje, "Supplementary data for article: Ilić Đurđić, K.; Ostafe, R.; Đurđević Đelmaš, A.; Popović, N.; Schillberg, S.; Fischer, R.;  Prodanović, R. Saturation Mutagenesis to Improve the Degradation of Azo Dyes by Versatile Peroxidase and Application in Form of VP-Coated Yeast Cell Walls. Enzyme and Microbial Technology 2020, 136. https://doi.org/10.1016/j.enzmictec.2020.109509" in Enzyme and Microbial Technology (2020).

Expression, purification and characterization of cellobiose dehydrogenase mutants from Phanerochaete chrysosporium in Pichia pastoris KM71H strain

Balaž, Ana Marija; Blažić, Marija; Popović, Nikolina; Prodanović, Olivera; Ostafe, Raluca; Fischer, Rainer; Prodanović, Radivoje

(Belgrade : Serbian Chemical Society, 2020)

TY  - JOUR
AU  - Balaž, Ana Marija
AU  - Blažić, Marija
AU  - Popović, Nikolina
AU  - Prodanović, Olivera
AU  - Ostafe, Raluca
AU  - Fischer, Rainer
AU  - Prodanović, Radivoje
PY  - 2020
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/4270
AB  - Production of soluble cellobiose dehydrogenase (CDH) mutant proteins previously evolved on the surface of S. cerevisiae yeast cells was established for use in biosensors and biofuel cells. For this purpose, mutant cdh genes tm (D20N, A64T, V592M), H5 (D20N, V22A, A64T, V592M) and H9 (D20N, A64T, T84A, A261P, V592M, E674G, N715S) were cloned to pPICZα plasmid and transformed into Pichia pastoris KM71H strain for high expression in a soluble form and kinetic characterization. After 6 days of expression under methanol induction, the CDHs were purified by ultrafiltration, ion- -exchange chromatography and gel filtration. Sodium dodecyl sulfate electrophoresis confirmed the purity and presence of a single protein band at a molecular weight of 100 kDa. Kinetic characterization showed that the H5 mutant had the highest catalytic constant of 43.5 s-1 for lactose, while the mutant H9 showed the highest specificity constant for lactose of 132 mM-1 s-1. All three mutant proteins did not change the pH optimum that was between 4.5 and 5.5. Compared to the previously obtained wild types and mutants of CDH from Phanerochaete chrysosporium, the variants reported in this article had higher activity and specificity that together with high protein expression rate in P. pastoris, makes them good candidates for use in biotechnology for lactobionic acid production and biosensor manufacture.
AB  - У циљу употребе у биосензорима и биогоривним ћелијама, успостављена је производњарастворних облика целобиоза дехидрогеназе (CDH) претходно еволуираних на површиниквашчевих ћелија S. cerevisiae. У ту сврху су мутанти CDH, tm (D20N, A64T, V592M), H5(D20N, V22A, A64T, V592M) и H9 (D20N, A64T, T84A, A261P, V592M, E674G, N715S)клонирани у pPICZα плазмид и трансформисани у Pichia pastoris KM71H сој за високуекспресију у растворном облику и кинетичку карактеризацију. После 6 дана експресије подиндукцијом метанолом, мутанти су пречишћени ултрафилтрацијом, јоноизмењивачкомхроматографијом и гел-филтрацијом. SDS електрофореза је потврдила чистоћу уз присуствоједне протеинске траке молекулскe масe од 100 kDa. Кинетичка карактеризација је показалада H5 мутирани протеин поседује највећу каталитичку константу од 43,5 s-1 за лактозу, докје H9 имао највећу константу специфичности за лактозу од 132 mM-1 s-1. Сва три мутиранапротеина су имала неизмењен pH оптимум који је био у опсегу од 4,5 до 5,5. У поређењу сапретходно добијеним природним и мутантним облицима CDH протеина из Phanerochaetechrysosporium, облици приказани у овом раду имају већу активност и специфичност, што их,повезано са високом експресијом протеина у P. Pastoris, чини добрим кандидатима за упо-требу у биотехнологији за производњу лактобионске киселине и биосензора.
PB  - Belgrade : Serbian Chemical Society
T2  - Journal of the Serbian Chemical Society
T1  - Expression, purification and characterization of cellobiose dehydrogenase mutants from Phanerochaete chrysosporium in Pichia pastoris KM71H strain
T1  - Ekspresija, prečišćavanje i karakterizacija mutanata celobioza - dehidrogenaze iz Phanerochaete chrysosporium u Pichia pastoris KM71H soju
VL  - 85
IS  - 1
SP  - 25
EP  - 35
DO  - 10.2298/JSC190320058B
ER  - 
@article{
author = "Balaž, Ana Marija and Blažić, Marija and Popović, Nikolina and Prodanović, Olivera and Ostafe, Raluca and Fischer, Rainer and Prodanović, Radivoje",
year = "2020",
abstract = "Production of soluble cellobiose dehydrogenase (CDH) mutant proteins previously evolved on the surface of S. cerevisiae yeast cells was established for use in biosensors and biofuel cells. For this purpose, mutant cdh genes tm (D20N, A64T, V592M), H5 (D20N, V22A, A64T, V592M) and H9 (D20N, A64T, T84A, A261P, V592M, E674G, N715S) were cloned to pPICZα plasmid and transformed into Pichia pastoris KM71H strain for high expression in a soluble form and kinetic characterization. After 6 days of expression under methanol induction, the CDHs were purified by ultrafiltration, ion- -exchange chromatography and gel filtration. Sodium dodecyl sulfate electrophoresis confirmed the purity and presence of a single protein band at a molecular weight of 100 kDa. Kinetic characterization showed that the H5 mutant had the highest catalytic constant of 43.5 s-1 for lactose, while the mutant H9 showed the highest specificity constant for lactose of 132 mM-1 s-1. All three mutant proteins did not change the pH optimum that was between 4.5 and 5.5. Compared to the previously obtained wild types and mutants of CDH from Phanerochaete chrysosporium, the variants reported in this article had higher activity and specificity that together with high protein expression rate in P. pastoris, makes them good candidates for use in biotechnology for lactobionic acid production and biosensor manufacture., У циљу употребе у биосензорима и биогоривним ћелијама, успостављена је производњарастворних облика целобиоза дехидрогеназе (CDH) претходно еволуираних на површиниквашчевих ћелија S. cerevisiae. У ту сврху су мутанти CDH, tm (D20N, A64T, V592M), H5(D20N, V22A, A64T, V592M) и H9 (D20N, A64T, T84A, A261P, V592M, E674G, N715S)клонирани у pPICZα плазмид и трансформисани у Pichia pastoris KM71H сој за високуекспресију у растворном облику и кинетичку карактеризацију. После 6 дана експресије подиндукцијом метанолом, мутанти су пречишћени ултрафилтрацијом, јоноизмењивачкомхроматографијом и гел-филтрацијом. SDS електрофореза је потврдила чистоћу уз присуствоједне протеинске траке молекулскe масe од 100 kDa. Кинетичка карактеризација је показалада H5 мутирани протеин поседује највећу каталитичку константу од 43,5 s-1 за лактозу, докје H9 имао највећу константу специфичности за лактозу од 132 mM-1 s-1. Сва три мутиранапротеина су имала неизмењен pH оптимум који је био у опсегу од 4,5 до 5,5. У поређењу сапретходно добијеним природним и мутантним облицима CDH протеина из Phanerochaetechrysosporium, облици приказани у овом раду имају већу активност и специфичност, што их,повезано са високом експресијом протеина у P. Pastoris, чини добрим кандидатима за упо-требу у биотехнологији за производњу лактобионске киселине и биосензора.",
publisher = "Belgrade : Serbian Chemical Society",
journal = "Journal of the Serbian Chemical Society",
title = "Expression, purification and characterization of cellobiose dehydrogenase mutants from Phanerochaete chrysosporium in Pichia pastoris KM71H strain, Ekspresija, prečišćavanje i karakterizacija mutanata celobioza - dehidrogenaze iz Phanerochaete chrysosporium u Pichia pastoris KM71H soju",
volume = "85",
number = "1",
pages = "25-35",
doi = "10.2298/JSC190320058B"
}
Balaž, A. M., Blažić, M., Popović, N., Prodanović, O., Ostafe, R., Fischer, R.,& Prodanović, R.. (2020). Expression, purification and characterization of cellobiose dehydrogenase mutants from Phanerochaete chrysosporium in Pichia pastoris KM71H strain. in Journal of the Serbian Chemical Society
Belgrade : Serbian Chemical Society., 85(1), 25-35.
https://doi.org/10.2298/JSC190320058B
Balaž AM, Blažić M, Popović N, Prodanović O, Ostafe R, Fischer R, Prodanović R. Expression, purification and characterization of cellobiose dehydrogenase mutants from Phanerochaete chrysosporium in Pichia pastoris KM71H strain. in Journal of the Serbian Chemical Society. 2020;85(1):25-35.
doi:10.2298/JSC190320058B .
Balaž, Ana Marija, Blažić, Marija, Popović, Nikolina, Prodanović, Olivera, Ostafe, Raluca, Fischer, Rainer, Prodanović, Radivoje, "Expression, purification and characterization of cellobiose dehydrogenase mutants from Phanerochaete chrysosporium in Pichia pastoris KM71H strain" in Journal of the Serbian Chemical Society, 85, no. 1 (2020):25-35,
https://doi.org/10.2298/JSC190320058B . .

Directed evolution of cellobiose dehydrogenase on the surface of yeast cells using resazurin-based fluorescent assay

Blažić, Marija; Balaž, Ana Marija; Prodanović, Olivera; Popović, Nikolina; Ostafe, Raluca; Fischer, Rainer; Prodanović, Radivoje

(Applied sciences, 2019)

TY  - JOUR
AU  - Blažić, Marija
AU  - Balaž, Ana Marija
AU  - Prodanović, Olivera
AU  - Popović, Nikolina
AU  - Ostafe, Raluca
AU  - Fischer, Rainer
AU  - Prodanović, Radivoje
PY  - 2019
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/2909
AB  - Cellobiose dehydrogenase (CDH) from Phanerochaete chrysosporium can be used in lactobionic acid production, biosensor for lactose, biofuel cells, lignocellulose degradation, and wound-healing applications. To make it a better biocatalyst, CDH with higher activity in an immobilized form is desirable. For this purpose, CDH was expressed for the first time on the surface of S. cerevisiae EBY100 cells in an active form as a triple mutant tmCDH (D20N, A64T, V592M) and evolved further for higher activity using resazurin-based fluorescent assay. In order to decrease blank reaction of resazurin with yeast cells and to have linear correlation between enzyme activity on the cell surface and fluorescence signal, the assay was optimized with respect to resazurin concentration (0.1 mM), substrate concentration (10mMlactose and 0.08mMcellobiose), and pH (6.0). Using optimized assay an error prone PCR gene library of tmCDH was screened. Two mutants with 5 (H5) and 7 mutations (H9) were found having two times higher activity than the parent tmCDH enzyme that already had improved activity compared to wild type CDH whose activity could not be detected on the surface of yeast cells.
PB  - Applied sciences
T2  - Applied Sciences (Switzerland)
T1  - Directed evolution of cellobiose dehydrogenase on the surface of yeast cells using resazurin-based fluorescent assay
VL  - 9
IS  - 7
SP  - 1
EP  - 15
DO  - 10.3390/app9071413
ER  - 
@article{
author = "Blažić, Marija and Balaž, Ana Marija and Prodanović, Olivera and Popović, Nikolina and Ostafe, Raluca and Fischer, Rainer and Prodanović, Radivoje",
year = "2019",
abstract = "Cellobiose dehydrogenase (CDH) from Phanerochaete chrysosporium can be used in lactobionic acid production, biosensor for lactose, biofuel cells, lignocellulose degradation, and wound-healing applications. To make it a better biocatalyst, CDH with higher activity in an immobilized form is desirable. For this purpose, CDH was expressed for the first time on the surface of S. cerevisiae EBY100 cells in an active form as a triple mutant tmCDH (D20N, A64T, V592M) and evolved further for higher activity using resazurin-based fluorescent assay. In order to decrease blank reaction of resazurin with yeast cells and to have linear correlation between enzyme activity on the cell surface and fluorescence signal, the assay was optimized with respect to resazurin concentration (0.1 mM), substrate concentration (10mMlactose and 0.08mMcellobiose), and pH (6.0). Using optimized assay an error prone PCR gene library of tmCDH was screened. Two mutants with 5 (H5) and 7 mutations (H9) were found having two times higher activity than the parent tmCDH enzyme that already had improved activity compared to wild type CDH whose activity could not be detected on the surface of yeast cells.",
publisher = "Applied sciences",
journal = "Applied Sciences (Switzerland)",
title = "Directed evolution of cellobiose dehydrogenase on the surface of yeast cells using resazurin-based fluorescent assay",
volume = "9",
number = "7",
pages = "1-15",
doi = "10.3390/app9071413"
}
Blažić, M., Balaž, A. M., Prodanović, O., Popović, N., Ostafe, R., Fischer, R.,& Prodanović, R.. (2019). Directed evolution of cellobiose dehydrogenase on the surface of yeast cells using resazurin-based fluorescent assay. in Applied Sciences (Switzerland)
Applied sciences., 9(7), 1-15.
https://doi.org/10.3390/app9071413
Blažić M, Balaž AM, Prodanović O, Popović N, Ostafe R, Fischer R, Prodanović R. Directed evolution of cellobiose dehydrogenase on the surface of yeast cells using resazurin-based fluorescent assay. in Applied Sciences (Switzerland). 2019;9(7):1-15.
doi:10.3390/app9071413 .
Blažić, Marija, Balaž, Ana Marija, Prodanović, Olivera, Popović, Nikolina, Ostafe, Raluca, Fischer, Rainer, Prodanović, Radivoje, "Directed evolution of cellobiose dehydrogenase on the surface of yeast cells using resazurin-based fluorescent assay" in Applied Sciences (Switzerland), 9, no. 7 (2019):1-15,
https://doi.org/10.3390/app9071413 . .
6
6
6

Supplementary data for the article: Blažić, M.; Balaž, A. M.; Prodanović, O.; Popović, N.; Ostafe, R.; Fischer, R.; Prodanović, R. Directed Evolution of Cellobiose Dehydrogenase on the Surface of Yeast Cells Using Resazurin-Based Fluorescent Assay. Applied Sciences (Switzerland) 2019, 9 (7). https://doi.org/10.3390/app9071413

Blažić, Marija; Balaž, Ana Marija; Prodanović, Olivera; Popović, Nikolina; Ostafe, Raluca; Fischer, Rainer; Prodanović, Radivoje

(Applied sciences, 2019)

TY  - DATA
AU  - Blažić, Marija
AU  - Balaž, Ana Marija
AU  - Prodanović, Olivera
AU  - Popović, Nikolina
AU  - Ostafe, Raluca
AU  - Fischer, Rainer
AU  - Prodanović, Radivoje
PY  - 2019
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/2912
PB  - Applied sciences
T2  - Applied Sciences (Switzerland)
T1  - Supplementary data for the article: Blažić, M.; Balaž, A. M.; Prodanović, O.; Popović, N.; Ostafe, R.; Fischer, R.; Prodanović, R. Directed Evolution of Cellobiose Dehydrogenase on the Surface of Yeast Cells Using Resazurin-Based Fluorescent Assay. Applied Sciences (Switzerland) 2019, 9 (7). https://doi.org/10.3390/app9071413
ER  - 
@misc{
author = "Blažić, Marija and Balaž, Ana Marija and Prodanović, Olivera and Popović, Nikolina and Ostafe, Raluca and Fischer, Rainer and Prodanović, Radivoje",
year = "2019",
publisher = "Applied sciences",
journal = "Applied Sciences (Switzerland)",
title = "Supplementary data for the article: Blažić, M.; Balaž, A. M.; Prodanović, O.; Popović, N.; Ostafe, R.; Fischer, R.; Prodanović, R. Directed Evolution of Cellobiose Dehydrogenase on the Surface of Yeast Cells Using Resazurin-Based Fluorescent Assay. Applied Sciences (Switzerland) 2019, 9 (7). https://doi.org/10.3390/app9071413"
}
Blažić, M., Balaž, A. M., Prodanović, O., Popović, N., Ostafe, R., Fischer, R.,& Prodanović, R.. (2019). Supplementary data for the article: Blažić, M.; Balaž, A. M.; Prodanović, O.; Popović, N.; Ostafe, R.; Fischer, R.; Prodanović, R. Directed Evolution of Cellobiose Dehydrogenase on the Surface of Yeast Cells Using Resazurin-Based Fluorescent Assay. Applied Sciences (Switzerland) 2019, 9 (7). https://doi.org/10.3390/app9071413. in Applied Sciences (Switzerland)
Applied sciences..
Blažić M, Balaž AM, Prodanović O, Popović N, Ostafe R, Fischer R, Prodanović R. Supplementary data for the article: Blažić, M.; Balaž, A. M.; Prodanović, O.; Popović, N.; Ostafe, R.; Fischer, R.; Prodanović, R. Directed Evolution of Cellobiose Dehydrogenase on the Surface of Yeast Cells Using Resazurin-Based Fluorescent Assay. Applied Sciences (Switzerland) 2019, 9 (7). https://doi.org/10.3390/app9071413. in Applied Sciences (Switzerland). 2019;..
Blažić, Marija, Balaž, Ana Marija, Prodanović, Olivera, Popović, Nikolina, Ostafe, Raluca, Fischer, Rainer, Prodanović, Radivoje, "Supplementary data for the article: Blažić, M.; Balaž, A. M.; Prodanović, O.; Popović, N.; Ostafe, R.; Fischer, R.; Prodanović, R. Directed Evolution of Cellobiose Dehydrogenase on the Surface of Yeast Cells Using Resazurin-Based Fluorescent Assay. Applied Sciences (Switzerland) 2019, 9 (7). https://doi.org/10.3390/app9071413" in Applied Sciences (Switzerland) (2019).