Gligorijević, Nevenka

Link to this page

Authority KeyName Variants
0b6dab5f-3ef9-4e0a-b10c-d40dff3f3035
  • Gligorijević, Nevenka (38)
Projects
Pharmacodynamic and pharmacogenomic research of new drugs in the treatment of solid tumors Interactions of natural products, their derivatives and coordination compounds with proteins and nucleic acids
Rational design and synthesis of biologically active and coordination compounds and functional materials, relevant for (bio)nanotechnology Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200043 (Institute of Oncology and Radiology of Serbia, Belgrade)
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200168 (University of Belgrade, Faculty of Chemistry) Structure-properties relationships of natural and synthetic molecules and their metal complexes
COST Action [CM1105] Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200288 (Innovation Center of the Faculty of Chemistry)
Biological response modifiers in physiological and pathological conditions Sinteza, analiza i aktivnost novih organskih polidentatnih liganada i njihovih kompleksa sa d-metalima
Farmakodinamska i farmakogenetska istraživanja novih lekova i prediktivna/prognostička vrednost farmakoterapije u onkologiji Novartis Jubilee Foundation
Slovenian Research Agency (ARRS) [P-0175] Stiftung fur wissenschaftliche Forschung of the University of Zurich
Swiss Government Excellence Scholarship for Postdoctoral Researcher [2014.0942/India/OP] Swiss National Science Foundation (SNSF) [PP00P2_133568, PP00P2_157545]
UBS Promedica Stiftung University of Zurich
Hercules Foundation (3D-SPACE: 3D Structural Platform Aiming for Chemical Excellence) [AUGE/11/029] Reinforcement of the Faculty of Chemistry, University of Belgrade, towards becoming a Center of Excellence in the region of WB for Molecular Biotechnology and Food research
Strengthening of the MagBioVin Research and Innovation Team for Development of Novel Approaches for Tumour Therapy based on Nanostructured Materials Synthesis, modeling, physicochemical and biological properties of organic compounds and related metal complexes
Synthesis, characterization and activity of organic and coordination composition and their application in (bio) nanotechnology Research Fund-Flanders (FWO)
Erasmus Mundus Basileus V project Hercules Foundation (project AUGE/11/029 “3D-SPACE: 3D Structural Platform Aiming for Chemical Excellence”)
ICREA Application of advanced oxidation processes and nanostructured oxide materials for the removal of pollutants from the environment, development and optimisation of instrumental techniques for efficiency monitoring
Natural products of wild, cultivated and edible plants: structure and bioactivity determination Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200126 (University of Belgrade, Faculty of Mining and Geology)

Author's Bibliography

Exploring heterometallic bridged Pt(II)-Zn(II) complexes as potential antitumor agent

Mrkalić, Emina; Šmit, Biljana; Matić, Sanja; Jelić, Ratomir; Ćendić Serafinović, Marina; Gligorijević, Nevenka; Čavić, Milena; Aranđelović, Sandra; Grgurić-Šipka, Sanja; Soldatović, Tanja

(Elsevier, 2023)

TY  - JOUR
AU  - Mrkalić, Emina
AU  - Šmit, Biljana
AU  - Matić, Sanja
AU  - Jelić, Ratomir
AU  - Ćendić Serafinović, Marina
AU  - Gligorijević, Nevenka
AU  - Čavić, Milena
AU  - Aranđelović, Sandra
AU  - Grgurić-Šipka, Sanja
AU  - Soldatović, Tanja
PY  - 2023
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5880
AB  - The four novel complexes [{cis-PtCl(NH3)2(μ-4,4′ -bipyridyl)ZnCl(terpy)}](ClO4)2 (C1), [{trans-PtCl(NH3)2(μ-
4,4′ -bipyridyl)ZnCl(terpy)}](ClO4)2 (C2), [{cis-PtCl(NH3)2(μ-pyrazine)ZnCl(terpy)}](ClO4)2 (C3) and [{trans-
PtCl(NH3)2(μ-pyrazine)ZnCl(terpy)}](ClO4)2 (C4) (where terpy = 2,2′ :6′ ,2′ ′ -terpyridine) were synthesized and
characterized. Acid–base titrations and concentration dependent kinetic measurements for the reactions with
biologically relevant ligands such as guanosine-5′ -monophosphate (5′ -GMP), inosine-5′ -monophosphate (5′ -IMP)
and glutathione (GSH), were studied at pH 7.4 and 37 ◦C. The binding of the heterometallic bridged cis- or trans-
Pt(II)-Zn(II) complexes to calf thymus DNA (CT-DNA) was studied by UV absorption and fluorescence emission
spectroscopy and molecular docking. The results indicated that the complexes bind strongly to DNA, through
groove binding, hydrogen bonds, and hydrophobic or electrostatic interaction. The possible in vitro DNA protective
effect of cis- and trans-Pt-L-Zn complexes has shown that C3 had significant dose-dependent DNA-protective
effect and the same ability to inhibit peroxyl as well as hydroxyl radicals. Antiproliferative effect of the
complexes, mRNA expression of apoptosis and repair-related genes after treatment in cancer cells indicated that
newly synthesized C2 exhibited highly selective cytotoxicity toward colon carcinoma HCT116 cells. Only
treatment with trans analog C2 induced effect similar to the typical DNA damaging agent such as cisplatin,
characterized by p53 mediated cell response, cell cycle arrest and certain induction of apoptotic related genes.
Both cis- and trans-isomers C1 and C2 showed potency to elicit expression of PARP1 mRNA and in vitro DNA
binding.
PB  - Elsevier
T2  - J. Inorg. Biochem.
T1  - Exploring heterometallic bridged Pt(II)-Zn(II) complexes as potential antitumor agent
VL  - 240
DO  - https://doi.org/10.1016/j.jinorgbio.2022.112100
ER  - 
@article{
author = "Mrkalić, Emina and Šmit, Biljana and Matić, Sanja and Jelić, Ratomir and Ćendić Serafinović, Marina and Gligorijević, Nevenka and Čavić, Milena and Aranđelović, Sandra and Grgurić-Šipka, Sanja and Soldatović, Tanja",
year = "2023",
abstract = "The four novel complexes [{cis-PtCl(NH3)2(μ-4,4′ -bipyridyl)ZnCl(terpy)}](ClO4)2 (C1), [{trans-PtCl(NH3)2(μ-
4,4′ -bipyridyl)ZnCl(terpy)}](ClO4)2 (C2), [{cis-PtCl(NH3)2(μ-pyrazine)ZnCl(terpy)}](ClO4)2 (C3) and [{trans-
PtCl(NH3)2(μ-pyrazine)ZnCl(terpy)}](ClO4)2 (C4) (where terpy = 2,2′ :6′ ,2′ ′ -terpyridine) were synthesized and
characterized. Acid–base titrations and concentration dependent kinetic measurements for the reactions with
biologically relevant ligands such as guanosine-5′ -monophosphate (5′ -GMP), inosine-5′ -monophosphate (5′ -IMP)
and glutathione (GSH), were studied at pH 7.4 and 37 ◦C. The binding of the heterometallic bridged cis- or trans-
Pt(II)-Zn(II) complexes to calf thymus DNA (CT-DNA) was studied by UV absorption and fluorescence emission
spectroscopy and molecular docking. The results indicated that the complexes bind strongly to DNA, through
groove binding, hydrogen bonds, and hydrophobic or electrostatic interaction. The possible in vitro DNA protective
effect of cis- and trans-Pt-L-Zn complexes has shown that C3 had significant dose-dependent DNA-protective
effect and the same ability to inhibit peroxyl as well as hydroxyl radicals. Antiproliferative effect of the
complexes, mRNA expression of apoptosis and repair-related genes after treatment in cancer cells indicated that
newly synthesized C2 exhibited highly selective cytotoxicity toward colon carcinoma HCT116 cells. Only
treatment with trans analog C2 induced effect similar to the typical DNA damaging agent such as cisplatin,
characterized by p53 mediated cell response, cell cycle arrest and certain induction of apoptotic related genes.
Both cis- and trans-isomers C1 and C2 showed potency to elicit expression of PARP1 mRNA and in vitro DNA
binding.",
publisher = "Elsevier",
journal = "J. Inorg. Biochem.",
title = "Exploring heterometallic bridged Pt(II)-Zn(II) complexes as potential antitumor agent",
volume = "240",
doi = "https://doi.org/10.1016/j.jinorgbio.2022.112100"
}
Mrkalić, E., Šmit, B., Matić, S., Jelić, R., Ćendić Serafinović, M., Gligorijević, N., Čavić, M., Aranđelović, S., Grgurić-Šipka, S.,& Soldatović, T.. (2023). Exploring heterometallic bridged Pt(II)-Zn(II) complexes as potential antitumor agent. in J. Inorg. Biochem.
Elsevier., 240.
https://doi.org/https://doi.org/10.1016/j.jinorgbio.2022.112100
Mrkalić E, Šmit B, Matić S, Jelić R, Ćendić Serafinović M, Gligorijević N, Čavić M, Aranđelović S, Grgurić-Šipka S, Soldatović T. Exploring heterometallic bridged Pt(II)-Zn(II) complexes as potential antitumor agent. in J. Inorg. Biochem.. 2023;240.
doi:https://doi.org/10.1016/j.jinorgbio.2022.112100 .
Mrkalić, Emina, Šmit, Biljana, Matić, Sanja, Jelić, Ratomir, Ćendić Serafinović, Marina, Gligorijević, Nevenka, Čavić, Milena, Aranđelović, Sandra, Grgurić-Šipka, Sanja, Soldatović, Tanja, "Exploring heterometallic bridged Pt(II)-Zn(II) complexes as potential antitumor agent" in J. Inorg. Biochem., 240 (2023),
https://doi.org/https://doi.org/10.1016/j.jinorgbio.2022.112100 . .

Oxorhenium(V) complexes with N,O ligands – synthesis and biological studies

Petrović, Tamara; Gligorijević, Nevenka; Ferdinand, Belaj; Poljarević, Jelena; Mihajlović-Lalić, Ljiljana; Aranđelović, Sandra; Nikolić, Stefan; Grgurić-Šipka, Sanja

(2023)

TY  - CONF
AU  - Petrović, Tamara
AU  - Gligorijević, Nevenka
AU  - Ferdinand, Belaj
AU  - Poljarević, Jelena
AU  - Mihajlović-Lalić, Ljiljana
AU  - Aranđelović, Sandra
AU  - Nikolić, Stefan
AU  - Grgurić-Šipka, Sanja
PY  - 2023
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5957
AB  - Rhenium complexes merit particular attention in the area of metallodrug design due to
rhenium’s broad spectrum of oxidation states and consequently, the possibility to design
compounds of great structural diversity [1,2]. Thus, the synthesis, chemical characterization,
and antitumor activity in vitro of the six Re(V) complexes are described. Novel compounds
were obtained via reaction of [ReOCl3(PPh3)2] with corresponding ligands (pyridine-2-
carboxylic acid, 3-methylpyridine-2-carboxylic acid, 6-methylpyridine-2-carboxylic acid, 2,3-
pyridinedicarboxylic acid, 2,5-pyridinedicarboxylic acid, and 2,6-pyridinedicarboxylic acid) in
acetonitrile or dichloromethane/methanol at 78 °C for 3h. The complexes were fully
characterized using NMR, IR, MS, and elemental analysis. Results of X-ray diffraction analysis
for three of these compounds confirmed the proposed octahedral geometry with bidentate
coordinated ligands, via both oxygen and nitrogen atoms. The antiproliferative effect was
determined by MTT assay. All complexes expressed moderate to low cytotoxic potential.
Complex with pyridine-2-carboxylic acid showed dose-dependent cytotoxic potential,
particularly toward triple-negative breast adenocarcinoma cells MDA-MB-231 and pancreatic
adenocarcinoma cells PANC-1. Drug combination studies in PANC-1 cells with that complex
and Verapamil hydrochloride (VRP) showed a slight arrest of the cell cycle in the S phase and
also increase its antiproliferative potential.
C3  - 16th International Symposium on Applied Bioinorganic Chemistry (16-ISABC), Ioannina, Greece, June 11-14, 2023
T1  - Oxorhenium(V) complexes with N,O ligands – synthesis and biological studies
SP  - 241
EP  - 241
UR  - https://hdl.handle.net/21.15107/rcub_cherry_5957
ER  - 
@conference{
author = "Petrović, Tamara and Gligorijević, Nevenka and Ferdinand, Belaj and Poljarević, Jelena and Mihajlović-Lalić, Ljiljana and Aranđelović, Sandra and Nikolić, Stefan and Grgurić-Šipka, Sanja",
year = "2023",
abstract = "Rhenium complexes merit particular attention in the area of metallodrug design due to
rhenium’s broad spectrum of oxidation states and consequently, the possibility to design
compounds of great structural diversity [1,2]. Thus, the synthesis, chemical characterization,
and antitumor activity in vitro of the six Re(V) complexes are described. Novel compounds
were obtained via reaction of [ReOCl3(PPh3)2] with corresponding ligands (pyridine-2-
carboxylic acid, 3-methylpyridine-2-carboxylic acid, 6-methylpyridine-2-carboxylic acid, 2,3-
pyridinedicarboxylic acid, 2,5-pyridinedicarboxylic acid, and 2,6-pyridinedicarboxylic acid) in
acetonitrile or dichloromethane/methanol at 78 °C for 3h. The complexes were fully
characterized using NMR, IR, MS, and elemental analysis. Results of X-ray diffraction analysis
for three of these compounds confirmed the proposed octahedral geometry with bidentate
coordinated ligands, via both oxygen and nitrogen atoms. The antiproliferative effect was
determined by MTT assay. All complexes expressed moderate to low cytotoxic potential.
Complex with pyridine-2-carboxylic acid showed dose-dependent cytotoxic potential,
particularly toward triple-negative breast adenocarcinoma cells MDA-MB-231 and pancreatic
adenocarcinoma cells PANC-1. Drug combination studies in PANC-1 cells with that complex
and Verapamil hydrochloride (VRP) showed a slight arrest of the cell cycle in the S phase and
also increase its antiproliferative potential.",
journal = "16th International Symposium on Applied Bioinorganic Chemistry (16-ISABC), Ioannina, Greece, June 11-14, 2023",
title = "Oxorhenium(V) complexes with N,O ligands – synthesis and biological studies",
pages = "241-241",
url = "https://hdl.handle.net/21.15107/rcub_cherry_5957"
}
Petrović, T., Gligorijević, N., Ferdinand, B., Poljarević, J., Mihajlović-Lalić, L., Aranđelović, S., Nikolić, S.,& Grgurić-Šipka, S.. (2023). Oxorhenium(V) complexes with N,O ligands – synthesis and biological studies. in 16th International Symposium on Applied Bioinorganic Chemistry (16-ISABC), Ioannina, Greece, June 11-14, 2023, 241-241.
https://hdl.handle.net/21.15107/rcub_cherry_5957
Petrović T, Gligorijević N, Ferdinand B, Poljarević J, Mihajlović-Lalić L, Aranđelović S, Nikolić S, Grgurić-Šipka S. Oxorhenium(V) complexes with N,O ligands – synthesis and biological studies. in 16th International Symposium on Applied Bioinorganic Chemistry (16-ISABC), Ioannina, Greece, June 11-14, 2023. 2023;:241-241.
https://hdl.handle.net/21.15107/rcub_cherry_5957 .
Petrović, Tamara, Gligorijević, Nevenka, Ferdinand, Belaj, Poljarević, Jelena, Mihajlović-Lalić, Ljiljana, Aranđelović, Sandra, Nikolić, Stefan, Grgurić-Šipka, Sanja, "Oxorhenium(V) complexes with N,O ligands – synthesis and biological studies" in 16th International Symposium on Applied Bioinorganic Chemistry (16-ISABC), Ioannina, Greece, June 11-14, 2023 (2023):241-241,
https://hdl.handle.net/21.15107/rcub_cherry_5957 .

In vitro and in silico study of the biological activity of tetradentate Schiff base copper(II) complexes with ethylenediamine-bridge

Mijatović, Aleksandar; Gligorijević, Nevenka; Ćoćić, Dušan; Spasić, Snežana; Lolić, Aleksandar; Aranđelović, Sandra; Nikolić, Milan; Baošić, Rada

(Elsevier, 2023)

TY  - JOUR
AU  - Mijatović, Aleksandar
AU  - Gligorijević, Nevenka
AU  - Ćoćić, Dušan
AU  - Spasić, Snežana
AU  - Lolić, Aleksandar
AU  - Aranđelović, Sandra
AU  - Nikolić, Milan
AU  - Baošić, Rada
PY  - 2023
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/6248
AB  - The biological activity of six structurally similar tetradentate Schiff base copper(II) complexes, namely [Cu(ethylenediamine-bis-acetylacetonate)] (CuAA) and five derivatives where two methyl groups are replaced by phenyl, (CuPP), CF3 (CuTT) or by mixed groups CH3/CF3 (CuAT), Ph/CF3 (CuPT), and Ph/CH3 (CuAP) has been investigated. The set of antioxidant assays was performed, and the results were expressed as IC50 and EC50 values. The series of complexes showed interesting bioactivity and were investigated for the determination of antioxidant, antifungal, antimicrobial, and cytotoxic activity. A significant antioxidant behavior was exhibited by complex CuAA, greater than Trolox in the Oxygen Radical Absorbance Capacity (ORAC) assay. Antibacterial assay over Gram-positive and Gram-negative pathogenic bacterial strains and some fungal pathogens were studied. Antiproliferative activity of complexes in two human tumor cell lines, breast adenocarcinoma MCF-7, colon adenocarcinoma LS-174, and normal fibroblast cells-MRC-5, examined the effect on cell cycle progression. The significant cytotoxic potential, comparable to cisplatin cytotoxicity, was determined in human breast cancer cell line-MCF-7 with IC50 values being 17.53–31.40 μM and human colon cancer cell line-LS-174 with IC50 values being 15.22–23.92 μM. All tested compounds showed nearly twice more selectivity toward cancer cell lines than normal cells. The interactions of complexes with human serum albumin (HSA), the most prominent protein in plasma, were investigated using spectroscopic fluorescence techniques. The complexes bind to human serum albumin at multiple sites (n = 0.2–1.9), displaying a moderate binding constant Ka = 4.1–12.4 × 104 M−1. The molecular docking experiment effectively showed complex binding to HSA and DNA molecular fragments.
PB  - Elsevier
T2  - Journal of Inorganic Biochemistry
T1  - In vitro and in silico study of the biological activity of tetradentate Schiff base copper(II) complexes with ethylenediamine-bridge
VL  - 244
SP  - 112224
DO  - 10.1016/j.jinorgbio.2023.112224
ER  - 
@article{
author = "Mijatović, Aleksandar and Gligorijević, Nevenka and Ćoćić, Dušan and Spasić, Snežana and Lolić, Aleksandar and Aranđelović, Sandra and Nikolić, Milan and Baošić, Rada",
year = "2023",
abstract = "The biological activity of six structurally similar tetradentate Schiff base copper(II) complexes, namely [Cu(ethylenediamine-bis-acetylacetonate)] (CuAA) and five derivatives where two methyl groups are replaced by phenyl, (CuPP), CF3 (CuTT) or by mixed groups CH3/CF3 (CuAT), Ph/CF3 (CuPT), and Ph/CH3 (CuAP) has been investigated. The set of antioxidant assays was performed, and the results were expressed as IC50 and EC50 values. The series of complexes showed interesting bioactivity and were investigated for the determination of antioxidant, antifungal, antimicrobial, and cytotoxic activity. A significant antioxidant behavior was exhibited by complex CuAA, greater than Trolox in the Oxygen Radical Absorbance Capacity (ORAC) assay. Antibacterial assay over Gram-positive and Gram-negative pathogenic bacterial strains and some fungal pathogens were studied. Antiproliferative activity of complexes in two human tumor cell lines, breast adenocarcinoma MCF-7, colon adenocarcinoma LS-174, and normal fibroblast cells-MRC-5, examined the effect on cell cycle progression. The significant cytotoxic potential, comparable to cisplatin cytotoxicity, was determined in human breast cancer cell line-MCF-7 with IC50 values being 17.53–31.40 μM and human colon cancer cell line-LS-174 with IC50 values being 15.22–23.92 μM. All tested compounds showed nearly twice more selectivity toward cancer cell lines than normal cells. The interactions of complexes with human serum albumin (HSA), the most prominent protein in plasma, were investigated using spectroscopic fluorescence techniques. The complexes bind to human serum albumin at multiple sites (n = 0.2–1.9), displaying a moderate binding constant Ka = 4.1–12.4 × 104 M−1. The molecular docking experiment effectively showed complex binding to HSA and DNA molecular fragments.",
publisher = "Elsevier",
journal = "Journal of Inorganic Biochemistry",
title = "In vitro and in silico study of the biological activity of tetradentate Schiff base copper(II) complexes with ethylenediamine-bridge",
volume = "244",
pages = "112224",
doi = "10.1016/j.jinorgbio.2023.112224"
}
Mijatović, A., Gligorijević, N., Ćoćić, D., Spasić, S., Lolić, A., Aranđelović, S., Nikolić, M.,& Baošić, R.. (2023). In vitro and in silico study of the biological activity of tetradentate Schiff base copper(II) complexes with ethylenediamine-bridge. in Journal of Inorganic Biochemistry
Elsevier., 244, 112224.
https://doi.org/10.1016/j.jinorgbio.2023.112224
Mijatović A, Gligorijević N, Ćoćić D, Spasić S, Lolić A, Aranđelović S, Nikolić M, Baošić R. In vitro and in silico study of the biological activity of tetradentate Schiff base copper(II) complexes with ethylenediamine-bridge. in Journal of Inorganic Biochemistry. 2023;244:112224.
doi:10.1016/j.jinorgbio.2023.112224 .
Mijatović, Aleksandar, Gligorijević, Nevenka, Ćoćić, Dušan, Spasić, Snežana, Lolić, Aleksandar, Aranđelović, Sandra, Nikolić, Milan, Baošić, Rada, "In vitro and in silico study of the biological activity of tetradentate Schiff base copper(II) complexes with ethylenediamine-bridge" in Journal of Inorganic Biochemistry, 244 (2023):112224,
https://doi.org/10.1016/j.jinorgbio.2023.112224 . .
8
8
3

Drug combination study of novel oxorhenium(V) complexes

Petrović, Tamara; Gligorijević, Nevenka; Belaj, Ferdinand; Aranđelović, Sandra; Mihajlović-Lalić, Ljiljana; Grgurić-Šipka, Sanja; Poljarević, Jelena

(Elsevier, 2022)

TY  - JOUR
AU  - Petrović, Tamara
AU  - Gligorijević, Nevenka
AU  - Belaj, Ferdinand
AU  - Aranđelović, Sandra
AU  - Mihajlović-Lalić, Ljiljana
AU  - Grgurić-Šipka, Sanja
AU  - Poljarević, Jelena
PY  - 2022
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5047
AB  - Three Re(V) complexes of structural formulas [ReOCl2L(PPh3)], where L is pyridine-2-carboxylic acid (C1), 3-methyl-pyridine-2-carboxylic acid (C2) and 6-methyl-pyridine-2-carboxylic acid (C3) were synthesized andcharacterized using NMR, IR spectroscopy and mass spectrometry. Crystal structures of all three complexes havebeen additionally confirmed by X-ray analysis. The biological activity has been investigated in the panel of tumorcell lines A549, PANC-1, MDA-MB-231, MCF-7, LS-174, EAhy.926 and one in non-tumor cell line MRC-5. OnlyC1 showed dose-dependent cytotoxic potential, particularly toward triple-negative breast adenocarcinoma cellsMDA-MB-231 with IC50 68.90 ± 1.73 μM and pancreatic adenocarcinoma cells PANC-1 with IC50 69.84 ± 2.3μM. Both cell lines are characterized by a highly invasive and resistant phenotype. Drug combination studies inPANC-1 cells with C1 and Verapamil hydrochloride (VRP), which is the established inhibitor of efflux transporterP-glycoprotein (Pgp), revealed enhancement of antiproliferative action of the complex in a dose-dependentmanner, and slight arrest of cell cycle in the S phase. Also, a depletion of the glutathione (GSH) level by Lbuthionine-sulfoximine (L-BSO) at sub-toxic concentrations (100 μM) caused an increase of activity of C1 to theIC50 57.67 ± 6.51 (μM). A morphological analysis in PANC-1 cells by dual acridine orange/ethidium bromidestaining, revealed apoptotic potential of complex C1 and a slower kinetic of cell death induction, suggesting adifferent mechanism of action compared to cisplatin.
PB  - Elsevier
T2  - Journal of Inorganic Biochemistry
T1  - Drug combination study of novel oxorhenium(V) complexes
VL  - 231
SP  - 111807
DO  - 10.1016/j.jinorgbio.2022.111807
ER  - 
@article{
author = "Petrović, Tamara and Gligorijević, Nevenka and Belaj, Ferdinand and Aranđelović, Sandra and Mihajlović-Lalić, Ljiljana and Grgurić-Šipka, Sanja and Poljarević, Jelena",
year = "2022",
abstract = "Three Re(V) complexes of structural formulas [ReOCl2L(PPh3)], where L is pyridine-2-carboxylic acid (C1), 3-methyl-pyridine-2-carboxylic acid (C2) and 6-methyl-pyridine-2-carboxylic acid (C3) were synthesized andcharacterized using NMR, IR spectroscopy and mass spectrometry. Crystal structures of all three complexes havebeen additionally confirmed by X-ray analysis. The biological activity has been investigated in the panel of tumorcell lines A549, PANC-1, MDA-MB-231, MCF-7, LS-174, EAhy.926 and one in non-tumor cell line MRC-5. OnlyC1 showed dose-dependent cytotoxic potential, particularly toward triple-negative breast adenocarcinoma cellsMDA-MB-231 with IC50 68.90 ± 1.73 μM and pancreatic adenocarcinoma cells PANC-1 with IC50 69.84 ± 2.3μM. Both cell lines are characterized by a highly invasive and resistant phenotype. Drug combination studies inPANC-1 cells with C1 and Verapamil hydrochloride (VRP), which is the established inhibitor of efflux transporterP-glycoprotein (Pgp), revealed enhancement of antiproliferative action of the complex in a dose-dependentmanner, and slight arrest of cell cycle in the S phase. Also, a depletion of the glutathione (GSH) level by Lbuthionine-sulfoximine (L-BSO) at sub-toxic concentrations (100 μM) caused an increase of activity of C1 to theIC50 57.67 ± 6.51 (μM). A morphological analysis in PANC-1 cells by dual acridine orange/ethidium bromidestaining, revealed apoptotic potential of complex C1 and a slower kinetic of cell death induction, suggesting adifferent mechanism of action compared to cisplatin.",
publisher = "Elsevier",
journal = "Journal of Inorganic Biochemistry",
title = "Drug combination study of novel oxorhenium(V) complexes",
volume = "231",
pages = "111807",
doi = "10.1016/j.jinorgbio.2022.111807"
}
Petrović, T., Gligorijević, N., Belaj, F., Aranđelović, S., Mihajlović-Lalić, L., Grgurić-Šipka, S.,& Poljarević, J.. (2022). Drug combination study of novel oxorhenium(V) complexes. in Journal of Inorganic Biochemistry
Elsevier., 231, 111807.
https://doi.org/10.1016/j.jinorgbio.2022.111807
Petrović T, Gligorijević N, Belaj F, Aranđelović S, Mihajlović-Lalić L, Grgurić-Šipka S, Poljarević J. Drug combination study of novel oxorhenium(V) complexes. in Journal of Inorganic Biochemistry. 2022;231:111807.
doi:10.1016/j.jinorgbio.2022.111807 .
Petrović, Tamara, Gligorijević, Nevenka, Belaj, Ferdinand, Aranđelović, Sandra, Mihajlović-Lalić, Ljiljana, Grgurić-Šipka, Sanja, Poljarević, Jelena, "Drug combination study of novel oxorhenium(V) complexes" in Journal of Inorganic Biochemistry, 231 (2022):111807,
https://doi.org/10.1016/j.jinorgbio.2022.111807 . .
2
4
4
2

Oxorhenium(V) complexes in the drug combination study

Petrović, Tamara; Gligorijević, Nevenka; Belaj, Ferdinand; Grgurić-Šipka, Sanja; Nikolić, Stefan; Krstić, Milena; Poljarević, Jelena; Mihajlović-Lalić, Ljiljana

(Belgrade : Serbian Chemical Society, 2022)

TY  - CONF
AU  - Petrović, Tamara
AU  - Gligorijević, Nevenka
AU  - Belaj, Ferdinand
AU  - Grgurić-Šipka, Sanja
AU  - Nikolić, Stefan
AU  - Krstić, Milena
AU  - Poljarević, Jelena
AU  - Mihajlović-Lalić, Ljiljana
PY  - 2022
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5824
AB  - Rhenium complexes merit particular attention in the area of metallodrug design due to rhenium’s broad spectrum of oxidation states and consequently, the possibility to design compounds of a great structural diversity. Thus, the synthesis, chemical characterization and antitumor activity in vitro of the three Re(V) complexes is described. Novel compounds were obtained via reaction of [ReOCl3(PPh3)2] with corresponding ligands (pyridine-2-carboxylic acid, 3-methylpyridine-2-carboxylic acid and 6-methylpyridine-2-carboxylic acid) in acetonitrile at 78 °C for 3h. The complexes were fully characterized using NMR, IR, MS and elemental analysis. Their octahedral geometry with bidentate NO ligand was confirmed by X-ray diffraction analysis. Antiproliferative effect was determined by MTT assay and only the complex with pyridine-2-carboxylic acid (1) showed dose-dependent cytotoxic potential, particularly toward triple-negative breast adenocarcinoma cells MDA-MB-231 with IC50 68.90 ± 1.73 µM and pancreatic adenocarcinoma cells PANC-1 with IC50 69.8 ± 2.3 µM. Drug combination studies in PANC-1 cells with 1 and Verapamil hydrochloride (VRP) showed slight arrest of cell cycle in the S phase and also it increase its antiproliferative potential to IC50 51.4 ± 2.8 μM. Part of the research included a depletion of the glutathione (GSH) level by L-buthionine-sulfoximine (L-BSO) at sub-toxic concentrations (100 μM) in PANC-1 cells which caused an increase of activity of 1 to the IC50 57.67 ± 6.51 μM.
PB  - Belgrade : Serbian Chemical Society
PB  - Belgrade : Serbian Young Chemists’ Club
C3  - 8 th Conference of Young Chemists of Serbia Belgrade, 29th October 2022
T1  - Oxorhenium(V) complexes in the drug combination study
SP  - 81
EP  - 81
UR  - https://hdl.handle.net/21.15107/rcub_cherry_5824
ER  - 
@conference{
author = "Petrović, Tamara and Gligorijević, Nevenka and Belaj, Ferdinand and Grgurić-Šipka, Sanja and Nikolić, Stefan and Krstić, Milena and Poljarević, Jelena and Mihajlović-Lalić, Ljiljana",
year = "2022",
abstract = "Rhenium complexes merit particular attention in the area of metallodrug design due to rhenium’s broad spectrum of oxidation states and consequently, the possibility to design compounds of a great structural diversity. Thus, the synthesis, chemical characterization and antitumor activity in vitro of the three Re(V) complexes is described. Novel compounds were obtained via reaction of [ReOCl3(PPh3)2] with corresponding ligands (pyridine-2-carboxylic acid, 3-methylpyridine-2-carboxylic acid and 6-methylpyridine-2-carboxylic acid) in acetonitrile at 78 °C for 3h. The complexes were fully characterized using NMR, IR, MS and elemental analysis. Their octahedral geometry with bidentate NO ligand was confirmed by X-ray diffraction analysis. Antiproliferative effect was determined by MTT assay and only the complex with pyridine-2-carboxylic acid (1) showed dose-dependent cytotoxic potential, particularly toward triple-negative breast adenocarcinoma cells MDA-MB-231 with IC50 68.90 ± 1.73 µM and pancreatic adenocarcinoma cells PANC-1 with IC50 69.8 ± 2.3 µM. Drug combination studies in PANC-1 cells with 1 and Verapamil hydrochloride (VRP) showed slight arrest of cell cycle in the S phase and also it increase its antiproliferative potential to IC50 51.4 ± 2.8 μM. Part of the research included a depletion of the glutathione (GSH) level by L-buthionine-sulfoximine (L-BSO) at sub-toxic concentrations (100 μM) in PANC-1 cells which caused an increase of activity of 1 to the IC50 57.67 ± 6.51 μM.",
publisher = "Belgrade : Serbian Chemical Society, Belgrade : Serbian Young Chemists’ Club",
journal = "8 th Conference of Young Chemists of Serbia Belgrade, 29th October 2022",
title = "Oxorhenium(V) complexes in the drug combination study",
pages = "81-81",
url = "https://hdl.handle.net/21.15107/rcub_cherry_5824"
}
Petrović, T., Gligorijević, N., Belaj, F., Grgurić-Šipka, S., Nikolić, S., Krstić, M., Poljarević, J.,& Mihajlović-Lalić, L.. (2022). Oxorhenium(V) complexes in the drug combination study. in 8 th Conference of Young Chemists of Serbia Belgrade, 29th October 2022
Belgrade : Serbian Chemical Society., 81-81.
https://hdl.handle.net/21.15107/rcub_cherry_5824
Petrović T, Gligorijević N, Belaj F, Grgurić-Šipka S, Nikolić S, Krstić M, Poljarević J, Mihajlović-Lalić L. Oxorhenium(V) complexes in the drug combination study. in 8 th Conference of Young Chemists of Serbia Belgrade, 29th October 2022. 2022;:81-81.
https://hdl.handle.net/21.15107/rcub_cherry_5824 .
Petrović, Tamara, Gligorijević, Nevenka, Belaj, Ferdinand, Grgurić-Šipka, Sanja, Nikolić, Stefan, Krstić, Milena, Poljarević, Jelena, Mihajlović-Lalić, Ljiljana, "Oxorhenium(V) complexes in the drug combination study" in 8 th Conference of Young Chemists of Serbia Belgrade, 29th October 2022 (2022):81-81,
https://hdl.handle.net/21.15107/rcub_cherry_5824 .

PO-017 Oxorhenium(V) complexes in the drug combination study

Petrović, Tamara; Gligorijević, Nevenka; Belaj, Ferdinand; Grgurić-Šipka, Sanja; Nikolić, Stefan; Krstić, Milena; Poljarević, Jelena; Mihajlović-Lalić, Ljiljana

(Wien, Österreich : Nibelungengasse, 2022)

TY  - CONF
AU  - Petrović, Tamara
AU  - Gligorijević, Nevenka
AU  - Belaj, Ferdinand
AU  - Grgurić-Šipka, Sanja
AU  - Nikolić, Stefan
AU  - Krstić, Milena
AU  - Poljarević, Jelena
AU  - Mihajlović-Lalić, Ljiljana
PY  - 2022
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5865
AB  - Rhenium complexes merit particular attention in the area of metallodrug design due to rhenium’s broad spectrum of oxidation states and consequently, the possibility to design compounds of a great structural diversity. Thus, the synthesis, chemical characterization and antitumor activity in vitro of the three Re(V) complexes is described. Novel compounds were obtained via reaction of [ReOCl3(PPh3)2] with corresponding ligands (pyridine-2-carboxylic acid, 3-methylpyridine-2-carboxylic acid and 6-methylpyridine- 2-carboxylic acid) in acetonitrile at 78 °C for 3h. The complexes were fully characterized using NMR, IR, MS and elemental analysis. Their octahedral geometry with bidentate N^O ligand was confirmed by X-ray diffraction analysis. Antiproliferative effect was determined by MTT assay and only the complex with pyridine-2-carboxylic acid (1) showed dose-dependent cytotoxic potential, particularly toward triple-negative breast adenocarcinoma cells MDA-MB-231 with IC50 68.90 ±
1.73 μM and pancreatic adenocarcinoma cells PANC-1 with IC50 69.8 ± 2.3 μM. Drug combination studies in PANC-1 cells with 1 and Verapamil hydrochloride (VRP) showed slight arrest of cell cycle in the S phase and also it increase its antiproliferative potential to IC50 51.4 ± 2.8 μM. Part of the research included a depletion of the glutathione (GSH) level by L-buthionine-sulfoximine (L-BSO) at sub-toxic concentrations (100 μM) in PANC-1 cells which caused an increase of activity of 1 to the IC50 57.67 ± 6.51 μM.
PB  - Wien, Österreich : Nibelungengasse
C3  - Österreichische Chemische Gesellschaft, September 20, 22, 2022, Vienna, Austria
T1  - PO-017 Oxorhenium(V) complexes in the drug combination study
SP  - 90
EP  - 90
UR  - https://hdl.handle.net/21.15107/rcub_cherry_5865
ER  - 
@conference{
author = "Petrović, Tamara and Gligorijević, Nevenka and Belaj, Ferdinand and Grgurić-Šipka, Sanja and Nikolić, Stefan and Krstić, Milena and Poljarević, Jelena and Mihajlović-Lalić, Ljiljana",
year = "2022",
abstract = "Rhenium complexes merit particular attention in the area of metallodrug design due to rhenium’s broad spectrum of oxidation states and consequently, the possibility to design compounds of a great structural diversity. Thus, the synthesis, chemical characterization and antitumor activity in vitro of the three Re(V) complexes is described. Novel compounds were obtained via reaction of [ReOCl3(PPh3)2] with corresponding ligands (pyridine-2-carboxylic acid, 3-methylpyridine-2-carboxylic acid and 6-methylpyridine- 2-carboxylic acid) in acetonitrile at 78 °C for 3h. The complexes were fully characterized using NMR, IR, MS and elemental analysis. Their octahedral geometry with bidentate N^O ligand was confirmed by X-ray diffraction analysis. Antiproliferative effect was determined by MTT assay and only the complex with pyridine-2-carboxylic acid (1) showed dose-dependent cytotoxic potential, particularly toward triple-negative breast adenocarcinoma cells MDA-MB-231 with IC50 68.90 ±
1.73 μM and pancreatic adenocarcinoma cells PANC-1 with IC50 69.8 ± 2.3 μM. Drug combination studies in PANC-1 cells with 1 and Verapamil hydrochloride (VRP) showed slight arrest of cell cycle in the S phase and also it increase its antiproliferative potential to IC50 51.4 ± 2.8 μM. Part of the research included a depletion of the glutathione (GSH) level by L-buthionine-sulfoximine (L-BSO) at sub-toxic concentrations (100 μM) in PANC-1 cells which caused an increase of activity of 1 to the IC50 57.67 ± 6.51 μM.",
publisher = "Wien, Österreich : Nibelungengasse",
journal = "Österreichische Chemische Gesellschaft, September 20, 22, 2022, Vienna, Austria",
title = "PO-017 Oxorhenium(V) complexes in the drug combination study",
pages = "90-90",
url = "https://hdl.handle.net/21.15107/rcub_cherry_5865"
}
Petrović, T., Gligorijević, N., Belaj, F., Grgurić-Šipka, S., Nikolić, S., Krstić, M., Poljarević, J.,& Mihajlović-Lalić, L.. (2022). PO-017 Oxorhenium(V) complexes in the drug combination study. in Österreichische Chemische Gesellschaft, September 20, 22, 2022, Vienna, Austria
Wien, Österreich : Nibelungengasse., 90-90.
https://hdl.handle.net/21.15107/rcub_cherry_5865
Petrović T, Gligorijević N, Belaj F, Grgurić-Šipka S, Nikolić S, Krstić M, Poljarević J, Mihajlović-Lalić L. PO-017 Oxorhenium(V) complexes in the drug combination study. in Österreichische Chemische Gesellschaft, September 20, 22, 2022, Vienna, Austria. 2022;:90-90.
https://hdl.handle.net/21.15107/rcub_cherry_5865 .
Petrović, Tamara, Gligorijević, Nevenka, Belaj, Ferdinand, Grgurić-Šipka, Sanja, Nikolić, Stefan, Krstić, Milena, Poljarević, Jelena, Mihajlović-Lalić, Ljiljana, "PO-017 Oxorhenium(V) complexes in the drug combination study" in Österreichische Chemische Gesellschaft, September 20, 22, 2022, Vienna, Austria (2022):90-90,
https://hdl.handle.net/21.15107/rcub_cherry_5865 .

Drug combination study of novel oxorhenium(V) complexes

Petrović, Tamara; Gligorijević, Nevenka; Belaj, Ferdinand; Aranđelović, Sandra; Mihajlović-Lalić, Ljiljana; Grgurić-Šipka, Sanja; Poljarević, Jelena

(Elsevier, 2022)

TY  - JOUR
AU  - Petrović, Tamara
AU  - Gligorijević, Nevenka
AU  - Belaj, Ferdinand
AU  - Aranđelović, Sandra
AU  - Mihajlović-Lalić, Ljiljana
AU  - Grgurić-Šipka, Sanja
AU  - Poljarević, Jelena
PY  - 2022
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5046
AB  - Three Re(V) complexes of structural formulas [ReOCl2L(PPh3)], where L is pyridine-2-carboxylic acid (C1), 3-
methyl-pyridine-2-carboxylic acid (C2) and 6-methyl-pyridine-2-carboxylic acid (C3) were synthesized and
characterized using NMR, IR spectroscopy and mass spectrometry. Crystal structures of all three complexes have
been additionally confirmed by X-ray analysis. The biological activity has been investigated in the panel of tumor
cell lines A549, PANC-1, MDA-MB-231, MCF-7, LS-174, EAhy.926 and one in non-tumor cell line MRC-5. Only
C1 showed dose-dependent cytotoxic potential, particularly toward triple-negative breast adenocarcinoma cells
MDA-MB-231 with IC50 68.90 ± 1.73 μM and pancreatic adenocarcinoma cells PANC-1 with IC50 69.84 ± 2.3
μM. Both cell lines are characterized by a highly invasive and resistant phenotype. Drug combination studies in
PANC-1 cells with C1 and Verapamil hydrochloride (VRP), which is the established inhibitor of efflux transporter
P-glycoprotein (Pgp), revealed enhancement of antiproliferative action of the complex in a dose-dependent
manner, and slight arrest of cell cycle in the S phase. Also, a depletion of the glutathione (GSH) level by Lbuthionine-sulfoximine (L-BSO) at sub-toxic concentrations (100 μM) caused an increase of activity of C1 to the
IC50 57.67 ± 6.51 (μM). A morphological analysis in PANC-1 cells by dual acridine orange/ethidium bromide
staining, revealed apoptotic potential of complex C1 and a slower kinetic of cell death induction, suggesting a
different mechanism of action compared to cisplatin.
PB  - Elsevier
T2  - Journal of Inorganic Biochemistry
T1  - Drug combination study of novel oxorhenium(V) complexes
VL  - 231
SP  - 111807
DO  - 10.1016/j.jinorgbio.2022.111807
ER  - 
@article{
author = "Petrović, Tamara and Gligorijević, Nevenka and Belaj, Ferdinand and Aranđelović, Sandra and Mihajlović-Lalić, Ljiljana and Grgurić-Šipka, Sanja and Poljarević, Jelena",
year = "2022",
abstract = "Three Re(V) complexes of structural formulas [ReOCl2L(PPh3)], where L is pyridine-2-carboxylic acid (C1), 3-
methyl-pyridine-2-carboxylic acid (C2) and 6-methyl-pyridine-2-carboxylic acid (C3) were synthesized and
characterized using NMR, IR spectroscopy and mass spectrometry. Crystal structures of all three complexes have
been additionally confirmed by X-ray analysis. The biological activity has been investigated in the panel of tumor
cell lines A549, PANC-1, MDA-MB-231, MCF-7, LS-174, EAhy.926 and one in non-tumor cell line MRC-5. Only
C1 showed dose-dependent cytotoxic potential, particularly toward triple-negative breast adenocarcinoma cells
MDA-MB-231 with IC50 68.90 ± 1.73 μM and pancreatic adenocarcinoma cells PANC-1 with IC50 69.84 ± 2.3
μM. Both cell lines are characterized by a highly invasive and resistant phenotype. Drug combination studies in
PANC-1 cells with C1 and Verapamil hydrochloride (VRP), which is the established inhibitor of efflux transporter
P-glycoprotein (Pgp), revealed enhancement of antiproliferative action of the complex in a dose-dependent
manner, and slight arrest of cell cycle in the S phase. Also, a depletion of the glutathione (GSH) level by Lbuthionine-sulfoximine (L-BSO) at sub-toxic concentrations (100 μM) caused an increase of activity of C1 to the
IC50 57.67 ± 6.51 (μM). A morphological analysis in PANC-1 cells by dual acridine orange/ethidium bromide
staining, revealed apoptotic potential of complex C1 and a slower kinetic of cell death induction, suggesting a
different mechanism of action compared to cisplatin.",
publisher = "Elsevier",
journal = "Journal of Inorganic Biochemistry",
title = "Drug combination study of novel oxorhenium(V) complexes",
volume = "231",
pages = "111807",
doi = "10.1016/j.jinorgbio.2022.111807"
}
Petrović, T., Gligorijević, N., Belaj, F., Aranđelović, S., Mihajlović-Lalić, L., Grgurić-Šipka, S.,& Poljarević, J.. (2022). Drug combination study of novel oxorhenium(V) complexes. in Journal of Inorganic Biochemistry
Elsevier., 231, 111807.
https://doi.org/10.1016/j.jinorgbio.2022.111807
Petrović T, Gligorijević N, Belaj F, Aranđelović S, Mihajlović-Lalić L, Grgurić-Šipka S, Poljarević J. Drug combination study of novel oxorhenium(V) complexes. in Journal of Inorganic Biochemistry. 2022;231:111807.
doi:10.1016/j.jinorgbio.2022.111807 .
Petrović, Tamara, Gligorijević, Nevenka, Belaj, Ferdinand, Aranđelović, Sandra, Mihajlović-Lalić, Ljiljana, Grgurić-Šipka, Sanja, Poljarević, Jelena, "Drug combination study of novel oxorhenium(V) complexes" in Journal of Inorganic Biochemistry, 231 (2022):111807,
https://doi.org/10.1016/j.jinorgbio.2022.111807 . .
2
4
4
2

Antitumor activity of organoruthenium complexes with chelate aromatic ligands, derived from 1,10-phenantroline: Synthesis and biological activity

Savić, Aleksandar; Gligorijević, Nevenka; Aranđelović, Sandra; Dojčinović, Biljana P.; Kaczmarek, Anna M.; Radulović, Siniša; Van Deun, Rik; Van Hecke, Kristof

(Elsevier, 2020)

TY  - JOUR
AU  - Savić, Aleksandar
AU  - Gligorijević, Nevenka
AU  - Aranđelović, Sandra
AU  - Dojčinović, Biljana P.
AU  - Kaczmarek, Anna M.
AU  - Radulović, Siniša
AU  - Van Deun, Rik
AU  - Van Hecke, Kristof
PY  - 2020
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3781
AB  - The monocationic chloro complexes containing chelating N∩N ligands: [(η6-p-cymene)Ru(L1–4)Cl]+ (1–4), where L1 = 4-methyl-1,10-phenantroline, L2 = dipyrido[3,2-a:2′,3′-c]phenazine, L3 = 11-chloro-dipyrido[3,2-a:2′,3′-c]phenazine, L4 = 11-nitro-dipyrido[3,2-a:2′,3′-c]phenazine; p-cymene = 1-methyl-4-isopropylbenzene) have been prepared and characterized as the hexafluorophosphate salts. The biological activity of 1–4 has been investigated in selected 2D monolayer cell cultures (A549, PANC-1, MDA-MB-231, MRC-5). All investigated ruthenium complexes showed similar or even better cytotoxicity to cisplatin. However, there was no significant reduction in growth of PANC-1 cells in a 3D cell culture of multicellular tumor spheroids (MCTS) after treatment with 2–4, while the cisplatin treatment induced retardation in MCTS growth. Flow cytometry analysis of the cell cycle of PANC-1 cells shows that 3 caused changes of cell cycle phase distribution characterized by slight accumulation of cells in the G2-M phase. Absence of the Sub-G1 phase in the cell cycle of the treated cells indicated that there was no fragmentation of DNA for the analyzed time intervals (48 and 72 h treatment). Fluorescent microscopy, after acridine orange/ethidium bromide staining, revealed that the investigated ruthenium complexes induced some characteristics of apoptotic morphology (shrinking and condensation of chromatin) with notably preserved integrity of the plasma membrane. Investigation of cellular uptake and DNA - fraction accumulation performed by inductively coupled plasma mass spectrometry in PANC-1 cells with equimolar concentrations (5 μM) of 2–4 and cisplatin showed more efficient cellular uptake and DNA - fraction accumulation of complex 3 compared to complexes 2 and 4.
PB  - Elsevier
T2  - Journal of Inorganic Biochemistry
T1  - Antitumor activity of organoruthenium complexes with chelate aromatic ligands, derived from 1,10-phenantroline: Synthesis and biological activity
VL  - 202
SP  - 110869
DO  - 10.1016/j.jinorgbio.2019.110869
ER  - 
@article{
author = "Savić, Aleksandar and Gligorijević, Nevenka and Aranđelović, Sandra and Dojčinović, Biljana P. and Kaczmarek, Anna M. and Radulović, Siniša and Van Deun, Rik and Van Hecke, Kristof",
year = "2020",
abstract = "The monocationic chloro complexes containing chelating N∩N ligands: [(η6-p-cymene)Ru(L1–4)Cl]+ (1–4), where L1 = 4-methyl-1,10-phenantroline, L2 = dipyrido[3,2-a:2′,3′-c]phenazine, L3 = 11-chloro-dipyrido[3,2-a:2′,3′-c]phenazine, L4 = 11-nitro-dipyrido[3,2-a:2′,3′-c]phenazine; p-cymene = 1-methyl-4-isopropylbenzene) have been prepared and characterized as the hexafluorophosphate salts. The biological activity of 1–4 has been investigated in selected 2D monolayer cell cultures (A549, PANC-1, MDA-MB-231, MRC-5). All investigated ruthenium complexes showed similar or even better cytotoxicity to cisplatin. However, there was no significant reduction in growth of PANC-1 cells in a 3D cell culture of multicellular tumor spheroids (MCTS) after treatment with 2–4, while the cisplatin treatment induced retardation in MCTS growth. Flow cytometry analysis of the cell cycle of PANC-1 cells shows that 3 caused changes of cell cycle phase distribution characterized by slight accumulation of cells in the G2-M phase. Absence of the Sub-G1 phase in the cell cycle of the treated cells indicated that there was no fragmentation of DNA for the analyzed time intervals (48 and 72 h treatment). Fluorescent microscopy, after acridine orange/ethidium bromide staining, revealed that the investigated ruthenium complexes induced some characteristics of apoptotic morphology (shrinking and condensation of chromatin) with notably preserved integrity of the plasma membrane. Investigation of cellular uptake and DNA - fraction accumulation performed by inductively coupled plasma mass spectrometry in PANC-1 cells with equimolar concentrations (5 μM) of 2–4 and cisplatin showed more efficient cellular uptake and DNA - fraction accumulation of complex 3 compared to complexes 2 and 4.",
publisher = "Elsevier",
journal = "Journal of Inorganic Biochemistry",
title = "Antitumor activity of organoruthenium complexes with chelate aromatic ligands, derived from 1,10-phenantroline: Synthesis and biological activity",
volume = "202",
pages = "110869",
doi = "10.1016/j.jinorgbio.2019.110869"
}
Savić, A., Gligorijević, N., Aranđelović, S., Dojčinović, B. P., Kaczmarek, A. M., Radulović, S., Van Deun, R.,& Van Hecke, K.. (2020). Antitumor activity of organoruthenium complexes with chelate aromatic ligands, derived from 1,10-phenantroline: Synthesis and biological activity. in Journal of Inorganic Biochemistry
Elsevier., 202, 110869.
https://doi.org/10.1016/j.jinorgbio.2019.110869
Savić A, Gligorijević N, Aranđelović S, Dojčinović BP, Kaczmarek AM, Radulović S, Van Deun R, Van Hecke K. Antitumor activity of organoruthenium complexes with chelate aromatic ligands, derived from 1,10-phenantroline: Synthesis and biological activity. in Journal of Inorganic Biochemistry. 2020;202:110869.
doi:10.1016/j.jinorgbio.2019.110869 .
Savić, Aleksandar, Gligorijević, Nevenka, Aranđelović, Sandra, Dojčinović, Biljana P., Kaczmarek, Anna M., Radulović, Siniša, Van Deun, Rik, Van Hecke, Kristof, "Antitumor activity of organoruthenium complexes with chelate aromatic ligands, derived from 1,10-phenantroline: Synthesis and biological activity" in Journal of Inorganic Biochemistry, 202 (2020):110869,
https://doi.org/10.1016/j.jinorgbio.2019.110869 . .
1
18
6
17
17

Synthesis, chemical characterization, PARP inhibition, DNA binding and cellular uptake of novel ruthenium(II)-arene complexes bearing benzamide derivatives in human breast cancer cells

Pavlović, Marijana; Tadić, Ana; Gligorijević, Nevenka; Poljarević, Jelena; Petrović, Tamara; Dojčinović, Biljana P.; Savić, Aleksandar; Radulović, Siniša; Grgurić-Šipka, Sanja; Aranđelović, Sandra

(Elsevier, 2020)

TY  - JOUR
AU  - Pavlović, Marijana
AU  - Tadić, Ana
AU  - Gligorijević, Nevenka
AU  - Poljarević, Jelena
AU  - Petrović, Tamara
AU  - Dojčinović, Biljana P.
AU  - Savić, Aleksandar
AU  - Radulović, Siniša
AU  - Grgurić-Šipka, Sanja
AU  - Aranđelović, Sandra
PY  - 2020
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4048
AB  - Inhibitors of poly(ADP-ribose) polymerase-1 (PARP-1) showed remarkable clinical efficacy in BRCA-mutated tumors. Based on the rational drug design, derivatives of PARP inhibitor 3-aminobenzamide (3-AB), 2-amino-4-methylbenzamide (L1) and 3-amino-N-methylbenzamide (L2), were coordinated to the ruthenium(II) ion, to form potential drugs affecting DNA and inhibiting PARP enzyme. The four conjugated complexes of formula: C1 [(ƞ6-toluene)Ru(L1)Cl]PF6, C2 [(ƞ6-p-cymene)Ru(L1)Cl]PF6, C3 [(ƞ6-toluene)Ru(L2)Cl2] and C4 [(ƞ6-p-cymene)Ru(L2)Cl2], have been synthesized and characterized. Colorimetric 3-(4.5-dimethylthiazol-2-yl)-2.5-diphenyltetrazolium bromide (MTT) assay showed the highest antiproliferative activity of C1 in HCC1937, MDA-MB-231, and MCF-7 breast cancer cells. Efficiency of inhibition of PARP-1 enzymatic activity in vitro decreased in order: C2 > C4 > 3-AB>C1 > C3. ICP-MS study of intracellular accumulation and distribution in BRCA1-mutated HCC1937 revealed that C1-C4 entered cells within 24 h. The complex C1 showed the highest intracellular accumulation, nuclear-targeting properties, and exhibited the highest DNA binding (39.2 ± 0.6 pg of Ru per μg of DNA) that resulted in the cell cycle arrest in the S phase.
PB  - Elsevier
T2  - Journal of Inorganic Biochemistry
T1  - Synthesis, chemical characterization, PARP inhibition, DNA binding and cellular uptake of novel ruthenium(II)-arene complexes bearing benzamide derivatives in human breast cancer cells
VL  - 210
SP  - 111155
DO  - 10.1016/j.jinorgbio.2020.111155
ER  - 
@article{
author = "Pavlović, Marijana and Tadić, Ana and Gligorijević, Nevenka and Poljarević, Jelena and Petrović, Tamara and Dojčinović, Biljana P. and Savić, Aleksandar and Radulović, Siniša and Grgurić-Šipka, Sanja and Aranđelović, Sandra",
year = "2020",
abstract = "Inhibitors of poly(ADP-ribose) polymerase-1 (PARP-1) showed remarkable clinical efficacy in BRCA-mutated tumors. Based on the rational drug design, derivatives of PARP inhibitor 3-aminobenzamide (3-AB), 2-amino-4-methylbenzamide (L1) and 3-amino-N-methylbenzamide (L2), were coordinated to the ruthenium(II) ion, to form potential drugs affecting DNA and inhibiting PARP enzyme. The four conjugated complexes of formula: C1 [(ƞ6-toluene)Ru(L1)Cl]PF6, C2 [(ƞ6-p-cymene)Ru(L1)Cl]PF6, C3 [(ƞ6-toluene)Ru(L2)Cl2] and C4 [(ƞ6-p-cymene)Ru(L2)Cl2], have been synthesized and characterized. Colorimetric 3-(4.5-dimethylthiazol-2-yl)-2.5-diphenyltetrazolium bromide (MTT) assay showed the highest antiproliferative activity of C1 in HCC1937, MDA-MB-231, and MCF-7 breast cancer cells. Efficiency of inhibition of PARP-1 enzymatic activity in vitro decreased in order: C2 > C4 > 3-AB>C1 > C3. ICP-MS study of intracellular accumulation and distribution in BRCA1-mutated HCC1937 revealed that C1-C4 entered cells within 24 h. The complex C1 showed the highest intracellular accumulation, nuclear-targeting properties, and exhibited the highest DNA binding (39.2 ± 0.6 pg of Ru per μg of DNA) that resulted in the cell cycle arrest in the S phase.",
publisher = "Elsevier",
journal = "Journal of Inorganic Biochemistry",
title = "Synthesis, chemical characterization, PARP inhibition, DNA binding and cellular uptake of novel ruthenium(II)-arene complexes bearing benzamide derivatives in human breast cancer cells",
volume = "210",
pages = "111155",
doi = "10.1016/j.jinorgbio.2020.111155"
}
Pavlović, M., Tadić, A., Gligorijević, N., Poljarević, J., Petrović, T., Dojčinović, B. P., Savić, A., Radulović, S., Grgurić-Šipka, S.,& Aranđelović, S.. (2020). Synthesis, chemical characterization, PARP inhibition, DNA binding and cellular uptake of novel ruthenium(II)-arene complexes bearing benzamide derivatives in human breast cancer cells. in Journal of Inorganic Biochemistry
Elsevier., 210, 111155.
https://doi.org/10.1016/j.jinorgbio.2020.111155
Pavlović M, Tadić A, Gligorijević N, Poljarević J, Petrović T, Dojčinović BP, Savić A, Radulović S, Grgurić-Šipka S, Aranđelović S. Synthesis, chemical characterization, PARP inhibition, DNA binding and cellular uptake of novel ruthenium(II)-arene complexes bearing benzamide derivatives in human breast cancer cells. in Journal of Inorganic Biochemistry. 2020;210:111155.
doi:10.1016/j.jinorgbio.2020.111155 .
Pavlović, Marijana, Tadić, Ana, Gligorijević, Nevenka, Poljarević, Jelena, Petrović, Tamara, Dojčinović, Biljana P., Savić, Aleksandar, Radulović, Siniša, Grgurić-Šipka, Sanja, Aranđelović, Sandra, "Synthesis, chemical characterization, PARP inhibition, DNA binding and cellular uptake of novel ruthenium(II)-arene complexes bearing benzamide derivatives in human breast cancer cells" in Journal of Inorganic Biochemistry, 210 (2020):111155,
https://doi.org/10.1016/j.jinorgbio.2020.111155 . .
1
14
6
14
12

Supplementary data for the article: Pavlović, M.; Tadić, A.; Gligorijević, N.; Poljarević, J.; Petrović, T.; Dojčinović, B.; Savić, A.; Radulović, S.; Grgurić-Šipka, S.; Aranđelović, S. Synthesis, Chemical Characterization, PARP Inhibition, DNA Binding and Cellular Uptake of Novel Ruthenium(II)-Arene Complexes Bearing Benzamide Derivatives in Human Breast Cancer Cells. Journal of Inorganic Biochemistry 2020, 210, 111155. https://doi.org/10.1016/j.jinorgbio.2020.111155

Pavlović, Marijana; Tadić, Ana; Gligorijević, Nevenka; Poljarević, Jelena; Petrović, Tamara; Dojčinović, Biljana P.; Savić, Aleksandar; Radulović, Siniša; Grgurić-Šipka, Sanja; Aranđelović, Sandra

(Elsevier, 2020)

TY  - DATA
AU  - Pavlović, Marijana
AU  - Tadić, Ana
AU  - Gligorijević, Nevenka
AU  - Poljarević, Jelena
AU  - Petrović, Tamara
AU  - Dojčinović, Biljana P.
AU  - Savić, Aleksandar
AU  - Radulović, Siniša
AU  - Grgurić-Šipka, Sanja
AU  - Aranđelović, Sandra
PY  - 2020
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4049
PB  - Elsevier
T2  - Journal of Inorganic Biochemistry
T1  - Supplementary data for the article: Pavlović, M.; Tadić, A.; Gligorijević, N.; Poljarević, J.; Petrović, T.; Dojčinović, B.; Savić, A.; Radulović, S.; Grgurić-Šipka, S.; Aranđelović, S. Synthesis, Chemical Characterization, PARP Inhibition, DNA Binding and Cellular Uptake of Novel Ruthenium(II)-Arene Complexes Bearing Benzamide Derivatives in Human Breast Cancer Cells. Journal of Inorganic Biochemistry 2020, 210, 111155. https://doi.org/10.1016/j.jinorgbio.2020.111155
UR  - https://hdl.handle.net/21.15107/rcub_cherry_4049
ER  - 
@misc{
author = "Pavlović, Marijana and Tadić, Ana and Gligorijević, Nevenka and Poljarević, Jelena and Petrović, Tamara and Dojčinović, Biljana P. and Savić, Aleksandar and Radulović, Siniša and Grgurić-Šipka, Sanja and Aranđelović, Sandra",
year = "2020",
publisher = "Elsevier",
journal = "Journal of Inorganic Biochemistry",
title = "Supplementary data for the article: Pavlović, M.; Tadić, A.; Gligorijević, N.; Poljarević, J.; Petrović, T.; Dojčinović, B.; Savić, A.; Radulović, S.; Grgurić-Šipka, S.; Aranđelović, S. Synthesis, Chemical Characterization, PARP Inhibition, DNA Binding and Cellular Uptake of Novel Ruthenium(II)-Arene Complexes Bearing Benzamide Derivatives in Human Breast Cancer Cells. Journal of Inorganic Biochemistry 2020, 210, 111155. https://doi.org/10.1016/j.jinorgbio.2020.111155",
url = "https://hdl.handle.net/21.15107/rcub_cherry_4049"
}
Pavlović, M., Tadić, A., Gligorijević, N., Poljarević, J., Petrović, T., Dojčinović, B. P., Savić, A., Radulović, S., Grgurić-Šipka, S.,& Aranđelović, S.. (2020). Supplementary data for the article: Pavlović, M.; Tadić, A.; Gligorijević, N.; Poljarević, J.; Petrović, T.; Dojčinović, B.; Savić, A.; Radulović, S.; Grgurić-Šipka, S.; Aranđelović, S. Synthesis, Chemical Characterization, PARP Inhibition, DNA Binding and Cellular Uptake of Novel Ruthenium(II)-Arene Complexes Bearing Benzamide Derivatives in Human Breast Cancer Cells. Journal of Inorganic Biochemistry 2020, 210, 111155. https://doi.org/10.1016/j.jinorgbio.2020.111155. in Journal of Inorganic Biochemistry
Elsevier..
https://hdl.handle.net/21.15107/rcub_cherry_4049
Pavlović M, Tadić A, Gligorijević N, Poljarević J, Petrović T, Dojčinović BP, Savić A, Radulović S, Grgurić-Šipka S, Aranđelović S. Supplementary data for the article: Pavlović, M.; Tadić, A.; Gligorijević, N.; Poljarević, J.; Petrović, T.; Dojčinović, B.; Savić, A.; Radulović, S.; Grgurić-Šipka, S.; Aranđelović, S. Synthesis, Chemical Characterization, PARP Inhibition, DNA Binding and Cellular Uptake of Novel Ruthenium(II)-Arene Complexes Bearing Benzamide Derivatives in Human Breast Cancer Cells. Journal of Inorganic Biochemistry 2020, 210, 111155. https://doi.org/10.1016/j.jinorgbio.2020.111155. in Journal of Inorganic Biochemistry. 2020;.
https://hdl.handle.net/21.15107/rcub_cherry_4049 .
Pavlović, Marijana, Tadić, Ana, Gligorijević, Nevenka, Poljarević, Jelena, Petrović, Tamara, Dojčinović, Biljana P., Savić, Aleksandar, Radulović, Siniša, Grgurić-Šipka, Sanja, Aranđelović, Sandra, "Supplementary data for the article: Pavlović, M.; Tadić, A.; Gligorijević, N.; Poljarević, J.; Petrović, T.; Dojčinović, B.; Savić, A.; Radulović, S.; Grgurić-Šipka, S.; Aranđelović, S. Synthesis, Chemical Characterization, PARP Inhibition, DNA Binding and Cellular Uptake of Novel Ruthenium(II)-Arene Complexes Bearing Benzamide Derivatives in Human Breast Cancer Cells. Journal of Inorganic Biochemistry 2020, 210, 111155. https://doi.org/10.1016/j.jinorgbio.2020.111155" in Journal of Inorganic Biochemistry (2020),
https://hdl.handle.net/21.15107/rcub_cherry_4049 .

New organoruthenium compounds with pyrido[2′,3′:5,6]pyrazino[2,3-f][1, 10]phenanthroline: synthesis, characterization, cytotoxicity, and investigation of mechanism of action

Pavlović, Marijana; Nikolić, Stefan; Gligorijević, Nevenka; Dojčinović, Biljana P.; Aranđelović, Sandra; Grgurić-Šipka, Sanja; Radulović, Siniša

(Springer Link, 2019)

TY  - JOUR
AU  - Pavlović, Marijana
AU  - Nikolić, Stefan
AU  - Gligorijević, Nevenka
AU  - Dojčinović, Biljana P.
AU  - Aranđelović, Sandra
AU  - Grgurić-Šipka, Sanja
AU  - Radulović, Siniša
PY  - 2019
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/2854
AB  - Three new ruthenium(II)-arene complexes with pyrido[2′,3′:5,6]pyrazino[2,3-f][1, 10]phenanthroline (ppf) of general formula: C1 ([(ƞ 6 -benzene)Ru(ppf)Cl]PF 6 , C2 ([(ƞ 6 -toluene)Ru(ppf)Cl]PF 6 ) and C3 ([(ƞ 6 -p-cymene)Ru(ppf)Cl]PF 6 ) have been synthesized. The structures of complexes were determined by elemental analysis, IR, ESI–MS, as well as with 1 H and 13 C NMR spectroscopy. Cytotoxic activity has been evaluated in three different human neoplastic cell lines (A549, A375, LS 174T) and in one human non-tumor cell line (MRC-5), by the MTT assay. Complexes C1–C3 showed IC 50 values in the micromolar range below 100 µM. Complex C3, carrying ƞ 6 -p-cymene as the arene ligand, exhibited cytoselective activity toward human malignant melanoma A375 cells (IC 50 = 15.8 ± 2.7 µM), and has been selected for further analyses of its biological effects. Drug-accumulation study performed in the A375 cells disclosed that C3 possess lower ability of entering the cells compared to cisplatin and distributes approximately equally in the cytosol and membrane/organelle fraction of cells. Investigations in the 3D model of A375 cells, disclosed different effects of the complex C3 and cisplatin on growth of multicellular tumor spheroids (MCTSs). While the size of cisplatin-treated MCTSs decreased with time, MCTSs treated with C3 continued to growth. Differences in structural organization and biological activity of this type of ruthenium(II)-arene complexes versus cisplatin in A375 malignant melanoma cells pointed out their different modes of action, and necessity for further biological studies and optimizations for potential applications.
PB  - Springer Link
T2  - Journal of Biological Inorganic Chemistry
T1  - New organoruthenium compounds with pyrido[2′,3′:5,6]pyrazino[2,3-f][1, 10]phenanthroline: synthesis, characterization, cytotoxicity, and investigation of mechanism of action
VL  - 24
IS  - 2
SP  - 297
EP  - 310
DO  - 10.1007/s00775-019-01647-4
ER  - 
@article{
author = "Pavlović, Marijana and Nikolić, Stefan and Gligorijević, Nevenka and Dojčinović, Biljana P. and Aranđelović, Sandra and Grgurić-Šipka, Sanja and Radulović, Siniša",
year = "2019",
abstract = "Three new ruthenium(II)-arene complexes with pyrido[2′,3′:5,6]pyrazino[2,3-f][1, 10]phenanthroline (ppf) of general formula: C1 ([(ƞ 6 -benzene)Ru(ppf)Cl]PF 6 , C2 ([(ƞ 6 -toluene)Ru(ppf)Cl]PF 6 ) and C3 ([(ƞ 6 -p-cymene)Ru(ppf)Cl]PF 6 ) have been synthesized. The structures of complexes were determined by elemental analysis, IR, ESI–MS, as well as with 1 H and 13 C NMR spectroscopy. Cytotoxic activity has been evaluated in three different human neoplastic cell lines (A549, A375, LS 174T) and in one human non-tumor cell line (MRC-5), by the MTT assay. Complexes C1–C3 showed IC 50 values in the micromolar range below 100 µM. Complex C3, carrying ƞ 6 -p-cymene as the arene ligand, exhibited cytoselective activity toward human malignant melanoma A375 cells (IC 50 = 15.8 ± 2.7 µM), and has been selected for further analyses of its biological effects. Drug-accumulation study performed in the A375 cells disclosed that C3 possess lower ability of entering the cells compared to cisplatin and distributes approximately equally in the cytosol and membrane/organelle fraction of cells. Investigations in the 3D model of A375 cells, disclosed different effects of the complex C3 and cisplatin on growth of multicellular tumor spheroids (MCTSs). While the size of cisplatin-treated MCTSs decreased with time, MCTSs treated with C3 continued to growth. Differences in structural organization and biological activity of this type of ruthenium(II)-arene complexes versus cisplatin in A375 malignant melanoma cells pointed out their different modes of action, and necessity for further biological studies and optimizations for potential applications.",
publisher = "Springer Link",
journal = "Journal of Biological Inorganic Chemistry",
title = "New organoruthenium compounds with pyrido[2′,3′:5,6]pyrazino[2,3-f][1, 10]phenanthroline: synthesis, characterization, cytotoxicity, and investigation of mechanism of action",
volume = "24",
number = "2",
pages = "297-310",
doi = "10.1007/s00775-019-01647-4"
}
Pavlović, M., Nikolić, S., Gligorijević, N., Dojčinović, B. P., Aranđelović, S., Grgurić-Šipka, S.,& Radulović, S.. (2019). New organoruthenium compounds with pyrido[2′,3′:5,6]pyrazino[2,3-f][1, 10]phenanthroline: synthesis, characterization, cytotoxicity, and investigation of mechanism of action. in Journal of Biological Inorganic Chemistry
Springer Link., 24(2), 297-310.
https://doi.org/10.1007/s00775-019-01647-4
Pavlović M, Nikolić S, Gligorijević N, Dojčinović BP, Aranđelović S, Grgurić-Šipka S, Radulović S. New organoruthenium compounds with pyrido[2′,3′:5,6]pyrazino[2,3-f][1, 10]phenanthroline: synthesis, characterization, cytotoxicity, and investigation of mechanism of action. in Journal of Biological Inorganic Chemistry. 2019;24(2):297-310.
doi:10.1007/s00775-019-01647-4 .
Pavlović, Marijana, Nikolić, Stefan, Gligorijević, Nevenka, Dojčinović, Biljana P., Aranđelović, Sandra, Grgurić-Šipka, Sanja, Radulović, Siniša, "New organoruthenium compounds with pyrido[2′,3′:5,6]pyrazino[2,3-f][1, 10]phenanthroline: synthesis, characterization, cytotoxicity, and investigation of mechanism of action" in Journal of Biological Inorganic Chemistry, 24, no. 2 (2019):297-310,
https://doi.org/10.1007/s00775-019-01647-4 . .
11
2
11
9

(Chalcogen)semicarbazones and their cobalt complexes differentiate HL-60 myeloid leukaemia cells and are cytotoxic towards tumor cell lines

Todorović, Tamara; Vukašinović, Jelena; Portalone, Gustavo; Suleiman, Sherif; Gligorijević, Nevenka; Bjelogrlić, Snežana K.; Jovanović, Katarina; Radulović, Siniša; Anđelković, Katarina K.; Cassar, Analisse; Filipović, Nenad R.; Schembri-Wismayer, Pierre

(Royal Soc Chemistry, Cambridge, 2017)

TY  - JOUR
AU  - Todorović, Tamara
AU  - Vukašinović, Jelena
AU  - Portalone, Gustavo
AU  - Suleiman, Sherif
AU  - Gligorijević, Nevenka
AU  - Bjelogrlić, Snežana K.
AU  - Jovanović, Katarina
AU  - Radulović, Siniša
AU  - Anđelković, Katarina K.
AU  - Cassar, Analisse
AU  - Filipović, Nenad R.
AU  - Schembri-Wismayer, Pierre
PY  - 2017
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/2418
AB  - Cobalt complexes with semi-and thiosemicarbazones of 8-quinolinecarboxaldehyde have been synthesized and characterized by X-ray diffraction analysis. These novel complexes and a previously synthesized cobalt complex with a selenium-based selenosemicarbazone ligand showed myeloid differentiation activity on all trans retinoic acid resistant HL-60 acute myeloid leukaemia cells. They also showed varying levels of cytotoxicity on five human tumor cell lines: cervix carcinoma cells (HeLa), lung adenocarcinoma cells (A549), colorectal adenocarcinoma cells (LS-174), breast carcinoma cells (MDA-MB-361), and chronic myeloid leukaemia (K562) as well as one normal human cell line: fetal lung fibroblast cells (MRC-5). Leukaemia differentiation was most strongly induced by a metal-free oxygen ligand and the selenium ligand, whilst the latter and the cobalt(II) complex with an oxygen ligand showed the strongest dose-dependent cytotoxic activity. In four out of five investigated tumor cell lines, it was of the same order of magnitude as cisplatin. These best compounds, however, had lower toxicity on non-transformed MRC-5 cells than cisplatin.
PB  - Royal Soc Chemistry, Cambridge
T2  - MedChemComm
T1  - (Chalcogen)semicarbazones and their cobalt complexes differentiate HL-60 myeloid leukaemia cells and are cytotoxic towards tumor cell lines
VL  - 8
IS  - 1
SP  - 103
EP  - 111
DO  - 10.1039/c6md00501b
ER  - 
@article{
author = "Todorović, Tamara and Vukašinović, Jelena and Portalone, Gustavo and Suleiman, Sherif and Gligorijević, Nevenka and Bjelogrlić, Snežana K. and Jovanović, Katarina and Radulović, Siniša and Anđelković, Katarina K. and Cassar, Analisse and Filipović, Nenad R. and Schembri-Wismayer, Pierre",
year = "2017",
abstract = "Cobalt complexes with semi-and thiosemicarbazones of 8-quinolinecarboxaldehyde have been synthesized and characterized by X-ray diffraction analysis. These novel complexes and a previously synthesized cobalt complex with a selenium-based selenosemicarbazone ligand showed myeloid differentiation activity on all trans retinoic acid resistant HL-60 acute myeloid leukaemia cells. They also showed varying levels of cytotoxicity on five human tumor cell lines: cervix carcinoma cells (HeLa), lung adenocarcinoma cells (A549), colorectal adenocarcinoma cells (LS-174), breast carcinoma cells (MDA-MB-361), and chronic myeloid leukaemia (K562) as well as one normal human cell line: fetal lung fibroblast cells (MRC-5). Leukaemia differentiation was most strongly induced by a metal-free oxygen ligand and the selenium ligand, whilst the latter and the cobalt(II) complex with an oxygen ligand showed the strongest dose-dependent cytotoxic activity. In four out of five investigated tumor cell lines, it was of the same order of magnitude as cisplatin. These best compounds, however, had lower toxicity on non-transformed MRC-5 cells than cisplatin.",
publisher = "Royal Soc Chemistry, Cambridge",
journal = "MedChemComm",
title = "(Chalcogen)semicarbazones and their cobalt complexes differentiate HL-60 myeloid leukaemia cells and are cytotoxic towards tumor cell lines",
volume = "8",
number = "1",
pages = "103-111",
doi = "10.1039/c6md00501b"
}
Todorović, T., Vukašinović, J., Portalone, G., Suleiman, S., Gligorijević, N., Bjelogrlić, S. K., Jovanović, K., Radulović, S., Anđelković, K. K., Cassar, A., Filipović, N. R.,& Schembri-Wismayer, P.. (2017). (Chalcogen)semicarbazones and their cobalt complexes differentiate HL-60 myeloid leukaemia cells and are cytotoxic towards tumor cell lines. in MedChemComm
Royal Soc Chemistry, Cambridge., 8(1), 103-111.
https://doi.org/10.1039/c6md00501b
Todorović T, Vukašinović J, Portalone G, Suleiman S, Gligorijević N, Bjelogrlić SK, Jovanović K, Radulović S, Anđelković KK, Cassar A, Filipović NR, Schembri-Wismayer P. (Chalcogen)semicarbazones and their cobalt complexes differentiate HL-60 myeloid leukaemia cells and are cytotoxic towards tumor cell lines. in MedChemComm. 2017;8(1):103-111.
doi:10.1039/c6md00501b .
Todorović, Tamara, Vukašinović, Jelena, Portalone, Gustavo, Suleiman, Sherif, Gligorijević, Nevenka, Bjelogrlić, Snežana K., Jovanović, Katarina, Radulović, Siniša, Anđelković, Katarina K., Cassar, Analisse, Filipović, Nenad R., Schembri-Wismayer, Pierre, "(Chalcogen)semicarbazones and their cobalt complexes differentiate HL-60 myeloid leukaemia cells and are cytotoxic towards tumor cell lines" in MedChemComm, 8, no. 1 (2017):103-111,
https://doi.org/10.1039/c6md00501b . .
15
13
16
14

(Chalcogen)semicarbazones and their cobalt complexes differentiate HL-60 myeloid leukaemia cells and are cytotoxic towards tumor cell lines

Todorović, Tamara; Vukašinović, Jelena; Portalone, Gustavo; Suleiman, Sherif; Gligorijević, Nevenka; Bjelogrlić, Snežana K.; Jovanović, Katarina; Radulović, Siniša; Anđelković, Katarina K.; Cassar, Analisse; Filipović, Nenad R.; Schembri-Wismayer, Pierre

(Royal Soc Chemistry, Cambridge, 2017)

TY  - JOUR
AU  - Todorović, Tamara
AU  - Vukašinović, Jelena
AU  - Portalone, Gustavo
AU  - Suleiman, Sherif
AU  - Gligorijević, Nevenka
AU  - Bjelogrlić, Snežana K.
AU  - Jovanović, Katarina
AU  - Radulović, Siniša
AU  - Anđelković, Katarina K.
AU  - Cassar, Analisse
AU  - Filipović, Nenad R.
AU  - Schembri-Wismayer, Pierre
PY  - 2017
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3092
AB  - Cobalt complexes with semi-and thiosemicarbazones of 8-quinolinecarboxaldehyde have been synthesized and characterized by X-ray diffraction analysis. These novel complexes and a previously synthesized cobalt complex with a selenium-based selenosemicarbazone ligand showed myeloid differentiation activity on all trans retinoic acid resistant HL-60 acute myeloid leukaemia cells. They also showed varying levels of cytotoxicity on five human tumor cell lines: cervix carcinoma cells (HeLa), lung adenocarcinoma cells (A549), colorectal adenocarcinoma cells (LS-174), breast carcinoma cells (MDA-MB-361), and chronic myeloid leukaemia (K562) as well as one normal human cell line: fetal lung fibroblast cells (MRC-5). Leukaemia differentiation was most strongly induced by a metal-free oxygen ligand and the selenium ligand, whilst the latter and the cobalt(II) complex with an oxygen ligand showed the strongest dose-dependent cytotoxic activity. In four out of five investigated tumor cell lines, it was of the same order of magnitude as cisplatin. These best compounds, however, had lower toxicity on non-transformed MRC-5 cells than cisplatin.
PB  - Royal Soc Chemistry, Cambridge
T2  - MedChemComm
T1  - (Chalcogen)semicarbazones and their cobalt complexes differentiate HL-60 myeloid leukaemia cells and are cytotoxic towards tumor cell lines
VL  - 8
IS  - 1
SP  - 103
EP  - 111
DO  - 10.1039/c6md00501b
ER  - 
@article{
author = "Todorović, Tamara and Vukašinović, Jelena and Portalone, Gustavo and Suleiman, Sherif and Gligorijević, Nevenka and Bjelogrlić, Snežana K. and Jovanović, Katarina and Radulović, Siniša and Anđelković, Katarina K. and Cassar, Analisse and Filipović, Nenad R. and Schembri-Wismayer, Pierre",
year = "2017",
abstract = "Cobalt complexes with semi-and thiosemicarbazones of 8-quinolinecarboxaldehyde have been synthesized and characterized by X-ray diffraction analysis. These novel complexes and a previously synthesized cobalt complex with a selenium-based selenosemicarbazone ligand showed myeloid differentiation activity on all trans retinoic acid resistant HL-60 acute myeloid leukaemia cells. They also showed varying levels of cytotoxicity on five human tumor cell lines: cervix carcinoma cells (HeLa), lung adenocarcinoma cells (A549), colorectal adenocarcinoma cells (LS-174), breast carcinoma cells (MDA-MB-361), and chronic myeloid leukaemia (K562) as well as one normal human cell line: fetal lung fibroblast cells (MRC-5). Leukaemia differentiation was most strongly induced by a metal-free oxygen ligand and the selenium ligand, whilst the latter and the cobalt(II) complex with an oxygen ligand showed the strongest dose-dependent cytotoxic activity. In four out of five investigated tumor cell lines, it was of the same order of magnitude as cisplatin. These best compounds, however, had lower toxicity on non-transformed MRC-5 cells than cisplatin.",
publisher = "Royal Soc Chemistry, Cambridge",
journal = "MedChemComm",
title = "(Chalcogen)semicarbazones and their cobalt complexes differentiate HL-60 myeloid leukaemia cells and are cytotoxic towards tumor cell lines",
volume = "8",
number = "1",
pages = "103-111",
doi = "10.1039/c6md00501b"
}
Todorović, T., Vukašinović, J., Portalone, G., Suleiman, S., Gligorijević, N., Bjelogrlić, S. K., Jovanović, K., Radulović, S., Anđelković, K. K., Cassar, A., Filipović, N. R.,& Schembri-Wismayer, P.. (2017). (Chalcogen)semicarbazones and their cobalt complexes differentiate HL-60 myeloid leukaemia cells and are cytotoxic towards tumor cell lines. in MedChemComm
Royal Soc Chemistry, Cambridge., 8(1), 103-111.
https://doi.org/10.1039/c6md00501b
Todorović T, Vukašinović J, Portalone G, Suleiman S, Gligorijević N, Bjelogrlić SK, Jovanović K, Radulović S, Anđelković KK, Cassar A, Filipović NR, Schembri-Wismayer P. (Chalcogen)semicarbazones and their cobalt complexes differentiate HL-60 myeloid leukaemia cells and are cytotoxic towards tumor cell lines. in MedChemComm. 2017;8(1):103-111.
doi:10.1039/c6md00501b .
Todorović, Tamara, Vukašinović, Jelena, Portalone, Gustavo, Suleiman, Sherif, Gligorijević, Nevenka, Bjelogrlić, Snežana K., Jovanović, Katarina, Radulović, Siniša, Anđelković, Katarina K., Cassar, Analisse, Filipović, Nenad R., Schembri-Wismayer, Pierre, "(Chalcogen)semicarbazones and their cobalt complexes differentiate HL-60 myeloid leukaemia cells and are cytotoxic towards tumor cell lines" in MedChemComm, 8, no. 1 (2017):103-111,
https://doi.org/10.1039/c6md00501b . .
15
13
16
14

Supplementary data for article : Todorović, T. R.; Vukašinović, J.; Portalone, G.; Suleiman, S.; Gligorijević, N.; Bjelogrlić, S.; Jovanović, K.; Radulović, S.; Anđelković, K.; Cassar, A.; et al. (Chalcogen)Semicarbazones and Their Cobalt Complexes Differentiate HL-60 Myeloid Leukaemia Cells and Are Cytotoxic towards Tumor Cell Lines. MedChemComm 2017, 8 (1), 103–111. https://doi.org/10.1039/c6md00501b

Todorović, Tamara; Vukašinović, Jelena; Portalone, Gustavo; Suleiman, Sherif; Gligorijević, Nevenka; Bjelogrlić, Snežana K.; Jovanović, Katarina; Radulović, Siniša; Anđelković, Katarina K.; Cassar, Analisse; Filipović, Nenad R.; Schembri-Wismayer, Pierre

(Royal Soc Chemistry, Cambridge, 2017)

TY  - DATA
AU  - Todorović, Tamara
AU  - Vukašinović, Jelena
AU  - Portalone, Gustavo
AU  - Suleiman, Sherif
AU  - Gligorijević, Nevenka
AU  - Bjelogrlić, Snežana K.
AU  - Jovanović, Katarina
AU  - Radulović, Siniša
AU  - Anđelković, Katarina K.
AU  - Cassar, Analisse
AU  - Filipović, Nenad R.
AU  - Schembri-Wismayer, Pierre
PY  - 2017
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3093
PB  - Royal Soc Chemistry, Cambridge
T2  - MedChemComm
T1  - Supplementary data for article : Todorović, T. R.; Vukašinović, J.; Portalone, G.; Suleiman, S.; Gligorijević, N.; Bjelogrlić, S.; Jovanović, K.; Radulović, S.; Anđelković, K.; Cassar, A.; et al. (Chalcogen)Semicarbazones and Their Cobalt Complexes Differentiate HL-60 Myeloid Leukaemia Cells and Are Cytotoxic towards Tumor Cell Lines. MedChemComm 2017, 8 (1), 103–111. https://doi.org/10.1039/c6md00501b
UR  - https://hdl.handle.net/21.15107/rcub_cherry_3093
ER  - 
@misc{
author = "Todorović, Tamara and Vukašinović, Jelena and Portalone, Gustavo and Suleiman, Sherif and Gligorijević, Nevenka and Bjelogrlić, Snežana K. and Jovanović, Katarina and Radulović, Siniša and Anđelković, Katarina K. and Cassar, Analisse and Filipović, Nenad R. and Schembri-Wismayer, Pierre",
year = "2017",
publisher = "Royal Soc Chemistry, Cambridge",
journal = "MedChemComm",
title = "Supplementary data for article : Todorović, T. R.; Vukašinović, J.; Portalone, G.; Suleiman, S.; Gligorijević, N.; Bjelogrlić, S.; Jovanović, K.; Radulović, S.; Anđelković, K.; Cassar, A.; et al. (Chalcogen)Semicarbazones and Their Cobalt Complexes Differentiate HL-60 Myeloid Leukaemia Cells and Are Cytotoxic towards Tumor Cell Lines. MedChemComm 2017, 8 (1), 103–111. https://doi.org/10.1039/c6md00501b",
url = "https://hdl.handle.net/21.15107/rcub_cherry_3093"
}
Todorović, T., Vukašinović, J., Portalone, G., Suleiman, S., Gligorijević, N., Bjelogrlić, S. K., Jovanović, K., Radulović, S., Anđelković, K. K., Cassar, A., Filipović, N. R.,& Schembri-Wismayer, P.. (2017). Supplementary data for article : Todorović, T. R.; Vukašinović, J.; Portalone, G.; Suleiman, S.; Gligorijević, N.; Bjelogrlić, S.; Jovanović, K.; Radulović, S.; Anđelković, K.; Cassar, A.; et al. (Chalcogen)Semicarbazones and Their Cobalt Complexes Differentiate HL-60 Myeloid Leukaemia Cells and Are Cytotoxic towards Tumor Cell Lines. MedChemComm 2017, 8 (1), 103–111. https://doi.org/10.1039/c6md00501b. in MedChemComm
Royal Soc Chemistry, Cambridge..
https://hdl.handle.net/21.15107/rcub_cherry_3093
Todorović T, Vukašinović J, Portalone G, Suleiman S, Gligorijević N, Bjelogrlić SK, Jovanović K, Radulović S, Anđelković KK, Cassar A, Filipović NR, Schembri-Wismayer P. Supplementary data for article : Todorović, T. R.; Vukašinović, J.; Portalone, G.; Suleiman, S.; Gligorijević, N.; Bjelogrlić, S.; Jovanović, K.; Radulović, S.; Anđelković, K.; Cassar, A.; et al. (Chalcogen)Semicarbazones and Their Cobalt Complexes Differentiate HL-60 Myeloid Leukaemia Cells and Are Cytotoxic towards Tumor Cell Lines. MedChemComm 2017, 8 (1), 103–111. https://doi.org/10.1039/c6md00501b. in MedChemComm. 2017;.
https://hdl.handle.net/21.15107/rcub_cherry_3093 .
Todorović, Tamara, Vukašinović, Jelena, Portalone, Gustavo, Suleiman, Sherif, Gligorijević, Nevenka, Bjelogrlić, Snežana K., Jovanović, Katarina, Radulović, Siniša, Anđelković, Katarina K., Cassar, Analisse, Filipović, Nenad R., Schembri-Wismayer, Pierre, "Supplementary data for article : Todorović, T. R.; Vukašinović, J.; Portalone, G.; Suleiman, S.; Gligorijević, N.; Bjelogrlić, S.; Jovanović, K.; Radulović, S.; Anđelković, K.; Cassar, A.; et al. (Chalcogen)Semicarbazones and Their Cobalt Complexes Differentiate HL-60 Myeloid Leukaemia Cells and Are Cytotoxic towards Tumor Cell Lines. MedChemComm 2017, 8 (1), 103–111. https://doi.org/10.1039/c6md00501b" in MedChemComm (2017),
https://hdl.handle.net/21.15107/rcub_cherry_3093 .

Ruthenium(II) bipyridine complexes: from synthesis and crystal structures to electrochemical and cytotoxicity investigation

Baroud, Afya A.; Mihajlović-Lalić, Ljiljana; Gligorijević, Nevenka; Aranđelović, Sandra; Stanković, Dalibor; Radulović, Siniša; Van Hecke, Kristof; Savić, Aleksandar; Grgurić-Šipka, Sanja

(Taylor & Francis Ltd, Abingdon, 2017)

TY  - JOUR
AU  - Baroud, Afya A.
AU  - Mihajlović-Lalić, Ljiljana
AU  - Gligorijević, Nevenka
AU  - Aranđelović, Sandra
AU  - Stanković, Dalibor
AU  - Radulović, Siniša
AU  - Van Hecke, Kristof
AU  - Savić, Aleksandar
AU  - Grgurić-Šipka, Sanja
PY  - 2017
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/2423
AB  - Complexes 1-4, [Ru(L)(bpy)(2)]PF6, where bpy=2,2-bipyridine; HL=3-methylpyridine-2-carboxylic acid (HL1), 6-methylpyridine-2-carboxylic acid (HL2), 5-bromopyridine-2-carboxylic acid (HL3) and 6-bromopyridine-2-carboxylic acid (HL4), were synthesized and characterized. The electrochemical character of the complexes was investigated by cyclic voltammetry revealing two reversible reduction waves in the negative range of potentials, most likely due to a reduction of the bipyridine moiety. Cytotoxicity studies by MTT assay for 72h of drug action revealed that 2-4 exhibited moderate activity in cervical human tumor cells (HeLa). Complex 2 exhibited low activity in colon cancer LS-174 cells (180 +/- 10), while all complexes were devoid of activity in lung cancer A549 and non-tumor MRC-5 cells, up to 200M. Combinational studies of the most active complex 2, with pharmacological modulators of cell redox status, L-buthionine-sulfoximine (L-BSO) or N-acetyl-L-cysteine (NAC), showed that when L-BSO potentiated, 2 induced a sub-G1 peak of the cell cycle in the HeLa cell line. UV-vis and cyclic voltammetry were performed in order to investigate the binding mode of 2 to DNA and suggested intercalation for the complex-DNA interaction. [GRAPHICS]
PB  - Taylor & Francis Ltd, Abingdon
T2  - Journal of Coordination Chemistry
T1  - Ruthenium(II) bipyridine complexes: from synthesis and crystal structures to electrochemical and cytotoxicity investigation
VL  - 70
IS  - 5
SP  - 831
EP  - 847
DO  - 10.1080/00958972.2017.1282611
ER  - 
@article{
author = "Baroud, Afya A. and Mihajlović-Lalić, Ljiljana and Gligorijević, Nevenka and Aranđelović, Sandra and Stanković, Dalibor and Radulović, Siniša and Van Hecke, Kristof and Savić, Aleksandar and Grgurić-Šipka, Sanja",
year = "2017",
abstract = "Complexes 1-4, [Ru(L)(bpy)(2)]PF6, where bpy=2,2-bipyridine; HL=3-methylpyridine-2-carboxylic acid (HL1), 6-methylpyridine-2-carboxylic acid (HL2), 5-bromopyridine-2-carboxylic acid (HL3) and 6-bromopyridine-2-carboxylic acid (HL4), were synthesized and characterized. The electrochemical character of the complexes was investigated by cyclic voltammetry revealing two reversible reduction waves in the negative range of potentials, most likely due to a reduction of the bipyridine moiety. Cytotoxicity studies by MTT assay for 72h of drug action revealed that 2-4 exhibited moderate activity in cervical human tumor cells (HeLa). Complex 2 exhibited low activity in colon cancer LS-174 cells (180 +/- 10), while all complexes were devoid of activity in lung cancer A549 and non-tumor MRC-5 cells, up to 200M. Combinational studies of the most active complex 2, with pharmacological modulators of cell redox status, L-buthionine-sulfoximine (L-BSO) or N-acetyl-L-cysteine (NAC), showed that when L-BSO potentiated, 2 induced a sub-G1 peak of the cell cycle in the HeLa cell line. UV-vis and cyclic voltammetry were performed in order to investigate the binding mode of 2 to DNA and suggested intercalation for the complex-DNA interaction. [GRAPHICS]",
publisher = "Taylor & Francis Ltd, Abingdon",
journal = "Journal of Coordination Chemistry",
title = "Ruthenium(II) bipyridine complexes: from synthesis and crystal structures to electrochemical and cytotoxicity investigation",
volume = "70",
number = "5",
pages = "831-847",
doi = "10.1080/00958972.2017.1282611"
}
Baroud, A. A., Mihajlović-Lalić, L., Gligorijević, N., Aranđelović, S., Stanković, D., Radulović, S., Van Hecke, K., Savić, A.,& Grgurić-Šipka, S.. (2017). Ruthenium(II) bipyridine complexes: from synthesis and crystal structures to electrochemical and cytotoxicity investigation. in Journal of Coordination Chemistry
Taylor & Francis Ltd, Abingdon., 70(5), 831-847.
https://doi.org/10.1080/00958972.2017.1282611
Baroud AA, Mihajlović-Lalić L, Gligorijević N, Aranđelović S, Stanković D, Radulović S, Van Hecke K, Savić A, Grgurić-Šipka S. Ruthenium(II) bipyridine complexes: from synthesis and crystal structures to electrochemical and cytotoxicity investigation. in Journal of Coordination Chemistry. 2017;70(5):831-847.
doi:10.1080/00958972.2017.1282611 .
Baroud, Afya A., Mihajlović-Lalić, Ljiljana, Gligorijević, Nevenka, Aranđelović, Sandra, Stanković, Dalibor, Radulović, Siniša, Van Hecke, Kristof, Savić, Aleksandar, Grgurić-Šipka, Sanja, "Ruthenium(II) bipyridine complexes: from synthesis and crystal structures to electrochemical and cytotoxicity investigation" in Journal of Coordination Chemistry, 70, no. 5 (2017):831-847,
https://doi.org/10.1080/00958972.2017.1282611 . .
19
12
18
18

Supplementary data for article: Baroud, A. A.; Mihajlović-Lalić, L. E.; Gligorijević, N.; Aranđelović, S.; Stanković, D.; Radulović, S.; Van Hecke, K.; Savić, A.; Grgurić-Šipka, S. Ruthenium(II) Bipyridine Complexes: From Synthesis and Crystal Structures to Electrochemical and Cytotoxicity Investigation. Journal of Coordination Chemistry 2017, 70 (5), 831–847. https://doi.org/10.1080/00958972.2017.1282611

Baroud, Afya A.; Mihajlović-Lalić, Ljiljana; Gligorijević, Nevenka; Aranđelović, Sandra; Stanković, Dalibor; Radulović, Siniša; Van Hecke, Kristof; Savić, Aleksandar; Grgurić-Šipka, Sanja

(Taylor & Francis Ltd, Abingdon, 2017)

TY  - DATA
AU  - Baroud, Afya A.
AU  - Mihajlović-Lalić, Ljiljana
AU  - Gligorijević, Nevenka
AU  - Aranđelović, Sandra
AU  - Stanković, Dalibor
AU  - Radulović, Siniša
AU  - Van Hecke, Kristof
AU  - Savić, Aleksandar
AU  - Grgurić-Šipka, Sanja
PY  - 2017
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3138
PB  - Taylor & Francis Ltd, Abingdon
T2  - Journal of Coordination Chemistry
T1  - Supplementary data for article:  Baroud, A. A.; Mihajlović-Lalić, L. E.; Gligorijević, N.; Aranđelović, S.; Stanković, D.; Radulović, S.; Van Hecke, K.; Savić, A.; Grgurić-Šipka, S. Ruthenium(II) Bipyridine Complexes: From Synthesis and Crystal Structures to Electrochemical and Cytotoxicity Investigation. Journal of Coordination Chemistry 2017, 70 (5), 831–847. https://doi.org/10.1080/00958972.2017.1282611
UR  - https://hdl.handle.net/21.15107/rcub_cherry_3138
ER  - 
@misc{
author = "Baroud, Afya A. and Mihajlović-Lalić, Ljiljana and Gligorijević, Nevenka and Aranđelović, Sandra and Stanković, Dalibor and Radulović, Siniša and Van Hecke, Kristof and Savić, Aleksandar and Grgurić-Šipka, Sanja",
year = "2017",
publisher = "Taylor & Francis Ltd, Abingdon",
journal = "Journal of Coordination Chemistry",
title = "Supplementary data for article:  Baroud, A. A.; Mihajlović-Lalić, L. E.; Gligorijević, N.; Aranđelović, S.; Stanković, D.; Radulović, S.; Van Hecke, K.; Savić, A.; Grgurić-Šipka, S. Ruthenium(II) Bipyridine Complexes: From Synthesis and Crystal Structures to Electrochemical and Cytotoxicity Investigation. Journal of Coordination Chemistry 2017, 70 (5), 831–847. https://doi.org/10.1080/00958972.2017.1282611",
url = "https://hdl.handle.net/21.15107/rcub_cherry_3138"
}
Baroud, A. A., Mihajlović-Lalić, L., Gligorijević, N., Aranđelović, S., Stanković, D., Radulović, S., Van Hecke, K., Savić, A.,& Grgurić-Šipka, S.. (2017). Supplementary data for article:  Baroud, A. A.; Mihajlović-Lalić, L. E.; Gligorijević, N.; Aranđelović, S.; Stanković, D.; Radulović, S.; Van Hecke, K.; Savić, A.; Grgurić-Šipka, S. Ruthenium(II) Bipyridine Complexes: From Synthesis and Crystal Structures to Electrochemical and Cytotoxicity Investigation. Journal of Coordination Chemistry 2017, 70 (5), 831–847. https://doi.org/10.1080/00958972.2017.1282611. in Journal of Coordination Chemistry
Taylor & Francis Ltd, Abingdon..
https://hdl.handle.net/21.15107/rcub_cherry_3138
Baroud AA, Mihajlović-Lalić L, Gligorijević N, Aranđelović S, Stanković D, Radulović S, Van Hecke K, Savić A, Grgurić-Šipka S. Supplementary data for article:  Baroud, A. A.; Mihajlović-Lalić, L. E.; Gligorijević, N.; Aranđelović, S.; Stanković, D.; Radulović, S.; Van Hecke, K.; Savić, A.; Grgurić-Šipka, S. Ruthenium(II) Bipyridine Complexes: From Synthesis and Crystal Structures to Electrochemical and Cytotoxicity Investigation. Journal of Coordination Chemistry 2017, 70 (5), 831–847. https://doi.org/10.1080/00958972.2017.1282611. in Journal of Coordination Chemistry. 2017;.
https://hdl.handle.net/21.15107/rcub_cherry_3138 .
Baroud, Afya A., Mihajlović-Lalić, Ljiljana, Gligorijević, Nevenka, Aranđelović, Sandra, Stanković, Dalibor, Radulović, Siniša, Van Hecke, Kristof, Savić, Aleksandar, Grgurić-Šipka, Sanja, "Supplementary data for article:  Baroud, A. A.; Mihajlović-Lalić, L. E.; Gligorijević, N.; Aranđelović, S.; Stanković, D.; Radulović, S.; Van Hecke, K.; Savić, A.; Grgurić-Šipka, S. Ruthenium(II) Bipyridine Complexes: From Synthesis and Crystal Structures to Electrochemical and Cytotoxicity Investigation. Journal of Coordination Chemistry 2017, 70 (5), 831–847. https://doi.org/10.1080/00958972.2017.1282611" in Journal of Coordination Chemistry (2017),
https://hdl.handle.net/21.15107/rcub_cherry_3138 .

The Development of Ru(II)-p-Cymene Complexes with Pyridine Derivatives as Anti-Cancer Agents

Gligorijević, Nevenka; Aranđelović, Nevenka; Jovanović, Katarina K.; Grgurić-Šipka, Sanja; Radulović, Siniša

(Pan Stanford Publishing Pte. Ltd., 2017)

TY  - CHAP
AU  - Gligorijević, Nevenka
AU  - Aranđelović, Nevenka
AU  - Jovanović, Katarina K.
AU  - Grgurić-Šipka, Sanja
AU  - Radulović, Siniša
PY  - 2017
UR  - https://www.worldcat.org/title/ruthenium-chemistry/oclc/1032703727&referer=brief_results
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5074
PB  - Pan Stanford Publishing Pte. Ltd.
T2  - Ruthenium chemistry
T1  - The Development of Ru(II)-p-Cymene Complexes with Pyridine Derivatives as Anti-Cancer Agents
SP  - 215
EP  - 258
UR  - https://hdl.handle.net/21.15107/rcub_cherry_5074
ER  - 
@inbook{
author = "Gligorijević, Nevenka and Aranđelović, Nevenka and Jovanović, Katarina K. and Grgurić-Šipka, Sanja and Radulović, Siniša",
year = "2017",
publisher = "Pan Stanford Publishing Pte. Ltd.",
journal = "Ruthenium chemistry",
booktitle = "The Development of Ru(II)-p-Cymene Complexes with Pyridine Derivatives as Anti-Cancer Agents",
pages = "215-258",
url = "https://hdl.handle.net/21.15107/rcub_cherry_5074"
}
Gligorijević, N., Aranđelović, N., Jovanović, K. K., Grgurić-Šipka, S.,& Radulović, S.. (2017). The Development of Ru(II)-p-Cymene Complexes with Pyridine Derivatives as Anti-Cancer Agents. in Ruthenium chemistry
Pan Stanford Publishing Pte. Ltd.., 215-258.
https://hdl.handle.net/21.15107/rcub_cherry_5074
Gligorijević N, Aranđelović N, Jovanović KK, Grgurić-Šipka S, Radulović S. The Development of Ru(II)-p-Cymene Complexes with Pyridine Derivatives as Anti-Cancer Agents. in Ruthenium chemistry. 2017;:215-258.
https://hdl.handle.net/21.15107/rcub_cherry_5074 .
Gligorijević, Nevenka, Aranđelović, Nevenka, Jovanović, Katarina K., Grgurić-Šipka, Sanja, Radulović, Siniša, "The Development of Ru(II)-p-Cymene Complexes with Pyridine Derivatives as Anti-Cancer Agents" in Ruthenium chemistry (2017):215-258,
https://hdl.handle.net/21.15107/rcub_cherry_5074 .

Cell cycle, apoptosis, cellular uptake and whole-transcriptome microarray gene expression analysis of HeLa cells treated with a ruthenium(II)-arene complex with an isoquinoline-3-carboxylic acid ligand

Jovanović, Katarina K.; Tanić, Miljana; Ivanović, Ivanka; Gligorijević, Nevenka; Dojčinović, Biljana P.; Radulović, Siniša

(Elsevier, 2016)

TY  - JOUR
AU  - Jovanović, Katarina K.
AU  - Tanić, Miljana
AU  - Ivanović, Ivanka
AU  - Gligorijević, Nevenka
AU  - Dojčinović, Biljana P.
AU  - Radulović, Siniša
PY  - 2016
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/6318
AB  - Ruthenium(II)arene complexes are promising drug candidates for the therapy of solid tumors. Inprevious work, seven new compounds of the general formula [Ru(η6-p-cymene)(L1–7)Cl] were synthesized and characterized, of which the complex with L=isoquinoline-3-carboxylic acid (RuT7) was two times as active on HeLa cells compared to normal cell line MRC-5, as indicated by IC50 values determined after48 h of incubation (45.4±3.0 vs. 84.2±5.7 μM, respectively). In the present study, cell cycle analysis of HeLa cells treated with RuT7 showed S phase arrest and an increase in sub-G1 population.The apoptotic potential of the title compound was confirmed with the Annexin V-FITC/PI assay together with a morphological evaluation of cells using fluorescent microscopy. Analysis of the intracellular accumulation of ruthenium showed 8.9 ng Ru / 10 6 cells after 6 h of incubation.To gain further insight in the molecular mechanism of action of RuT7 on HeLa cells, a whole-transcriptome microarray gene expression analysis was performed. Analysis of functional categories and signaling and biochemical pathways associated with the response of HeLa cells to treatment with RuT7 showed that it leads the cells through the intrinsic (mitochondrial) apoptotic pathway, via indirect DNA damage due to the action of reactive oxygens pecies, and through direct DNA binding of RuT7. Statistical analysis for enrichment of gene sets associated with known drug-induced toxicities identified fewer associated toxicity profiles in RuT7-treated cells compared to cisplatin treatment. Altogether these results provide the basis for further development of RuT7 in animal and pre-clinical studies as a potential drug candidate.
PB  - Elsevier
T2  - Journal of Inorganic Biochemistry
T1  - Cell cycle, apoptosis, cellular uptake and whole-transcriptome microarray gene expression analysis of HeLa cells treated with a ruthenium(II)-arene complex with an isoquinoline-3-carboxylic acid ligand
VL  - 163
SP  - 362
EP  - 373
DO  - 10.1016/j.jinorgbio.2016.04.011
ER  - 
@article{
author = "Jovanović, Katarina K. and Tanić, Miljana and Ivanović, Ivanka and Gligorijević, Nevenka and Dojčinović, Biljana P. and Radulović, Siniša",
year = "2016",
abstract = "Ruthenium(II)arene complexes are promising drug candidates for the therapy of solid tumors. Inprevious work, seven new compounds of the general formula [Ru(η6-p-cymene)(L1–7)Cl] were synthesized and characterized, of which the complex with L=isoquinoline-3-carboxylic acid (RuT7) was two times as active on HeLa cells compared to normal cell line MRC-5, as indicated by IC50 values determined after48 h of incubation (45.4±3.0 vs. 84.2±5.7 μM, respectively). In the present study, cell cycle analysis of HeLa cells treated with RuT7 showed S phase arrest and an increase in sub-G1 population.The apoptotic potential of the title compound was confirmed with the Annexin V-FITC/PI assay together with a morphological evaluation of cells using fluorescent microscopy. Analysis of the intracellular accumulation of ruthenium showed 8.9 ng Ru / 10 6 cells after 6 h of incubation.To gain further insight in the molecular mechanism of action of RuT7 on HeLa cells, a whole-transcriptome microarray gene expression analysis was performed. Analysis of functional categories and signaling and biochemical pathways associated with the response of HeLa cells to treatment with RuT7 showed that it leads the cells through the intrinsic (mitochondrial) apoptotic pathway, via indirect DNA damage due to the action of reactive oxygens pecies, and through direct DNA binding of RuT7. Statistical analysis for enrichment of gene sets associated with known drug-induced toxicities identified fewer associated toxicity profiles in RuT7-treated cells compared to cisplatin treatment. Altogether these results provide the basis for further development of RuT7 in animal and pre-clinical studies as a potential drug candidate.",
publisher = "Elsevier",
journal = "Journal of Inorganic Biochemistry",
title = "Cell cycle, apoptosis, cellular uptake and whole-transcriptome microarray gene expression analysis of HeLa cells treated with a ruthenium(II)-arene complex with an isoquinoline-3-carboxylic acid ligand",
volume = "163",
pages = "362-373",
doi = "10.1016/j.jinorgbio.2016.04.011"
}
Jovanović, K. K., Tanić, M., Ivanović, I., Gligorijević, N., Dojčinović, B. P.,& Radulović, S.. (2016). Cell cycle, apoptosis, cellular uptake and whole-transcriptome microarray gene expression analysis of HeLa cells treated with a ruthenium(II)-arene complex with an isoquinoline-3-carboxylic acid ligand. in Journal of Inorganic Biochemistry
Elsevier., 163, 362-373.
https://doi.org/10.1016/j.jinorgbio.2016.04.011
Jovanović KK, Tanić M, Ivanović I, Gligorijević N, Dojčinović BP, Radulović S. Cell cycle, apoptosis, cellular uptake and whole-transcriptome microarray gene expression analysis of HeLa cells treated with a ruthenium(II)-arene complex with an isoquinoline-3-carboxylic acid ligand. in Journal of Inorganic Biochemistry. 2016;163:362-373.
doi:10.1016/j.jinorgbio.2016.04.011 .
Jovanović, Katarina K., Tanić, Miljana, Ivanović, Ivanka, Gligorijević, Nevenka, Dojčinović, Biljana P., Radulović, Siniša, "Cell cycle, apoptosis, cellular uptake and whole-transcriptome microarray gene expression analysis of HeLa cells treated with a ruthenium(II)-arene complex with an isoquinoline-3-carboxylic acid ligand" in Journal of Inorganic Biochemistry, 163 (2016):362-373,
https://doi.org/10.1016/j.jinorgbio.2016.04.011 . .
2
20
19
20
17

Synthesis, characterization and biological evaluation of novel Ru(II)-arene complexes containing intercalating ligands

Nikolić, Stefan; Rangasamy, Loganathan; Gligorijević, Nevenka; Aranđelović, Sandra; Radulović, Siniša; Gasser, Gilles; Grgurić-Šipka, Sanja

(Elsevier Science Inc, New York, 2016)

TY  - JOUR
AU  - Nikolić, Stefan
AU  - Rangasamy, Loganathan
AU  - Gligorijević, Nevenka
AU  - Aranđelović, Sandra
AU  - Radulović, Siniša
AU  - Gasser, Gilles
AU  - Grgurić-Šipka, Sanja
PY  - 2016
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3638
AB  - Three new ruthenium(II)-arene complexes, namely [(eta(6)-p-cymene)Ru(Me(2)dppz)Cl]PF6 (1), [(eta(6)-benzene)Ru(Me(2)dppz)Cl]PF6 (2) and [(eta(6)-p-cymene)Ru(aip)Cl]PF6 (3) (Me(2)dppz = 11,12-dimethyldipyrido[3,2-a:2',3'-c]phenazine; aip = 2-(9-anthryl)-1H-imidazo[4,5-f] [1,10] phenanthroline) have been synthesized and characterized using different spectroscopic techniques including elemental analysis. The complexes were found to be well soluble and stable in DMSO. The biological activity of the three complexes was tested in three different human cancer cell lines (A549, MDA-MB-231 and HeLa) and in one human non-cancerous cell line (MRC-5). Complexes 1 and 3, carrying eta(6)-p-cymene as the arene ligand, were shown to be toxic in all cell lines in the low micromolar/subnanomolar range, with complex 1 being the most cytotoxic complex of the series. Flow cytometry analysis revealed that complex 1 caused concentration- and time-dependent arrest of the cell cycle in G2-M and S phases in HeLa cells. This event is followed by the accumulation of the sub-G1 DNA content after 48 h, in levels higher than cisplatin and in the absence of phosphatidylserine externalization. Fluorescent microscopy and acridine orange/ethidium bromide staining revealed that complex 1 induced both apoptotic and necrotic cell morphology characteristics. Drug-accumulation and DNA-binding studies performed by inductively coupled plasma mass spectrometry in HeLa cells showed that the total ruthenium uptake increased in a time- and concentration-dependent manner, and that complex 1 accumulated more efficiently than cisplatin at equimolar concentrations. The introduction of a Me(2)dppz ligand into the ruthenium(II)-p-cymene scaffold was found to allow the discovery of a strongly cytotoxic complex with significantly higher cellular uptake and DNA-binding properties than cisplatin. (C) 2016 Elsevier Inc. All rights reserved.
PB  - Elsevier Science Inc, New York
T2  - Journal of Inorganic Biochemistry
T1  - Synthesis, characterization and biological evaluation of novel Ru(II)-arene complexes containing intercalating ligands
VL  - 160
SP  - 156
EP  - 165
DO  - 10.1016/j.jinorgbio.2016.01.005
ER  - 
@article{
author = "Nikolić, Stefan and Rangasamy, Loganathan and Gligorijević, Nevenka and Aranđelović, Sandra and Radulović, Siniša and Gasser, Gilles and Grgurić-Šipka, Sanja",
year = "2016",
abstract = "Three new ruthenium(II)-arene complexes, namely [(eta(6)-p-cymene)Ru(Me(2)dppz)Cl]PF6 (1), [(eta(6)-benzene)Ru(Me(2)dppz)Cl]PF6 (2) and [(eta(6)-p-cymene)Ru(aip)Cl]PF6 (3) (Me(2)dppz = 11,12-dimethyldipyrido[3,2-a:2',3'-c]phenazine; aip = 2-(9-anthryl)-1H-imidazo[4,5-f] [1,10] phenanthroline) have been synthesized and characterized using different spectroscopic techniques including elemental analysis. The complexes were found to be well soluble and stable in DMSO. The biological activity of the three complexes was tested in three different human cancer cell lines (A549, MDA-MB-231 and HeLa) and in one human non-cancerous cell line (MRC-5). Complexes 1 and 3, carrying eta(6)-p-cymene as the arene ligand, were shown to be toxic in all cell lines in the low micromolar/subnanomolar range, with complex 1 being the most cytotoxic complex of the series. Flow cytometry analysis revealed that complex 1 caused concentration- and time-dependent arrest of the cell cycle in G2-M and S phases in HeLa cells. This event is followed by the accumulation of the sub-G1 DNA content after 48 h, in levels higher than cisplatin and in the absence of phosphatidylserine externalization. Fluorescent microscopy and acridine orange/ethidium bromide staining revealed that complex 1 induced both apoptotic and necrotic cell morphology characteristics. Drug-accumulation and DNA-binding studies performed by inductively coupled plasma mass spectrometry in HeLa cells showed that the total ruthenium uptake increased in a time- and concentration-dependent manner, and that complex 1 accumulated more efficiently than cisplatin at equimolar concentrations. The introduction of a Me(2)dppz ligand into the ruthenium(II)-p-cymene scaffold was found to allow the discovery of a strongly cytotoxic complex with significantly higher cellular uptake and DNA-binding properties than cisplatin. (C) 2016 Elsevier Inc. All rights reserved.",
publisher = "Elsevier Science Inc, New York",
journal = "Journal of Inorganic Biochemistry",
title = "Synthesis, characterization and biological evaluation of novel Ru(II)-arene complexes containing intercalating ligands",
volume = "160",
pages = "156-165",
doi = "10.1016/j.jinorgbio.2016.01.005"
}
Nikolić, S., Rangasamy, L., Gligorijević, N., Aranđelović, S., Radulović, S., Gasser, G.,& Grgurić-Šipka, S.. (2016). Synthesis, characterization and biological evaluation of novel Ru(II)-arene complexes containing intercalating ligands. in Journal of Inorganic Biochemistry
Elsevier Science Inc, New York., 160, 156-165.
https://doi.org/10.1016/j.jinorgbio.2016.01.005
Nikolić S, Rangasamy L, Gligorijević N, Aranđelović S, Radulović S, Gasser G, Grgurić-Šipka S. Synthesis, characterization and biological evaluation of novel Ru(II)-arene complexes containing intercalating ligands. in Journal of Inorganic Biochemistry. 2016;160:156-165.
doi:10.1016/j.jinorgbio.2016.01.005 .
Nikolić, Stefan, Rangasamy, Loganathan, Gligorijević, Nevenka, Aranđelović, Sandra, Radulović, Siniša, Gasser, Gilles, Grgurić-Šipka, Sanja, "Synthesis, characterization and biological evaluation of novel Ru(II)-arene complexes containing intercalating ligands" in Journal of Inorganic Biochemistry, 160 (2016):156-165,
https://doi.org/10.1016/j.jinorgbio.2016.01.005 . .
39
32
39
36

Supplementary data for the article: Nikolic, S.; Rangasamy, L.; Gligorijevic, N.; Arandelovic, S.; Radulovic, S.; Gasser, G.; Grguric-Sipka, S. Synthesis, Characterization and Biological Evaluation of Novel Ru(II)-Arene Complexes Containing Intercalating Ligands. J. Inorg. Biochem. 2016, 160, 156–165. https://doi.org/10.1016/j.jinorgbio.2016.01.005

Nikolić, Stefan; Rangasamy, Loganathan; Gligorijević, Nevenka; Aranđelović, Sandra; Radulović, Siniša; Gasser, Gilles; Grgurić-Šipka, Sanja

(Elsevier Science Inc, New York, 2016)

TY  - DATA
AU  - Nikolić, Stefan
AU  - Rangasamy, Loganathan
AU  - Gligorijević, Nevenka
AU  - Aranđelović, Sandra
AU  - Radulović, Siniša
AU  - Gasser, Gilles
AU  - Grgurić-Šipka, Sanja
PY  - 2016
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3639
PB  - Elsevier Science Inc, New York
T2  - Journal of Inorganic Biochemistry
T1  - Supplementary data for the article: Nikolic, S.; Rangasamy, L.; Gligorijevic, N.; Arandelovic, S.; Radulovic, S.; Gasser, G.; Grguric-Sipka, S. Synthesis, Characterization and Biological Evaluation of Novel Ru(II)-Arene Complexes Containing Intercalating Ligands. J. Inorg. Biochem. 2016, 160, 156–165. https://doi.org/10.1016/j.jinorgbio.2016.01.005
UR  - https://hdl.handle.net/21.15107/rcub_cherry_3639
ER  - 
@misc{
author = "Nikolić, Stefan and Rangasamy, Loganathan and Gligorijević, Nevenka and Aranđelović, Sandra and Radulović, Siniša and Gasser, Gilles and Grgurić-Šipka, Sanja",
year = "2016",
publisher = "Elsevier Science Inc, New York",
journal = "Journal of Inorganic Biochemistry",
title = "Supplementary data for the article: Nikolic, S.; Rangasamy, L.; Gligorijevic, N.; Arandelovic, S.; Radulovic, S.; Gasser, G.; Grguric-Sipka, S. Synthesis, Characterization and Biological Evaluation of Novel Ru(II)-Arene Complexes Containing Intercalating Ligands. J. Inorg. Biochem. 2016, 160, 156–165. https://doi.org/10.1016/j.jinorgbio.2016.01.005",
url = "https://hdl.handle.net/21.15107/rcub_cherry_3639"
}
Nikolić, S., Rangasamy, L., Gligorijević, N., Aranđelović, S., Radulović, S., Gasser, G.,& Grgurić-Šipka, S.. (2016). Supplementary data for the article: Nikolic, S.; Rangasamy, L.; Gligorijevic, N.; Arandelovic, S.; Radulovic, S.; Gasser, G.; Grguric-Sipka, S. Synthesis, Characterization and Biological Evaluation of Novel Ru(II)-Arene Complexes Containing Intercalating Ligands. J. Inorg. Biochem. 2016, 160, 156–165. https://doi.org/10.1016/j.jinorgbio.2016.01.005. in Journal of Inorganic Biochemistry
Elsevier Science Inc, New York..
https://hdl.handle.net/21.15107/rcub_cherry_3639
Nikolić S, Rangasamy L, Gligorijević N, Aranđelović S, Radulović S, Gasser G, Grgurić-Šipka S. Supplementary data for the article: Nikolic, S.; Rangasamy, L.; Gligorijevic, N.; Arandelovic, S.; Radulovic, S.; Gasser, G.; Grguric-Sipka, S. Synthesis, Characterization and Biological Evaluation of Novel Ru(II)-Arene Complexes Containing Intercalating Ligands. J. Inorg. Biochem. 2016, 160, 156–165. https://doi.org/10.1016/j.jinorgbio.2016.01.005. in Journal of Inorganic Biochemistry. 2016;.
https://hdl.handle.net/21.15107/rcub_cherry_3639 .
Nikolić, Stefan, Rangasamy, Loganathan, Gligorijević, Nevenka, Aranđelović, Sandra, Radulović, Siniša, Gasser, Gilles, Grgurić-Šipka, Sanja, "Supplementary data for the article: Nikolic, S.; Rangasamy, L.; Gligorijevic, N.; Arandelovic, S.; Radulovic, S.; Gasser, G.; Grguric-Sipka, S. Synthesis, Characterization and Biological Evaluation of Novel Ru(II)-Arene Complexes Containing Intercalating Ligands. J. Inorg. Biochem. 2016, 160, 156–165. https://doi.org/10.1016/j.jinorgbio.2016.01.005" in Journal of Inorganic Biochemistry (2016),
https://hdl.handle.net/21.15107/rcub_cherry_3639 .

Supplementary material for the article: Čobeljić, B.; Milenković, M.; Pevec, A.; Turel, I.; Vujčić, M.; Janović, B.; Gligorijević, N.; Sladić, D.; Radulović, S.; Jovanović, K.; et al. Investigation of Antitumor Potential of Ni(II) Complexes with Tridentate PNO Acylhydrazones of 2-(Diphenylphosphino)Benzaldehyde and Monodentate Pseudohalides. Journal of Biological Inorganic Chemistry 2016, 21 (2), 145–162. https://doi.org/10.1007/s00775-015-1315-x

Čobeljić, Božidar; Milenković, Milica R.; Pevec, Andrej; Turel, Iztok; Vujčić, Miroslava; Janović, Barbara; Gligorijević, Nevenka; Sladić, Dušan; Radulović, Siniša; Jovanović, Katarina; Anđelković, Katarina K.

(Springer, New York, 2016)

TY  - DATA
AU  - Čobeljić, Božidar
AU  - Milenković, Milica R.
AU  - Pevec, Andrej
AU  - Turel, Iztok
AU  - Vujčić, Miroslava
AU  - Janović, Barbara
AU  - Gligorijević, Nevenka
AU  - Sladić, Dušan
AU  - Radulović, Siniša
AU  - Jovanović, Katarina
AU  - Anđelković, Katarina K.
PY  - 2016
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3547
PB  - Springer, New York
T2  - Journal of Biological Inorganic Chemistry
T1  - Supplementary material for the article: Čobeljić, B.; Milenković, M.; Pevec, A.; Turel, I.; Vujčić, M.; Janović, B.; Gligorijević, N.; Sladić, D.; Radulović, S.; Jovanović, K.; et al. Investigation of Antitumor Potential of Ni(II) Complexes with Tridentate PNO Acylhydrazones of 2-(Diphenylphosphino)Benzaldehyde and Monodentate Pseudohalides. Journal of Biological Inorganic Chemistry 2016, 21 (2), 145–162. https://doi.org/10.1007/s00775-015-1315-x
UR  - https://hdl.handle.net/21.15107/rcub_cherry_3547
ER  - 
@misc{
author = "Čobeljić, Božidar and Milenković, Milica R. and Pevec, Andrej and Turel, Iztok and Vujčić, Miroslava and Janović, Barbara and Gligorijević, Nevenka and Sladić, Dušan and Radulović, Siniša and Jovanović, Katarina and Anđelković, Katarina K.",
year = "2016",
publisher = "Springer, New York",
journal = "Journal of Biological Inorganic Chemistry",
title = "Supplementary material for the article: Čobeljić, B.; Milenković, M.; Pevec, A.; Turel, I.; Vujčić, M.; Janović, B.; Gligorijević, N.; Sladić, D.; Radulović, S.; Jovanović, K.; et al. Investigation of Antitumor Potential of Ni(II) Complexes with Tridentate PNO Acylhydrazones of 2-(Diphenylphosphino)Benzaldehyde and Monodentate Pseudohalides. Journal of Biological Inorganic Chemistry 2016, 21 (2), 145–162. https://doi.org/10.1007/s00775-015-1315-x",
url = "https://hdl.handle.net/21.15107/rcub_cherry_3547"
}
Čobeljić, B., Milenković, M. R., Pevec, A., Turel, I., Vujčić, M., Janović, B., Gligorijević, N., Sladić, D., Radulović, S., Jovanović, K.,& Anđelković, K. K.. (2016). Supplementary material for the article: Čobeljić, B.; Milenković, M.; Pevec, A.; Turel, I.; Vujčić, M.; Janović, B.; Gligorijević, N.; Sladić, D.; Radulović, S.; Jovanović, K.; et al. Investigation of Antitumor Potential of Ni(II) Complexes with Tridentate PNO Acylhydrazones of 2-(Diphenylphosphino)Benzaldehyde and Monodentate Pseudohalides. Journal of Biological Inorganic Chemistry 2016, 21 (2), 145–162. https://doi.org/10.1007/s00775-015-1315-x. in Journal of Biological Inorganic Chemistry
Springer, New York..
https://hdl.handle.net/21.15107/rcub_cherry_3547
Čobeljić B, Milenković MR, Pevec A, Turel I, Vujčić M, Janović B, Gligorijević N, Sladić D, Radulović S, Jovanović K, Anđelković KK. Supplementary material for the article: Čobeljić, B.; Milenković, M.; Pevec, A.; Turel, I.; Vujčić, M.; Janović, B.; Gligorijević, N.; Sladić, D.; Radulović, S.; Jovanović, K.; et al. Investigation of Antitumor Potential of Ni(II) Complexes with Tridentate PNO Acylhydrazones of 2-(Diphenylphosphino)Benzaldehyde and Monodentate Pseudohalides. Journal of Biological Inorganic Chemistry 2016, 21 (2), 145–162. https://doi.org/10.1007/s00775-015-1315-x. in Journal of Biological Inorganic Chemistry. 2016;.
https://hdl.handle.net/21.15107/rcub_cherry_3547 .
Čobeljić, Božidar, Milenković, Milica R., Pevec, Andrej, Turel, Iztok, Vujčić, Miroslava, Janović, Barbara, Gligorijević, Nevenka, Sladić, Dušan, Radulović, Siniša, Jovanović, Katarina, Anđelković, Katarina K., "Supplementary material for the article: Čobeljić, B.; Milenković, M.; Pevec, A.; Turel, I.; Vujčić, M.; Janović, B.; Gligorijević, N.; Sladić, D.; Radulović, S.; Jovanović, K.; et al. Investigation of Antitumor Potential of Ni(II) Complexes with Tridentate PNO Acylhydrazones of 2-(Diphenylphosphino)Benzaldehyde and Monodentate Pseudohalides. Journal of Biological Inorganic Chemistry 2016, 21 (2), 145–162. https://doi.org/10.1007/s00775-015-1315-x" in Journal of Biological Inorganic Chemistry (2016),
https://hdl.handle.net/21.15107/rcub_cherry_3547 .

Investigation of antitumor potential of Ni(II) complexes with tridentate PNO acylhydrazones of 2-(diphenylphosphino)benzaldehyde and monodentate pseudohalides

Čobeljić, Božidar; Milenković, Milica R.; Pevec, Andrej; Turel, Iztok; Vujčić, Miroslava; Janović, Barbara; Gligorijević, Nevenka; Sladić, Dušan; Radulović, Siniša; Jovanović, Katarina; Anđelković, Katarina K.

(Springer, New York, 2016)

TY  - JOUR
AU  - Čobeljić, Božidar
AU  - Milenković, Milica R.
AU  - Pevec, Andrej
AU  - Turel, Iztok
AU  - Vujčić, Miroslava
AU  - Janović, Barbara
AU  - Gligorijević, Nevenka
AU  - Sladić, Dušan
AU  - Radulović, Siniša
AU  - Jovanović, Katarina
AU  - Anđelković, Katarina K.
PY  - 2016
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/1906
AB  - Square-planar azido Ni(II) complex with condensation product of 2-(diphenylphosphino)benzaldehyde and Girard's T reagent was synthesized and its crystal structure was determined. Cytotoxic activity of the azido complex and previously synthesized isothiocyanato, cyanato and chlorido Ni(II) complexes with this ligand was examined on six tumor cell lines (HeLa, A549, K562, MDA-MB-453, MDA-MB-361 and LS-174) and two normal cell line (MRC-5 and BEAS-2B). All the investigated nickel(II) complexes were cytotoxic against all tumor cell lines. The newly synthesized azido complex showed selectivity to HeLa and A549 tumor cell lines compared to the normal cells (for A549 IC50 was similar to that of cisplatin). Azido complex interferes with cell cycle phase distribution of A549 and HeLa cells and possesses nuclease activity towards supercoiled DNA. The observed selectivity of the azido complex for some tumor cell lines can be connected with its strong DNA damaging activity.
PB  - Springer, New York
T2  - Journal of Biological Inorganic Chemistry
T1  - Investigation of antitumor potential of Ni(II) complexes with tridentate PNO acylhydrazones of 2-(diphenylphosphino)benzaldehyde and monodentate pseudohalides
VL  - 21
IS  - 2
SP  - 145
EP  - 162
DO  - 10.1007/s00775-015-1315-x
ER  - 
@article{
author = "Čobeljić, Božidar and Milenković, Milica R. and Pevec, Andrej and Turel, Iztok and Vujčić, Miroslava and Janović, Barbara and Gligorijević, Nevenka and Sladić, Dušan and Radulović, Siniša and Jovanović, Katarina and Anđelković, Katarina K.",
year = "2016",
abstract = "Square-planar azido Ni(II) complex with condensation product of 2-(diphenylphosphino)benzaldehyde and Girard's T reagent was synthesized and its crystal structure was determined. Cytotoxic activity of the azido complex and previously synthesized isothiocyanato, cyanato and chlorido Ni(II) complexes with this ligand was examined on six tumor cell lines (HeLa, A549, K562, MDA-MB-453, MDA-MB-361 and LS-174) and two normal cell line (MRC-5 and BEAS-2B). All the investigated nickel(II) complexes were cytotoxic against all tumor cell lines. The newly synthesized azido complex showed selectivity to HeLa and A549 tumor cell lines compared to the normal cells (for A549 IC50 was similar to that of cisplatin). Azido complex interferes with cell cycle phase distribution of A549 and HeLa cells and possesses nuclease activity towards supercoiled DNA. The observed selectivity of the azido complex for some tumor cell lines can be connected with its strong DNA damaging activity.",
publisher = "Springer, New York",
journal = "Journal of Biological Inorganic Chemistry",
title = "Investigation of antitumor potential of Ni(II) complexes with tridentate PNO acylhydrazones of 2-(diphenylphosphino)benzaldehyde and monodentate pseudohalides",
volume = "21",
number = "2",
pages = "145-162",
doi = "10.1007/s00775-015-1315-x"
}
Čobeljić, B., Milenković, M. R., Pevec, A., Turel, I., Vujčić, M., Janović, B., Gligorijević, N., Sladić, D., Radulović, S., Jovanović, K.,& Anđelković, K. K.. (2016). Investigation of antitumor potential of Ni(II) complexes with tridentate PNO acylhydrazones of 2-(diphenylphosphino)benzaldehyde and monodentate pseudohalides. in Journal of Biological Inorganic Chemistry
Springer, New York., 21(2), 145-162.
https://doi.org/10.1007/s00775-015-1315-x
Čobeljić B, Milenković MR, Pevec A, Turel I, Vujčić M, Janović B, Gligorijević N, Sladić D, Radulović S, Jovanović K, Anđelković KK. Investigation of antitumor potential of Ni(II) complexes with tridentate PNO acylhydrazones of 2-(diphenylphosphino)benzaldehyde and monodentate pseudohalides. in Journal of Biological Inorganic Chemistry. 2016;21(2):145-162.
doi:10.1007/s00775-015-1315-x .
Čobeljić, Božidar, Milenković, Milica R., Pevec, Andrej, Turel, Iztok, Vujčić, Miroslava, Janović, Barbara, Gligorijević, Nevenka, Sladić, Dušan, Radulović, Siniša, Jovanović, Katarina, Anđelković, Katarina K., "Investigation of antitumor potential of Ni(II) complexes with tridentate PNO acylhydrazones of 2-(diphenylphosphino)benzaldehyde and monodentate pseudohalides" in Journal of Biological Inorganic Chemistry, 21, no. 2 (2016):145-162,
https://doi.org/10.1007/s00775-015-1315-x . .
17
8
18
16

Synthesis, characterization and biological evaluation of novel Ru(II)-arene complexes containing intercalating ligands

Nikolić, Stefan; Rangasamy, Loganathan; Gligorijević, Nevenka; Aranđelović, Sandra; Radulović, Siniša; Gasser, Gilles; Grgurić-Šipka, Sanja

(Elsevier Science Inc, New York, 2016)

TY  - JOUR
AU  - Nikolić, Stefan
AU  - Rangasamy, Loganathan
AU  - Gligorijević, Nevenka
AU  - Aranđelović, Sandra
AU  - Radulović, Siniša
AU  - Gasser, Gilles
AU  - Grgurić-Šipka, Sanja
PY  - 2016
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/2272
AB  - Three new ruthenium(II)-arene complexes, namely [(eta(6)-p-cymene)Ru(Me(2)dppz)Cl]PF6 (1), [(eta(6)-benzene)Ru(Me(2)dppz)Cl]PF6 (2) and [(eta(6)-p-cymene)Ru(aip)Cl]PF6 (3) (Me(2)dppz = 11,12-dimethyldipyrido[3,2-a:2',3'-c]phenazine; aip = 2-(9-anthryl)-1H-imidazo[4,5-f] [1,10] phenanthroline) have been synthesized and characterized using different spectroscopic techniques including elemental analysis. The complexes were found to be well soluble and stable in DMSO. The biological activity of the three complexes was tested in three different human cancer cell lines (A549, MDA-MB-231 and HeLa) and in one human non-cancerous cell line (MRC-5). Complexes 1 and 3, carrying eta(6)-p-cymene as the arene ligand, were shown to be toxic in all cell lines in the low micromolar/subnanomolar range, with complex 1 being the most cytotoxic complex of the series. Flow cytometry analysis revealed that complex 1 caused concentration- and time-dependent arrest of the cell cycle in G2-M and S phases in HeLa cells. This event is followed by the accumulation of the sub-G1 DNA content after 48 h, in levels higher than cisplatin and in the absence of phosphatidylserine externalization. Fluorescent microscopy and acridine orange/ethidium bromide staining revealed that complex 1 induced both apoptotic and necrotic cell morphology characteristics. Drug-accumulation and DNA-binding studies performed by inductively coupled plasma mass spectrometry in HeLa cells showed that the total ruthenium uptake increased in a time- and concentration-dependent manner, and that complex 1 accumulated more efficiently than cisplatin at equimolar concentrations. The introduction of a Me(2)dppz ligand into the ruthenium(II)-p-cymene scaffold was found to allow the discovery of a strongly cytotoxic complex with significantly higher cellular uptake and DNA-binding properties than cisplatin. (C) 2016 Elsevier Inc. All rights reserved.
PB  - Elsevier Science Inc, New York
T2  - Journal of Inorganic Biochemistry
T1  - Synthesis, characterization and biological evaluation of novel Ru(II)-arene complexes containing intercalating ligands
VL  - 160
SP  - 156
EP  - 165
DO  - 10.1016/j.jinorgbio.2016.01.005
ER  - 
@article{
author = "Nikolić, Stefan and Rangasamy, Loganathan and Gligorijević, Nevenka and Aranđelović, Sandra and Radulović, Siniša and Gasser, Gilles and Grgurić-Šipka, Sanja",
year = "2016",
abstract = "Three new ruthenium(II)-arene complexes, namely [(eta(6)-p-cymene)Ru(Me(2)dppz)Cl]PF6 (1), [(eta(6)-benzene)Ru(Me(2)dppz)Cl]PF6 (2) and [(eta(6)-p-cymene)Ru(aip)Cl]PF6 (3) (Me(2)dppz = 11,12-dimethyldipyrido[3,2-a:2',3'-c]phenazine; aip = 2-(9-anthryl)-1H-imidazo[4,5-f] [1,10] phenanthroline) have been synthesized and characterized using different spectroscopic techniques including elemental analysis. The complexes were found to be well soluble and stable in DMSO. The biological activity of the three complexes was tested in three different human cancer cell lines (A549, MDA-MB-231 and HeLa) and in one human non-cancerous cell line (MRC-5). Complexes 1 and 3, carrying eta(6)-p-cymene as the arene ligand, were shown to be toxic in all cell lines in the low micromolar/subnanomolar range, with complex 1 being the most cytotoxic complex of the series. Flow cytometry analysis revealed that complex 1 caused concentration- and time-dependent arrest of the cell cycle in G2-M and S phases in HeLa cells. This event is followed by the accumulation of the sub-G1 DNA content after 48 h, in levels higher than cisplatin and in the absence of phosphatidylserine externalization. Fluorescent microscopy and acridine orange/ethidium bromide staining revealed that complex 1 induced both apoptotic and necrotic cell morphology characteristics. Drug-accumulation and DNA-binding studies performed by inductively coupled plasma mass spectrometry in HeLa cells showed that the total ruthenium uptake increased in a time- and concentration-dependent manner, and that complex 1 accumulated more efficiently than cisplatin at equimolar concentrations. The introduction of a Me(2)dppz ligand into the ruthenium(II)-p-cymene scaffold was found to allow the discovery of a strongly cytotoxic complex with significantly higher cellular uptake and DNA-binding properties than cisplatin. (C) 2016 Elsevier Inc. All rights reserved.",
publisher = "Elsevier Science Inc, New York",
journal = "Journal of Inorganic Biochemistry",
title = "Synthesis, characterization and biological evaluation of novel Ru(II)-arene complexes containing intercalating ligands",
volume = "160",
pages = "156-165",
doi = "10.1016/j.jinorgbio.2016.01.005"
}
Nikolić, S., Rangasamy, L., Gligorijević, N., Aranđelović, S., Radulović, S., Gasser, G.,& Grgurić-Šipka, S.. (2016). Synthesis, characterization and biological evaluation of novel Ru(II)-arene complexes containing intercalating ligands. in Journal of Inorganic Biochemistry
Elsevier Science Inc, New York., 160, 156-165.
https://doi.org/10.1016/j.jinorgbio.2016.01.005
Nikolić S, Rangasamy L, Gligorijević N, Aranđelović S, Radulović S, Gasser G, Grgurić-Šipka S. Synthesis, characterization and biological evaluation of novel Ru(II)-arene complexes containing intercalating ligands. in Journal of Inorganic Biochemistry. 2016;160:156-165.
doi:10.1016/j.jinorgbio.2016.01.005 .
Nikolić, Stefan, Rangasamy, Loganathan, Gligorijević, Nevenka, Aranđelović, Sandra, Radulović, Siniša, Gasser, Gilles, Grgurić-Šipka, Sanja, "Synthesis, characterization and biological evaluation of novel Ru(II)-arene complexes containing intercalating ligands" in Journal of Inorganic Biochemistry, 160 (2016):156-165,
https://doi.org/10.1016/j.jinorgbio.2016.01.005 . .
39
32
40
36

Ruthenium(II)-arene complexes with substituted picolinato ligands: Synthesis, structure, spectroscopic properties and antiproliferative activity

Ivanović, Ivanka; Jovanović, Katarina K.; Gligorijević, Nevenka; Radulović, Siniša; Arion, Vladimir B.; Sheweshein, Khalil Salem A. M.; Tešić, Živoslav Lj.; Grgurić-Šipka, Sanja

(Elsevier Science Sa, Lausanne, 2014)

TY  - JOUR
AU  - Ivanović, Ivanka
AU  - Jovanović, Katarina K.
AU  - Gligorijević, Nevenka
AU  - Radulović, Siniša
AU  - Arion, Vladimir B.
AU  - Sheweshein, Khalil Salem A. M.
AU  - Tešić, Živoslav Lj.
AU  - Grgurić-Šipka, Sanja
PY  - 2014
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/1451
AB  - A series of seven new ruthenium(II)-arene complexes of general formula [Ru(eta(6)-p-cymene)(L1-7)Cl], where L1-7 are fluoro, chloro, bromo or methyl derivatives of picolinic acid or isoquinoline-3-carboxylic acid has been synthesized and characterized by elemental analysis, IR, H-1 and C-13 NMR spectroscopy and ESI mass spectrometry. X-ray diffraction studies of two compounds showed the usual piano-stool geometry, with coordination of picolinato ligands through the pyridine nitrogen and the carboxylic group oxygen atom (N/COO- donor set). Cytotoxicity of complexes in vitro has been evaluated in three human tumor cell lines: cervix carcinoma (HeLa), melanoma (FemX), lung adenocarcinoma (A549) and one normal cell line (MRC-5). Complex with isoqinoline-3-carboxylic acid as ligand, exhibited significantly lower cytotoxic activity in normal cells (MRC-5) against high activity observed in panel of tumor cells and prominent cell type selectivity among tumor cells. (C) 2013 Elsevier B. V. All rights reserved.
PB  - Elsevier Science Sa, Lausanne
T2  - Journal of Organometallic Chemistry
T1  - Ruthenium(II)-arene complexes with substituted picolinato ligands: Synthesis, structure, spectroscopic properties and antiproliferative activity
VL  - 749
SP  - 343
EP  - 349
DO  - 10.1016/j.jorganchem.2013.10.023
ER  - 
@article{
author = "Ivanović, Ivanka and Jovanović, Katarina K. and Gligorijević, Nevenka and Radulović, Siniša and Arion, Vladimir B. and Sheweshein, Khalil Salem A. M. and Tešić, Živoslav Lj. and Grgurić-Šipka, Sanja",
year = "2014",
abstract = "A series of seven new ruthenium(II)-arene complexes of general formula [Ru(eta(6)-p-cymene)(L1-7)Cl], where L1-7 are fluoro, chloro, bromo or methyl derivatives of picolinic acid or isoquinoline-3-carboxylic acid has been synthesized and characterized by elemental analysis, IR, H-1 and C-13 NMR spectroscopy and ESI mass spectrometry. X-ray diffraction studies of two compounds showed the usual piano-stool geometry, with coordination of picolinato ligands through the pyridine nitrogen and the carboxylic group oxygen atom (N/COO- donor set). Cytotoxicity of complexes in vitro has been evaluated in three human tumor cell lines: cervix carcinoma (HeLa), melanoma (FemX), lung adenocarcinoma (A549) and one normal cell line (MRC-5). Complex with isoqinoline-3-carboxylic acid as ligand, exhibited significantly lower cytotoxic activity in normal cells (MRC-5) against high activity observed in panel of tumor cells and prominent cell type selectivity among tumor cells. (C) 2013 Elsevier B. V. All rights reserved.",
publisher = "Elsevier Science Sa, Lausanne",
journal = "Journal of Organometallic Chemistry",
title = "Ruthenium(II)-arene complexes with substituted picolinato ligands: Synthesis, structure, spectroscopic properties and antiproliferative activity",
volume = "749",
pages = "343-349",
doi = "10.1016/j.jorganchem.2013.10.023"
}
Ivanović, I., Jovanović, K. K., Gligorijević, N., Radulović, S., Arion, V. B., Sheweshein, K. S. A. M., Tešić, Ž. Lj.,& Grgurić-Šipka, S.. (2014). Ruthenium(II)-arene complexes with substituted picolinato ligands: Synthesis, structure, spectroscopic properties and antiproliferative activity. in Journal of Organometallic Chemistry
Elsevier Science Sa, Lausanne., 749, 343-349.
https://doi.org/10.1016/j.jorganchem.2013.10.023
Ivanović I, Jovanović KK, Gligorijević N, Radulović S, Arion VB, Sheweshein KSAM, Tešić ŽL, Grgurić-Šipka S. Ruthenium(II)-arene complexes with substituted picolinato ligands: Synthesis, structure, spectroscopic properties and antiproliferative activity. in Journal of Organometallic Chemistry. 2014;749:343-349.
doi:10.1016/j.jorganchem.2013.10.023 .
Ivanović, Ivanka, Jovanović, Katarina K., Gligorijević, Nevenka, Radulović, Siniša, Arion, Vladimir B., Sheweshein, Khalil Salem A. M., Tešić, Živoslav Lj., Grgurić-Šipka, Sanja, "Ruthenium(II)-arene complexes with substituted picolinato ligands: Synthesis, structure, spectroscopic properties and antiproliferative activity" in Journal of Organometallic Chemistry, 749 (2014):343-349,
https://doi.org/10.1016/j.jorganchem.2013.10.023 . .
1
23
22
22
21

Synthesis, characterization, DFT calculation and biological activity of square-planar Ni(II) complexes with tridentate PNO ligands and monodentate pseudohalides. Part II

Milenković, Milica R.; Pevec, Andrej; Turel, Iztok; Vujčić, Miroslava; Milenković, Marina; Jovanović, Katarina; Gligorijević, Nevenka; Radulović, Siniša; Swart, Marcel; Gruden-Pavlović, Maja; Adaila, Kawther; Čobeljić, Božidar; Anđelković, Katarina K.

(Elsevier France-Editions Scientifiques Medicales Elsevier, Paris, 2014)

TY  - JOUR
AU  - Milenković, Milica R.
AU  - Pevec, Andrej
AU  - Turel, Iztok
AU  - Vujčić, Miroslava
AU  - Milenković, Marina
AU  - Jovanović, Katarina
AU  - Gligorijević, Nevenka
AU  - Radulović, Siniša
AU  - Swart, Marcel
AU  - Gruden-Pavlović, Maja
AU  - Adaila, Kawther
AU  - Čobeljić, Božidar
AU  - Anđelković, Katarina K.
PY  - 2014
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/1986
AB  - Three square-planar complexes of Ni(II) with condensation derivative of 2-(diphenylphosphino)benzaldehyde and 4-phenylsemicarbazide and monodentate pseudohalides have been synthesized and characterized on the basis of the results of X-ray. NMR and IR spectroscopy and elemental analysis. Investigated complexes exhibited moderate antibacterial and cytotoxic activity. The most pronounced cytotoxic activity (in the range of cisplatin) to HeLa cell line was observed for ligand and all the complexes. Azido complex and ligand induced concentration dependent cell cycle arrest in the S phase, as well as decrease of percentage of cells in G1 phase, without significant increase of apoptotic fraction of cells. The interaction of the azido complex and ligand with CT-DNA results in changes in UV-Vis spectra typical for non-covalent bonding. The observed intrinsic binding constant of azido complex CT-DNA and ligand-CT-DNA were 3.22 x 10(5) M-1 and 2.79 x 10(5) M-1. The results of DNA cleavage experiments showed that azido complex nicked supercoiled plasmid DNA. (C) 2014 Elsevier Masson SAS. All rights reserved.
PB  - Elsevier France-Editions Scientifiques Medicales Elsevier, Paris
T2  - European Journal of Medicinal Chemistry
T1  - Synthesis, characterization, DFT calculation and biological activity of square-planar Ni(II) complexes with tridentate PNO ligands and monodentate pseudohalides. Part II
VL  - 87
SP  - 284
EP  - 297
DO  - 10.1016/j.ejmech.2014.06.079
ER  - 
@article{
author = "Milenković, Milica R. and Pevec, Andrej and Turel, Iztok and Vujčić, Miroslava and Milenković, Marina and Jovanović, Katarina and Gligorijević, Nevenka and Radulović, Siniša and Swart, Marcel and Gruden-Pavlović, Maja and Adaila, Kawther and Čobeljić, Božidar and Anđelković, Katarina K.",
year = "2014",
abstract = "Three square-planar complexes of Ni(II) with condensation derivative of 2-(diphenylphosphino)benzaldehyde and 4-phenylsemicarbazide and monodentate pseudohalides have been synthesized and characterized on the basis of the results of X-ray. NMR and IR spectroscopy and elemental analysis. Investigated complexes exhibited moderate antibacterial and cytotoxic activity. The most pronounced cytotoxic activity (in the range of cisplatin) to HeLa cell line was observed for ligand and all the complexes. Azido complex and ligand induced concentration dependent cell cycle arrest in the S phase, as well as decrease of percentage of cells in G1 phase, without significant increase of apoptotic fraction of cells. The interaction of the azido complex and ligand with CT-DNA results in changes in UV-Vis spectra typical for non-covalent bonding. The observed intrinsic binding constant of azido complex CT-DNA and ligand-CT-DNA were 3.22 x 10(5) M-1 and 2.79 x 10(5) M-1. The results of DNA cleavage experiments showed that azido complex nicked supercoiled plasmid DNA. (C) 2014 Elsevier Masson SAS. All rights reserved.",
publisher = "Elsevier France-Editions Scientifiques Medicales Elsevier, Paris",
journal = "European Journal of Medicinal Chemistry",
title = "Synthesis, characterization, DFT calculation and biological activity of square-planar Ni(II) complexes with tridentate PNO ligands and monodentate pseudohalides. Part II",
volume = "87",
pages = "284-297",
doi = "10.1016/j.ejmech.2014.06.079"
}
Milenković, M. R., Pevec, A., Turel, I., Vujčić, M., Milenković, M., Jovanović, K., Gligorijević, N., Radulović, S., Swart, M., Gruden-Pavlović, M., Adaila, K., Čobeljić, B.,& Anđelković, K. K.. (2014). Synthesis, characterization, DFT calculation and biological activity of square-planar Ni(II) complexes with tridentate PNO ligands and monodentate pseudohalides. Part II. in European Journal of Medicinal Chemistry
Elsevier France-Editions Scientifiques Medicales Elsevier, Paris., 87, 284-297.
https://doi.org/10.1016/j.ejmech.2014.06.079
Milenković MR, Pevec A, Turel I, Vujčić M, Milenković M, Jovanović K, Gligorijević N, Radulović S, Swart M, Gruden-Pavlović M, Adaila K, Čobeljić B, Anđelković KK. Synthesis, characterization, DFT calculation and biological activity of square-planar Ni(II) complexes with tridentate PNO ligands and monodentate pseudohalides. Part II. in European Journal of Medicinal Chemistry. 2014;87:284-297.
doi:10.1016/j.ejmech.2014.06.079 .
Milenković, Milica R., Pevec, Andrej, Turel, Iztok, Vujčić, Miroslava, Milenković, Marina, Jovanović, Katarina, Gligorijević, Nevenka, Radulović, Siniša, Swart, Marcel, Gruden-Pavlović, Maja, Adaila, Kawther, Čobeljić, Božidar, Anđelković, Katarina K., "Synthesis, characterization, DFT calculation and biological activity of square-planar Ni(II) complexes with tridentate PNO ligands and monodentate pseudohalides. Part II" in European Journal of Medicinal Chemistry, 87 (2014):284-297,
https://doi.org/10.1016/j.ejmech.2014.06.079 . .
19
17
19
19