Strežova, Ivana

Link to this page

Authority KeyName Variants
af77aff7-702c-4c96-a0c3-1a46e4c83f05
  • Strežova, Ivana (2)
Projects

Author's Bibliography

An advanced approach for electrochemical sensing of ibuprofen in pharmaceuticals and human urine samples using a bare boron-doped diamond electrode

Šovrc, Ľubomír; Strežova, Ivana; Kianicková, Kristína; Stanković, Dalibor; Otrisal, Pavel; Samphao, Anchalee

(Elsevier Science Sa, Lausanne, 2018)

TY  - JOUR
AU  - Šovrc, Ľubomír
AU  - Strežova, Ivana
AU  - Kianicková, Kristína
AU  - Stanković, Dalibor
AU  - Otrisal, Pavel
AU  - Samphao, Anchalee
PY  - 2018
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/2180
AB  - Herein, an advanced electroanalytical approach for the determination of ibuprofen based on the use of a bare and electrochemically untreated boron-doped diamond electrode is presented. Cyclic voltammetric study revealed that the electrode reaction of the analyte was manifested by the presence of well-shaped irreversible and diffusion-driven oxidation peak at very high potential (+1.75 V vs. Ag/AgCl/3 mol L-1 KCl reference electrode) in 1 mol L-1 perchloric acid. After optimization of experimental conditions, the peak current of ibuprofen was proportionally linear from 9.49 x 10(-7) to 6.69 x 10(-5) mol L-1 providing both differential pulse (DPV) and square-wave voltammetric (SWV) techniques, respectively. The elaborated electroanalytical protocol rendered low detection limits of 4.1 x 10(-7) and 9.3 x 10(-7 )mol L-1 in association with favourable intra day repeatability (relative standard deviation of 3.6 and 4.6%) using DPV and SWV procedures, respectively. The effect of interfering compounds such as ascorbic acid, dopamine, caffeine, uric acid and glucose on the current response of ibuprofen was explored in details. The usefulness of the proposed approach was verified in the analysis of a variety of commercial brands of pharmaceuticals and spiked human urine samples with the significant range of recovery percentages (for pharmaceuticals 99.8-107.5% and 99.8-105.0% by DPV and SWV, for urine 95-107% and 97-103% by DPV and SWV). Taking these features into account, the developed protocol may be exploited as a novel, simple and efficient tool in drug quality control analysis and analysis of biological samples. In addition, a bare and electrochemically untreated boron-doped diamond electrode may be applied as a progressive electrochemical sensor and helpful alternative to previously utilized electrochemical platforms in this field.
PB  - Elsevier Science Sa, Lausanne
T2  - Journal of Electroanalytical Chemistry
T1  - An advanced approach for electrochemical sensing of ibuprofen in pharmaceuticals and human urine samples using a bare boron-doped diamond electrode
VL  - 822
SP  - 144
EP  - 152
DO  - 10.1016/j.jelechem.2018.05.026
ER  - 
@article{
author = "Šovrc, Ľubomír and Strežova, Ivana and Kianicková, Kristína and Stanković, Dalibor and Otrisal, Pavel and Samphao, Anchalee",
year = "2018",
abstract = "Herein, an advanced electroanalytical approach for the determination of ibuprofen based on the use of a bare and electrochemically untreated boron-doped diamond electrode is presented. Cyclic voltammetric study revealed that the electrode reaction of the analyte was manifested by the presence of well-shaped irreversible and diffusion-driven oxidation peak at very high potential (+1.75 V vs. Ag/AgCl/3 mol L-1 KCl reference electrode) in 1 mol L-1 perchloric acid. After optimization of experimental conditions, the peak current of ibuprofen was proportionally linear from 9.49 x 10(-7) to 6.69 x 10(-5) mol L-1 providing both differential pulse (DPV) and square-wave voltammetric (SWV) techniques, respectively. The elaborated electroanalytical protocol rendered low detection limits of 4.1 x 10(-7) and 9.3 x 10(-7 )mol L-1 in association with favourable intra day repeatability (relative standard deviation of 3.6 and 4.6%) using DPV and SWV procedures, respectively. The effect of interfering compounds such as ascorbic acid, dopamine, caffeine, uric acid and glucose on the current response of ibuprofen was explored in details. The usefulness of the proposed approach was verified in the analysis of a variety of commercial brands of pharmaceuticals and spiked human urine samples with the significant range of recovery percentages (for pharmaceuticals 99.8-107.5% and 99.8-105.0% by DPV and SWV, for urine 95-107% and 97-103% by DPV and SWV). Taking these features into account, the developed protocol may be exploited as a novel, simple and efficient tool in drug quality control analysis and analysis of biological samples. In addition, a bare and electrochemically untreated boron-doped diamond electrode may be applied as a progressive electrochemical sensor and helpful alternative to previously utilized electrochemical platforms in this field.",
publisher = "Elsevier Science Sa, Lausanne",
journal = "Journal of Electroanalytical Chemistry",
title = "An advanced approach for electrochemical sensing of ibuprofen in pharmaceuticals and human urine samples using a bare boron-doped diamond electrode",
volume = "822",
pages = "144-152",
doi = "10.1016/j.jelechem.2018.05.026"
}
Šovrc, Ľ., Strežova, I., Kianicková, K., Stanković, D., Otrisal, P.,& Samphao, A.. (2018). An advanced approach for electrochemical sensing of ibuprofen in pharmaceuticals and human urine samples using a bare boron-doped diamond electrode. in Journal of Electroanalytical Chemistry
Elsevier Science Sa, Lausanne., 822, 144-152.
https://doi.org/10.1016/j.jelechem.2018.05.026
Šovrc Ľ, Strežova I, Kianicková K, Stanković D, Otrisal P, Samphao A. An advanced approach for electrochemical sensing of ibuprofen in pharmaceuticals and human urine samples using a bare boron-doped diamond electrode. in Journal of Electroanalytical Chemistry. 2018;822:144-152.
doi:10.1016/j.jelechem.2018.05.026 .
Šovrc, Ľubomír, Strežova, Ivana, Kianicková, Kristína, Stanković, Dalibor, Otrisal, Pavel, Samphao, Anchalee, "An advanced approach for electrochemical sensing of ibuprofen in pharmaceuticals and human urine samples using a bare boron-doped diamond electrode" in Journal of Electroanalytical Chemistry, 822 (2018):144-152,
https://doi.org/10.1016/j.jelechem.2018.05.026 . .
60
44
65
49

An advanced approach for electrochemical sensing of ibuprofen in pharmaceuticals and human urine samples using a bare boron-doped diamond electrode

Šovrc, Ľubomír; Strežova, Ivana; Kianicková, Kristína; Stanković, Dalibor; Otrisal, Pavel; Samphao, Anchalee

(Elsevier Science Sa, Lausanne, 2018)

TY  - JOUR
AU  - Šovrc, Ľubomír
AU  - Strežova, Ivana
AU  - Kianicková, Kristína
AU  - Stanković, Dalibor
AU  - Otrisal, Pavel
AU  - Samphao, Anchalee
PY  - 2018
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/2938
AB  - Herein, an advanced electroanalytical approach for the determination of ibuprofen based on the use of a bare and electrochemically untreated boron-doped diamond electrode is presented. Cyclic voltammetric study revealed that the electrode reaction of the analyte was manifested by the presence of well-shaped irreversible and diffusion-driven oxidation peak at very high potential (+1.75 V vs. Ag/AgCl/3 mol L-1 KCl reference electrode) in 1 mol L-1 perchloric acid. After optimization of experimental conditions, the peak current of ibuprofen was proportionally linear from 9.49 x 10(-7) to 6.69 x 10(-5) mol L-1 providing both differential pulse (DPV) and square-wave voltammetric (SWV) techniques, respectively. The elaborated electroanalytical protocol rendered low detection limits of 4.1 x 10(-7) and 9.3 x 10(-7 )mol L-1 in association with favourable intra day repeatability (relative standard deviation of 3.6 and 4.6%) using DPV and SWV procedures, respectively. The effect of interfering compounds such as ascorbic acid, dopamine, caffeine, uric acid and glucose on the current response of ibuprofen was explored in details. The usefulness of the proposed approach was verified in the analysis of a variety of commercial brands of pharmaceuticals and spiked human urine samples with the significant range of recovery percentages (for pharmaceuticals 99.8-107.5% and 99.8-105.0% by DPV and SWV, for urine 95-107% and 97-103% by DPV and SWV). Taking these features into account, the developed protocol may be exploited as a novel, simple and efficient tool in drug quality control analysis and analysis of biological samples. In addition, a bare and electrochemically untreated boron-doped diamond electrode may be applied as a progressive electrochemical sensor and helpful alternative to previously utilized electrochemical platforms in this field.
PB  - Elsevier Science Sa, Lausanne
T2  - Journal of Electroanalytical Chemistry
T1  - An advanced approach for electrochemical sensing of ibuprofen in pharmaceuticals and human urine samples using a bare boron-doped diamond electrode
VL  - 822
SP  - 144
EP  - 152
DO  - 10.1016/j.jelechem.2018.05.026
ER  - 
@article{
author = "Šovrc, Ľubomír and Strežova, Ivana and Kianicková, Kristína and Stanković, Dalibor and Otrisal, Pavel and Samphao, Anchalee",
year = "2018",
abstract = "Herein, an advanced electroanalytical approach for the determination of ibuprofen based on the use of a bare and electrochemically untreated boron-doped diamond electrode is presented. Cyclic voltammetric study revealed that the electrode reaction of the analyte was manifested by the presence of well-shaped irreversible and diffusion-driven oxidation peak at very high potential (+1.75 V vs. Ag/AgCl/3 mol L-1 KCl reference electrode) in 1 mol L-1 perchloric acid. After optimization of experimental conditions, the peak current of ibuprofen was proportionally linear from 9.49 x 10(-7) to 6.69 x 10(-5) mol L-1 providing both differential pulse (DPV) and square-wave voltammetric (SWV) techniques, respectively. The elaborated electroanalytical protocol rendered low detection limits of 4.1 x 10(-7) and 9.3 x 10(-7 )mol L-1 in association with favourable intra day repeatability (relative standard deviation of 3.6 and 4.6%) using DPV and SWV procedures, respectively. The effect of interfering compounds such as ascorbic acid, dopamine, caffeine, uric acid and glucose on the current response of ibuprofen was explored in details. The usefulness of the proposed approach was verified in the analysis of a variety of commercial brands of pharmaceuticals and spiked human urine samples with the significant range of recovery percentages (for pharmaceuticals 99.8-107.5% and 99.8-105.0% by DPV and SWV, for urine 95-107% and 97-103% by DPV and SWV). Taking these features into account, the developed protocol may be exploited as a novel, simple and efficient tool in drug quality control analysis and analysis of biological samples. In addition, a bare and electrochemically untreated boron-doped diamond electrode may be applied as a progressive electrochemical sensor and helpful alternative to previously utilized electrochemical platforms in this field.",
publisher = "Elsevier Science Sa, Lausanne",
journal = "Journal of Electroanalytical Chemistry",
title = "An advanced approach for electrochemical sensing of ibuprofen in pharmaceuticals and human urine samples using a bare boron-doped diamond electrode",
volume = "822",
pages = "144-152",
doi = "10.1016/j.jelechem.2018.05.026"
}
Šovrc, Ľ., Strežova, I., Kianicková, K., Stanković, D., Otrisal, P.,& Samphao, A.. (2018). An advanced approach for electrochemical sensing of ibuprofen in pharmaceuticals and human urine samples using a bare boron-doped diamond electrode. in Journal of Electroanalytical Chemistry
Elsevier Science Sa, Lausanne., 822, 144-152.
https://doi.org/10.1016/j.jelechem.2018.05.026
Šovrc Ľ, Strežova I, Kianicková K, Stanković D, Otrisal P, Samphao A. An advanced approach for electrochemical sensing of ibuprofen in pharmaceuticals and human urine samples using a bare boron-doped diamond electrode. in Journal of Electroanalytical Chemistry. 2018;822:144-152.
doi:10.1016/j.jelechem.2018.05.026 .
Šovrc, Ľubomír, Strežova, Ivana, Kianicková, Kristína, Stanković, Dalibor, Otrisal, Pavel, Samphao, Anchalee, "An advanced approach for electrochemical sensing of ibuprofen in pharmaceuticals and human urine samples using a bare boron-doped diamond electrode" in Journal of Electroanalytical Chemistry, 822 (2018):144-152,
https://doi.org/10.1016/j.jelechem.2018.05.026 . .
60
44
63
49