Prlainović, Nevena

Link to this page

Authority KeyName Variants
fbbd37c3-22e7-48a2-8a19-61c4b991ab62
  • Prlainović, Nevena (4)
Projects

Author's Bibliography

Antimycobacterial and anticancer activity of newly designed cinnamic acid hydrazides with favorable toxicity profile

Assaleh, Mohamed H.; Bjelogrlić, Snežana K.; Prlainović, Nevena; Cvijetić, Ilija; Božić, Aleksandra R.; Aranđelović, Irena; Vuković, Dragana; Marinković, Aleksandar

(Elsevier, 2022)

TY  - JOUR
AU  - Assaleh, Mohamed H.
AU  - Bjelogrlić, Snežana K.
AU  - Prlainović, Nevena
AU  - Cvijetić, Ilija
AU  - Božić, Aleksandra R.
AU  - Aranđelović, Irena
AU  - Vuković, Dragana
AU  - Marinković, Aleksandar
PY  - 2022
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/4867
AB  - A series of twelve novel hybrids of cinnamic acid and thiocarbohydrazones were designed, synthesized in high yield using a simple coupling strategy via acid chlorides, and evaluated for their impact against Mycobacterium tuberculosis (Mtb) and cancer cells survival. Among them, compound 3 demonstrated strong anti-Mtb activity by reducing bacilli survival for>90 % in all three treated Mtb isolates, whereas isoniazid and rifampicin did not. Moreover, compound 3 didn’t affect vitality of HepG-2 cells, implying on advantageous hepatotoxicity profile compared to current therapeutic options for tuberculosis. Compounds 2a and 3b displayed as strong inducers of apoptosis in A549 cells, both activating intrinsic caspase pathway and cell cycle arrest at the G0/G1 phase. Subsequent analyses disclosed differences in their activities, where 3b has ability to induce production of mitochondrial superoxide anions, while 2a significantly inhibited cellular mobility. More importantly, 3b considerably affected viability of HepG-2 and HaCaT cells, whereas 2a had moderate impact only on the later. Molecular modeling studies indicated high permeability and good absorption through the human intestine, and moderate aqueous solubility with poor blood–brain barrier permeability. In summary, our results reveal that novel compounds 3 and 2a represent promising agents for tuberculosis and cancer treatment, respectively, indicating that further investigation needs to be performed to clarify the mechanisms of their anti-Mtb and anticancer activity.
PB  - Elsevier
T2  - Arabian Journal of Chemistry
T1  - Antimycobacterial and anticancer activity of newly designed cinnamic acid hydrazides with favorable toxicity profile
VL  - 15
IS  - 1
SP  - 103532
DO  - 10.1016/j.arabjc.2021.103532
ER  - 
@article{
author = "Assaleh, Mohamed H. and Bjelogrlić, Snežana K. and Prlainović, Nevena and Cvijetić, Ilija and Božić, Aleksandra R. and Aranđelović, Irena and Vuković, Dragana and Marinković, Aleksandar",
year = "2022",
abstract = "A series of twelve novel hybrids of cinnamic acid and thiocarbohydrazones were designed, synthesized in high yield using a simple coupling strategy via acid chlorides, and evaluated for their impact against Mycobacterium tuberculosis (Mtb) and cancer cells survival. Among them, compound 3 demonstrated strong anti-Mtb activity by reducing bacilli survival for>90 % in all three treated Mtb isolates, whereas isoniazid and rifampicin did not. Moreover, compound 3 didn’t affect vitality of HepG-2 cells, implying on advantageous hepatotoxicity profile compared to current therapeutic options for tuberculosis. Compounds 2a and 3b displayed as strong inducers of apoptosis in A549 cells, both activating intrinsic caspase pathway and cell cycle arrest at the G0/G1 phase. Subsequent analyses disclosed differences in their activities, where 3b has ability to induce production of mitochondrial superoxide anions, while 2a significantly inhibited cellular mobility. More importantly, 3b considerably affected viability of HepG-2 and HaCaT cells, whereas 2a had moderate impact only on the later. Molecular modeling studies indicated high permeability and good absorption through the human intestine, and moderate aqueous solubility with poor blood–brain barrier permeability. In summary, our results reveal that novel compounds 3 and 2a represent promising agents for tuberculosis and cancer treatment, respectively, indicating that further investigation needs to be performed to clarify the mechanisms of their anti-Mtb and anticancer activity.",
publisher = "Elsevier",
journal = "Arabian Journal of Chemistry",
title = "Antimycobacterial and anticancer activity of newly designed cinnamic acid hydrazides with favorable toxicity profile",
volume = "15",
number = "1",
pages = "103532",
doi = "10.1016/j.arabjc.2021.103532"
}
Assaleh, M. H., Bjelogrlić, S. K., Prlainović, N., Cvijetić, I., Božić, A. R., Aranđelović, I., Vuković, D.,& Marinković, A.. (2022). Antimycobacterial and anticancer activity of newly designed cinnamic acid hydrazides with favorable toxicity profile. in Arabian Journal of Chemistry
Elsevier., 15(1), 103532.
https://doi.org/10.1016/j.arabjc.2021.103532
Assaleh MH, Bjelogrlić SK, Prlainović N, Cvijetić I, Božić AR, Aranđelović I, Vuković D, Marinković A. Antimycobacterial and anticancer activity of newly designed cinnamic acid hydrazides with favorable toxicity profile. in Arabian Journal of Chemistry. 2022;15(1):103532.
doi:10.1016/j.arabjc.2021.103532 .
Assaleh, Mohamed H., Bjelogrlić, Snežana K., Prlainović, Nevena, Cvijetić, Ilija, Božić, Aleksandra R., Aranđelović, Irena, Vuković, Dragana, Marinković, Aleksandar, "Antimycobacterial and anticancer activity of newly designed cinnamic acid hydrazides with favorable toxicity profile" in Arabian Journal of Chemistry, 15, no. 1 (2022):103532,
https://doi.org/10.1016/j.arabjc.2021.103532 . .
4
5
3

Supplementary material for the article: Assaleh, M. H.; Bjelogrlic, S. K.; Prlainovic, N.; Cvijetic, I.; Bozic, A.; Arandjelovic, I.; Vukovic, D.; Marinkovic, A. Antimycobacterial and Anticancer Activity of Newly Designed Cinnamic Acid Hydrazides with Favorable Toxicity Profile. Arabian Journal of Chemistry 2022, 15 (1), 103532. https://doi.org/10.1016/j.arabjc.2021.103532.

Assaleh, Mohamed H.; Bjelogrlić, Snežana K.; Prlainović, Nevena; Cvijetić, Ilija; Božić, Aleksandra R.; Aranđelović, Irena; Vuković, Dragana; Marinković, Aleksandar

(Elsevier, 2022)

TY  - DATA
AU  - Assaleh, Mohamed H.
AU  - Bjelogrlić, Snežana K.
AU  - Prlainović, Nevena
AU  - Cvijetić, Ilija
AU  - Božić, Aleksandra R.
AU  - Aranđelović, Irena
AU  - Vuković, Dragana
AU  - Marinković, Aleksandar
PY  - 2022
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/4868
PB  - Elsevier
T2  - Arabian Journal of Chemistry
T1  - Supplementary material for the article: Assaleh, M. H.; Bjelogrlic, S. K.; Prlainovic, N.; Cvijetic, I.; Bozic, A.; Arandjelovic, I.; Vukovic, D.; Marinkovic, A. Antimycobacterial and Anticancer Activity of Newly Designed Cinnamic Acid Hydrazides with Favorable Toxicity Profile. Arabian Journal of Chemistry 2022, 15 (1), 103532. https://doi.org/10.1016/j.arabjc.2021.103532.
UR  - https://hdl.handle.net/21.15107/rcub_cherry_4868
ER  - 
@misc{
author = "Assaleh, Mohamed H. and Bjelogrlić, Snežana K. and Prlainović, Nevena and Cvijetić, Ilija and Božić, Aleksandra R. and Aranđelović, Irena and Vuković, Dragana and Marinković, Aleksandar",
year = "2022",
publisher = "Elsevier",
journal = "Arabian Journal of Chemistry",
title = "Supplementary material for the article: Assaleh, M. H.; Bjelogrlic, S. K.; Prlainovic, N.; Cvijetic, I.; Bozic, A.; Arandjelovic, I.; Vukovic, D.; Marinkovic, A. Antimycobacterial and Anticancer Activity of Newly Designed Cinnamic Acid Hydrazides with Favorable Toxicity Profile. Arabian Journal of Chemistry 2022, 15 (1), 103532. https://doi.org/10.1016/j.arabjc.2021.103532.",
url = "https://hdl.handle.net/21.15107/rcub_cherry_4868"
}
Assaleh, M. H., Bjelogrlić, S. K., Prlainović, N., Cvijetić, I., Božić, A. R., Aranđelović, I., Vuković, D.,& Marinković, A.. (2022). Supplementary material for the article: Assaleh, M. H.; Bjelogrlic, S. K.; Prlainovic, N.; Cvijetic, I.; Bozic, A.; Arandjelovic, I.; Vukovic, D.; Marinkovic, A. Antimycobacterial and Anticancer Activity of Newly Designed Cinnamic Acid Hydrazides with Favorable Toxicity Profile. Arabian Journal of Chemistry 2022, 15 (1), 103532. https://doi.org/10.1016/j.arabjc.2021.103532.. in Arabian Journal of Chemistry
Elsevier..
https://hdl.handle.net/21.15107/rcub_cherry_4868
Assaleh MH, Bjelogrlić SK, Prlainović N, Cvijetić I, Božić AR, Aranđelović I, Vuković D, Marinković A. Supplementary material for the article: Assaleh, M. H.; Bjelogrlic, S. K.; Prlainovic, N.; Cvijetic, I.; Bozic, A.; Arandjelovic, I.; Vukovic, D.; Marinkovic, A. Antimycobacterial and Anticancer Activity of Newly Designed Cinnamic Acid Hydrazides with Favorable Toxicity Profile. Arabian Journal of Chemistry 2022, 15 (1), 103532. https://doi.org/10.1016/j.arabjc.2021.103532.. in Arabian Journal of Chemistry. 2022;.
https://hdl.handle.net/21.15107/rcub_cherry_4868 .
Assaleh, Mohamed H., Bjelogrlić, Snežana K., Prlainović, Nevena, Cvijetić, Ilija, Božić, Aleksandra R., Aranđelović, Irena, Vuković, Dragana, Marinković, Aleksandar, "Supplementary material for the article: Assaleh, M. H.; Bjelogrlic, S. K.; Prlainovic, N.; Cvijetic, I.; Bozic, A.; Arandjelovic, I.; Vukovic, D.; Marinkovic, A. Antimycobacterial and Anticancer Activity of Newly Designed Cinnamic Acid Hydrazides with Favorable Toxicity Profile. Arabian Journal of Chemistry 2022, 15 (1), 103532. https://doi.org/10.1016/j.arabjc.2021.103532." in Arabian Journal of Chemistry (2022),
https://hdl.handle.net/21.15107/rcub_cherry_4868 .

Photolysis of insecticide methomyl in various solvents: An experimental and theoretical study

Tomašević, Anđelka; Mijin, Dušan; Radišić, Marina; Prlainović, Nevena; Cvijetić, Ilija; Kovačević, Danijela V.; Marinković, Aleksandar

(Elsevier, 2020)

TY  - JOUR
AU  - Tomašević, Anđelka
AU  - Mijin, Dušan
AU  - Radišić, Marina
AU  - Prlainović, Nevena
AU  - Cvijetić, Ilija
AU  - Kovačević, Danijela V.
AU  - Marinković, Aleksandar
PY  - 2020
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3832
AB  - This study describes photolysis of 1 × 10–4 M methomyl solution in deionized water and in eleven organic solvents, both polar and nonpolar: methanol, ethanol, n-propanol, isopropanol, sec-butanol, tert-butanol, isobutanol, isopentanol, n-hexane, acetonitrile, and dichloromethane. Photolysis of methomyl at 254 nm was performed using Osram mercury lamp (6 × 8 W) by exposing to irradiation for five hours. All photolytic methomyl reactions were studied by UV/Vis spectroscopy within a wavelength range of 190−300 nm (Spectrum Mode), and at 233.4 nm (Quantitative Mode), while the rate of photodecomposition of methomyl was measured using UV spectroscopy and HPLC. In order to get better insight in the photolysis of methomyl, a liquid chromatography-mass spectrometry (LC–MSn) was used. The rate of methomyl photolysis was solvent-specific and the following reaction rate order was established: deionized water > tert-butanol > n-hexane > sec-butanol > ethanol > isopentanol > isobutanol > isopropanol > methanol > acetonitrile > dichloromethane > n-propanol. Both nonspecific and specific solvent-solute interactions contribute mutually to the differences in the obtained quantum yields. Results of quantum chemical calculations, using CBS-QB3 method, provided insights into the solvent effects on both ground and excited state. The LC/MSn analysis showed the formation of several photolytic products.
PB  - Elsevier
T2  - Journal of Photochemistry and Photobiology A: Chemistry
T1  - Photolysis of insecticide methomyl in various solvents: An experimental and theoretical study
VL  - 391
SP  - e112366
DO  - 10.1016/j.jphotochem.2020.112366
ER  - 
@article{
author = "Tomašević, Anđelka and Mijin, Dušan and Radišić, Marina and Prlainović, Nevena and Cvijetić, Ilija and Kovačević, Danijela V. and Marinković, Aleksandar",
year = "2020",
abstract = "This study describes photolysis of 1 × 10–4 M methomyl solution in deionized water and in eleven organic solvents, both polar and nonpolar: methanol, ethanol, n-propanol, isopropanol, sec-butanol, tert-butanol, isobutanol, isopentanol, n-hexane, acetonitrile, and dichloromethane. Photolysis of methomyl at 254 nm was performed using Osram mercury lamp (6 × 8 W) by exposing to irradiation for five hours. All photolytic methomyl reactions were studied by UV/Vis spectroscopy within a wavelength range of 190−300 nm (Spectrum Mode), and at 233.4 nm (Quantitative Mode), while the rate of photodecomposition of methomyl was measured using UV spectroscopy and HPLC. In order to get better insight in the photolysis of methomyl, a liquid chromatography-mass spectrometry (LC–MSn) was used. The rate of methomyl photolysis was solvent-specific and the following reaction rate order was established: deionized water > tert-butanol > n-hexane > sec-butanol > ethanol > isopentanol > isobutanol > isopropanol > methanol > acetonitrile > dichloromethane > n-propanol. Both nonspecific and specific solvent-solute interactions contribute mutually to the differences in the obtained quantum yields. Results of quantum chemical calculations, using CBS-QB3 method, provided insights into the solvent effects on both ground and excited state. The LC/MSn analysis showed the formation of several photolytic products.",
publisher = "Elsevier",
journal = "Journal of Photochemistry and Photobiology A: Chemistry",
title = "Photolysis of insecticide methomyl in various solvents: An experimental and theoretical study",
volume = "391",
pages = "e112366",
doi = "10.1016/j.jphotochem.2020.112366"
}
Tomašević, A., Mijin, D., Radišić, M., Prlainović, N., Cvijetić, I., Kovačević, D. V.,& Marinković, A.. (2020). Photolysis of insecticide methomyl in various solvents: An experimental and theoretical study. in Journal of Photochemistry and Photobiology A: Chemistry
Elsevier., 391, e112366.
https://doi.org/10.1016/j.jphotochem.2020.112366
Tomašević A, Mijin D, Radišić M, Prlainović N, Cvijetić I, Kovačević DV, Marinković A. Photolysis of insecticide methomyl in various solvents: An experimental and theoretical study. in Journal of Photochemistry and Photobiology A: Chemistry. 2020;391:e112366.
doi:10.1016/j.jphotochem.2020.112366 .
Tomašević, Anđelka, Mijin, Dušan, Radišić, Marina, Prlainović, Nevena, Cvijetić, Ilija, Kovačević, Danijela V., Marinković, Aleksandar, "Photolysis of insecticide methomyl in various solvents: An experimental and theoretical study" in Journal of Photochemistry and Photobiology A: Chemistry, 391 (2020):e112366,
https://doi.org/10.1016/j.jphotochem.2020.112366 . .
9
1
6
6

Supplementary data for article: Tomašević, A.; Mijin, D.; Radišić, M.; Prlainović, N.; Cvijetić, I.; Kovačević, D. V.; Marinković, A. Photolysis of Insecticide Methomyl in Various Solvents: An Experimental and Theoretical Study. Journal of Photochemistry and Photobiology A: Chemistry 2020, 391. https://doi.org/10.1016/j.jphotochem.2020.112366

Tomašević, Anđelka; Mijin, Dušan; Radišić, Marina; Prlainović, Nevena; Cvijetić, Ilija; Kovačević, Danijela V.; Marinković, Aleksandar

(Elsevier, 2020)

TY  - DATA
AU  - Tomašević, Anđelka
AU  - Mijin, Dušan
AU  - Radišić, Marina
AU  - Prlainović, Nevena
AU  - Cvijetić, Ilija
AU  - Kovačević, Danijela V.
AU  - Marinković, Aleksandar
PY  - 2020
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3833
PB  - Elsevier
T2  - Journal of Photochemistry and Photobiology A: Chemistry
T1  - Supplementary data for article: Tomašević, A.; Mijin, D.; Radišić, M.; Prlainović, N.; Cvijetić, I.; Kovačević, D. V.; Marinković, A. Photolysis of Insecticide Methomyl in Various Solvents: An Experimental and Theoretical Study. Journal of Photochemistry and Photobiology A: Chemistry 2020, 391. https://doi.org/10.1016/j.jphotochem.2020.112366
UR  - https://hdl.handle.net/21.15107/rcub_cherry_3833
ER  - 
@misc{
author = "Tomašević, Anđelka and Mijin, Dušan and Radišić, Marina and Prlainović, Nevena and Cvijetić, Ilija and Kovačević, Danijela V. and Marinković, Aleksandar",
year = "2020",
publisher = "Elsevier",
journal = "Journal of Photochemistry and Photobiology A: Chemistry",
title = "Supplementary data for article: Tomašević, A.; Mijin, D.; Radišić, M.; Prlainović, N.; Cvijetić, I.; Kovačević, D. V.; Marinković, A. Photolysis of Insecticide Methomyl in Various Solvents: An Experimental and Theoretical Study. Journal of Photochemistry and Photobiology A: Chemistry 2020, 391. https://doi.org/10.1016/j.jphotochem.2020.112366",
url = "https://hdl.handle.net/21.15107/rcub_cherry_3833"
}
Tomašević, A., Mijin, D., Radišić, M., Prlainović, N., Cvijetić, I., Kovačević, D. V.,& Marinković, A.. (2020). Supplementary data for article: Tomašević, A.; Mijin, D.; Radišić, M.; Prlainović, N.; Cvijetić, I.; Kovačević, D. V.; Marinković, A. Photolysis of Insecticide Methomyl in Various Solvents: An Experimental and Theoretical Study. Journal of Photochemistry and Photobiology A: Chemistry 2020, 391. https://doi.org/10.1016/j.jphotochem.2020.112366. in Journal of Photochemistry and Photobiology A: Chemistry
Elsevier..
https://hdl.handle.net/21.15107/rcub_cherry_3833
Tomašević A, Mijin D, Radišić M, Prlainović N, Cvijetić I, Kovačević DV, Marinković A. Supplementary data for article: Tomašević, A.; Mijin, D.; Radišić, M.; Prlainović, N.; Cvijetić, I.; Kovačević, D. V.; Marinković, A. Photolysis of Insecticide Methomyl in Various Solvents: An Experimental and Theoretical Study. Journal of Photochemistry and Photobiology A: Chemistry 2020, 391. https://doi.org/10.1016/j.jphotochem.2020.112366. in Journal of Photochemistry and Photobiology A: Chemistry. 2020;.
https://hdl.handle.net/21.15107/rcub_cherry_3833 .
Tomašević, Anđelka, Mijin, Dušan, Radišić, Marina, Prlainović, Nevena, Cvijetić, Ilija, Kovačević, Danijela V., Marinković, Aleksandar, "Supplementary data for article: Tomašević, A.; Mijin, D.; Radišić, M.; Prlainović, N.; Cvijetić, I.; Kovačević, D. V.; Marinković, A. Photolysis of Insecticide Methomyl in Various Solvents: An Experimental and Theoretical Study. Journal of Photochemistry and Photobiology A: Chemistry 2020, 391. https://doi.org/10.1016/j.jphotochem.2020.112366" in Journal of Photochemistry and Photobiology A: Chemistry (2020),
https://hdl.handle.net/21.15107/rcub_cherry_3833 .