Stark, Holger

Link to this page

Authority KeyName Variants
orcid::0000-0003-3336-1710
  • Stark, Holger (2)
Projects

Author's Bibliography

Selenazolyl-hydrazones as Novel Selective MAO Inhibitors With Antiproliferative and Antioxidant Activities: Experimental and In-silico Studies

Elshaflu, Hana; Todorović, Tamara; Nikolić, Milan; Lolić, Aleksandar; Višnjevac, Aleksandar; Hagenow, Stefanie; Padrón, José M.; Garcia-Sosa, Alfonso T.; Đorđević, Ivana S.; Grubišić, Sonja; Stark, Holger; Filipović, Nenad R.

(Frontiers Media Sa, Lausanne, 2018)

TY  - JOUR
AU  - Elshaflu, Hana
AU  - Todorović, Tamara
AU  - Nikolić, Milan
AU  - Lolić, Aleksandar
AU  - Višnjevac, Aleksandar
AU  - Hagenow, Stefanie
AU  - Padrón, José M.
AU  - Garcia-Sosa, Alfonso T.
AU  - Đorđević, Ivana S.
AU  - Grubišić, Sonja
AU  - Stark, Holger
AU  - Filipović, Nenad R.
PY  - 2018
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/2172
AB  - The novel approach in the treatment of complex multifactorial diseases, such as neurodegenerative disorders and cancer, requires a development of efficient multi-targeting oriented drugs. Since oxidative stress significantly contributes to the pathogenesis of cancer and neurodegenerative disorders, potential drug candidates should possess good antioxidant properties Due to promising biological activities shown for structurally related (1,3-thiazol-2-yl)hydrazones, a focused library of 12 structurally related benzylidene-based (1,3-selenazol-2-yl)hydrazones was designed as potential multi-targeting compounds. Monoamine oxidases (MAO) A/B inhibition properties of this class of compounds have been investigated. Surprisingly, the p-nitrophenyl-substituted (1,3-selenazol-2-yl)hydrazone 4 showed MAO B inhibition in a nanomolar concentration range (IC50 = 73 nM). Excellent antioxidant properties were confirmed in a number of different in vitro assays. Antiproliferative activity screening on a panel of six human solid tumor cell lines showed that potencies of some of the investigated compounds was comparable or even better than that of the positive control 5-fluorouracil. In-silico calculations of ADME properties pointed to promising good pharmacokinetic profiles of investigated compounds. Docking studies suggest that some compounds, compared to positive controls, have the ability to strongly interact with targets relevant to cancer such as 5'-nucleotidase, and to neurodegenerative diseases such as the small conductance calcium-activated potassium channel protein 1, in addition to confirmation of inhibitory binding at MAO B.
PB  - Frontiers Media Sa, Lausanne
T2  - FRONTIERS IN CHEMISTRY
T1  - Selenazolyl-hydrazones as Novel Selective MAO Inhibitors With Antiproliferative and Antioxidant Activities: Experimental and In-silico Studies
VL  - 6
DO  - 10.3389/fchem.2018.00247
ER  - 
@article{
author = "Elshaflu, Hana and Todorović, Tamara and Nikolić, Milan and Lolić, Aleksandar and Višnjevac, Aleksandar and Hagenow, Stefanie and Padrón, José M. and Garcia-Sosa, Alfonso T. and Đorđević, Ivana S. and Grubišić, Sonja and Stark, Holger and Filipović, Nenad R.",
year = "2018",
abstract = "The novel approach in the treatment of complex multifactorial diseases, such as neurodegenerative disorders and cancer, requires a development of efficient multi-targeting oriented drugs. Since oxidative stress significantly contributes to the pathogenesis of cancer and neurodegenerative disorders, potential drug candidates should possess good antioxidant properties Due to promising biological activities shown for structurally related (1,3-thiazol-2-yl)hydrazones, a focused library of 12 structurally related benzylidene-based (1,3-selenazol-2-yl)hydrazones was designed as potential multi-targeting compounds. Monoamine oxidases (MAO) A/B inhibition properties of this class of compounds have been investigated. Surprisingly, the p-nitrophenyl-substituted (1,3-selenazol-2-yl)hydrazone 4 showed MAO B inhibition in a nanomolar concentration range (IC50 = 73 nM). Excellent antioxidant properties were confirmed in a number of different in vitro assays. Antiproliferative activity screening on a panel of six human solid tumor cell lines showed that potencies of some of the investigated compounds was comparable or even better than that of the positive control 5-fluorouracil. In-silico calculations of ADME properties pointed to promising good pharmacokinetic profiles of investigated compounds. Docking studies suggest that some compounds, compared to positive controls, have the ability to strongly interact with targets relevant to cancer such as 5'-nucleotidase, and to neurodegenerative diseases such as the small conductance calcium-activated potassium channel protein 1, in addition to confirmation of inhibitory binding at MAO B.",
publisher = "Frontiers Media Sa, Lausanne",
journal = "FRONTIERS IN CHEMISTRY",
title = "Selenazolyl-hydrazones as Novel Selective MAO Inhibitors With Antiproliferative and Antioxidant Activities: Experimental and In-silico Studies",
volume = "6",
doi = "10.3389/fchem.2018.00247"
}
Elshaflu, H., Todorović, T., Nikolić, M., Lolić, A., Višnjevac, A., Hagenow, S., Padrón, J. M., Garcia-Sosa, A. T., Đorđević, I. S., Grubišić, S., Stark, H.,& Filipović, N. R.. (2018). Selenazolyl-hydrazones as Novel Selective MAO Inhibitors With Antiproliferative and Antioxidant Activities: Experimental and In-silico Studies. in FRONTIERS IN CHEMISTRY
Frontiers Media Sa, Lausanne., 6.
https://doi.org/10.3389/fchem.2018.00247
Elshaflu H, Todorović T, Nikolić M, Lolić A, Višnjevac A, Hagenow S, Padrón JM, Garcia-Sosa AT, Đorđević IS, Grubišić S, Stark H, Filipović NR. Selenazolyl-hydrazones as Novel Selective MAO Inhibitors With Antiproliferative and Antioxidant Activities: Experimental and In-silico Studies. in FRONTIERS IN CHEMISTRY. 2018;6.
doi:10.3389/fchem.2018.00247 .
Elshaflu, Hana, Todorović, Tamara, Nikolić, Milan, Lolić, Aleksandar, Višnjevac, Aleksandar, Hagenow, Stefanie, Padrón, José M., Garcia-Sosa, Alfonso T., Đorđević, Ivana S., Grubišić, Sonja, Stark, Holger, Filipović, Nenad R., "Selenazolyl-hydrazones as Novel Selective MAO Inhibitors With Antiproliferative and Antioxidant Activities: Experimental and In-silico Studies" in FRONTIERS IN CHEMISTRY, 6 (2018),
https://doi.org/10.3389/fchem.2018.00247 . .
2
36
18
37
29

Supplementary material for the article: Elshaflu, H.; Todorović, T. R.; Nikolić, M.; Lolić, A.; Višnjevac, A.; Hagenow, S.; Padrón, J. M.; García-Sosa, A. T.; Djordjevic, I. S.; Grubišic, S.; et al. Selenazolyl-Hydrazones as Novel Selective MAO Inhibitors with Antiproliferative and Antioxidant Activities: Experimental and In-Silico Studies. Frontiers in Chemistry 2018, 6 (JUL). https://doi.org/10.3389/fchem.2018.00247

Elshaflu, Hana; Todorović, Tamara; Nikolić, Milan; Lolić, Aleksandar; Višnjevac, Aleksandar; Hagenow, Stefanie; Padrón, José M.; Garcia-Sosa, Alfonso T.; Đorđević, Ivana S.; Grubišić, Sonja; Stark, Holger; Filipović, Nenad R.

(Frontiers Media Sa, Lausanne, 2018)

TY  - DATA
AU  - Elshaflu, Hana
AU  - Todorović, Tamara
AU  - Nikolić, Milan
AU  - Lolić, Aleksandar
AU  - Višnjevac, Aleksandar
AU  - Hagenow, Stefanie
AU  - Padrón, José M.
AU  - Garcia-Sosa, Alfonso T.
AU  - Đorđević, Ivana S.
AU  - Grubišić, Sonja
AU  - Stark, Holger
AU  - Filipović, Nenad R.
PY  - 2018
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3254
PB  - Frontiers Media Sa, Lausanne
T2  - FRONTIERS IN CHEMISTRY
T1  - Supplementary material for the article: Elshaflu, H.; Todorović, T. R.; Nikolić, M.; Lolić, A.; Višnjevac, A.; Hagenow, S.; Padrón, J. M.; García-Sosa, A. T.; Djordjevic, I. S.; Grubišic, S.; et al. Selenazolyl-Hydrazones as Novel Selective MAO Inhibitors with Antiproliferative and Antioxidant Activities: Experimental and In-Silico Studies. Frontiers in Chemistry 2018, 6 (JUL). https://doi.org/10.3389/fchem.2018.00247
UR  - https://hdl.handle.net/21.15107/rcub_cherry_3254
ER  - 
@misc{
author = "Elshaflu, Hana and Todorović, Tamara and Nikolić, Milan and Lolić, Aleksandar and Višnjevac, Aleksandar and Hagenow, Stefanie and Padrón, José M. and Garcia-Sosa, Alfonso T. and Đorđević, Ivana S. and Grubišić, Sonja and Stark, Holger and Filipović, Nenad R.",
year = "2018",
publisher = "Frontiers Media Sa, Lausanne",
journal = "FRONTIERS IN CHEMISTRY",
title = "Supplementary material for the article: Elshaflu, H.; Todorović, T. R.; Nikolić, M.; Lolić, A.; Višnjevac, A.; Hagenow, S.; Padrón, J. M.; García-Sosa, A. T.; Djordjevic, I. S.; Grubišic, S.; et al. Selenazolyl-Hydrazones as Novel Selective MAO Inhibitors with Antiproliferative and Antioxidant Activities: Experimental and In-Silico Studies. Frontiers in Chemistry 2018, 6 (JUL). https://doi.org/10.3389/fchem.2018.00247",
url = "https://hdl.handle.net/21.15107/rcub_cherry_3254"
}
Elshaflu, H., Todorović, T., Nikolić, M., Lolić, A., Višnjevac, A., Hagenow, S., Padrón, J. M., Garcia-Sosa, A. T., Đorđević, I. S., Grubišić, S., Stark, H.,& Filipović, N. R.. (2018). Supplementary material for the article: Elshaflu, H.; Todorović, T. R.; Nikolić, M.; Lolić, A.; Višnjevac, A.; Hagenow, S.; Padrón, J. M.; García-Sosa, A. T.; Djordjevic, I. S.; Grubišic, S.; et al. Selenazolyl-Hydrazones as Novel Selective MAO Inhibitors with Antiproliferative and Antioxidant Activities: Experimental and In-Silico Studies. Frontiers in Chemistry 2018, 6 (JUL). https://doi.org/10.3389/fchem.2018.00247. in FRONTIERS IN CHEMISTRY
Frontiers Media Sa, Lausanne..
https://hdl.handle.net/21.15107/rcub_cherry_3254
Elshaflu H, Todorović T, Nikolić M, Lolić A, Višnjevac A, Hagenow S, Padrón JM, Garcia-Sosa AT, Đorđević IS, Grubišić S, Stark H, Filipović NR. Supplementary material for the article: Elshaflu, H.; Todorović, T. R.; Nikolić, M.; Lolić, A.; Višnjevac, A.; Hagenow, S.; Padrón, J. M.; García-Sosa, A. T.; Djordjevic, I. S.; Grubišic, S.; et al. Selenazolyl-Hydrazones as Novel Selective MAO Inhibitors with Antiproliferative and Antioxidant Activities: Experimental and In-Silico Studies. Frontiers in Chemistry 2018, 6 (JUL). https://doi.org/10.3389/fchem.2018.00247. in FRONTIERS IN CHEMISTRY. 2018;.
https://hdl.handle.net/21.15107/rcub_cherry_3254 .
Elshaflu, Hana, Todorović, Tamara, Nikolić, Milan, Lolić, Aleksandar, Višnjevac, Aleksandar, Hagenow, Stefanie, Padrón, José M., Garcia-Sosa, Alfonso T., Đorđević, Ivana S., Grubišić, Sonja, Stark, Holger, Filipović, Nenad R., "Supplementary material for the article: Elshaflu, H.; Todorović, T. R.; Nikolić, M.; Lolić, A.; Višnjevac, A.; Hagenow, S.; Padrón, J. M.; García-Sosa, A. T.; Djordjevic, I. S.; Grubišic, S.; et al. Selenazolyl-Hydrazones as Novel Selective MAO Inhibitors with Antiproliferative and Antioxidant Activities: Experimental and In-Silico Studies. Frontiers in Chemistry 2018, 6 (JUL). https://doi.org/10.3389/fchem.2018.00247" in FRONTIERS IN CHEMISTRY (2018),
https://hdl.handle.net/21.15107/rcub_cherry_3254 .