Topakas, Evangelos

Link to this page

Authority KeyName Variants
orcid::0000-0003-0078-5904
  • Topakas, Evangelos (6)
Projects

Author's Bibliography

Set of Small Molecule Polyurethane (PU) Model Substrates: Ecotoxicity Evaluation and Identification of PU Degrading Biocatalysts

Topakas, Evangelos; Siaperas, Romanos; Taxeidis, George; Makryniotis, Konstantinos; Guzik, Maciej; Maslak, Veselin; Beškoski, Vladimir; Lončarević, Branka; Ilić-Tomić, Tatjana; Milivojević, Dušan; Škaro Bogojević, Sanja; Pantelić, Brana

(MDPI, 2023)

TY  - JOUR
AU  - Topakas, Evangelos
AU  - Siaperas, Romanos
AU  - Taxeidis, George
AU  - Makryniotis, Konstantinos
AU  - Guzik, Maciej
AU  - Maslak, Veselin
AU  - Beškoski, Vladimir
AU  - Lončarević, Branka
AU  - Ilić-Tomić, Tatjana
AU  - Milivojević, Dušan
AU  - Škaro Bogojević, Sanja
AU  - Pantelić, Brana
PY  - 2023
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5969
AB  - Polyurethanes (PUs) are an exceedingly heterogeneous group of plastic polymers, widely used in a variety of industries from construction to medical implants. In the past decades, we have witnessed the accumulation of PU waste and its detrimental environmental impacts. PUs have been identified as one of the most toxic polymers leaching hazardous compounds derived both from the polymer itself and the additives used in production. Further environmental impact assessment, identification and characterization of substances derived from PU materials and establishing efficient degradation strategies are crucial. Thus, a selection of eight synthetic model compounds which represent partial PU hydrolysis products were synthesized and characterized both in terms of toxicity and suitability to be used as substrates for the identification of novel biocatalysts for PU biodegradation. Overall, the compounds exhibited low in vitro cytotoxicity against a healthy human fibroblast cell line and virtually no toxic effect on the nematode Caenorhabditis elegans up to 500 µg mL−1, and two of the substrates showed moderate aquatic ecotoxicity with EC50 values 53 µg mL−1 and 45 µg mL−1, respectively, on Aliivibrio fischeri. The compounds were successfully applied to study the mechanism of ester and urethane bond cleaving preference of known plastic-degrading enzymes and were used to single out a novel PU-degrading biocatalyst, Amycolatopsis mediterranei ISP5501, among 220 microbial strains. A. mediterranei ISP5501 can also degrade commercially available polyether and polyester PU materials, reducing the average molecular number of the polymer up to 13.5%. This study uncovered a biocatalyst capable of degrading different types of PUs and identified potential enzymes responsible as a key step in developing biotechnological process for PU waste treatment options.
PB  - MDPI
T2  - Catalysts
T1  - Set of Small Molecule Polyurethane (PU) Model Substrates: Ecotoxicity Evaluation and Identification of PU Degrading Biocatalysts
VL  - 13
IS  - 2
SP  - 278
DO  - 10.3390/catal13020278
ER  - 
@article{
author = "Topakas, Evangelos and Siaperas, Romanos and Taxeidis, George and Makryniotis, Konstantinos and Guzik, Maciej and Maslak, Veselin and Beškoski, Vladimir and Lončarević, Branka and Ilić-Tomić, Tatjana and Milivojević, Dušan and Škaro Bogojević, Sanja and Pantelić, Brana",
year = "2023",
abstract = "Polyurethanes (PUs) are an exceedingly heterogeneous group of plastic polymers, widely used in a variety of industries from construction to medical implants. In the past decades, we have witnessed the accumulation of PU waste and its detrimental environmental impacts. PUs have been identified as one of the most toxic polymers leaching hazardous compounds derived both from the polymer itself and the additives used in production. Further environmental impact assessment, identification and characterization of substances derived from PU materials and establishing efficient degradation strategies are crucial. Thus, a selection of eight synthetic model compounds which represent partial PU hydrolysis products were synthesized and characterized both in terms of toxicity and suitability to be used as substrates for the identification of novel biocatalysts for PU biodegradation. Overall, the compounds exhibited low in vitro cytotoxicity against a healthy human fibroblast cell line and virtually no toxic effect on the nematode Caenorhabditis elegans up to 500 µg mL−1, and two of the substrates showed moderate aquatic ecotoxicity with EC50 values 53 µg mL−1 and 45 µg mL−1, respectively, on Aliivibrio fischeri. The compounds were successfully applied to study the mechanism of ester and urethane bond cleaving preference of known plastic-degrading enzymes and were used to single out a novel PU-degrading biocatalyst, Amycolatopsis mediterranei ISP5501, among 220 microbial strains. A. mediterranei ISP5501 can also degrade commercially available polyether and polyester PU materials, reducing the average molecular number of the polymer up to 13.5%. This study uncovered a biocatalyst capable of degrading different types of PUs and identified potential enzymes responsible as a key step in developing biotechnological process for PU waste treatment options.",
publisher = "MDPI",
journal = "Catalysts",
title = "Set of Small Molecule Polyurethane (PU) Model Substrates: Ecotoxicity Evaluation and Identification of PU Degrading Biocatalysts",
volume = "13",
number = "2",
pages = "278",
doi = "10.3390/catal13020278"
}
Topakas, E., Siaperas, R., Taxeidis, G., Makryniotis, K., Guzik, M., Maslak, V., Beškoski, V., Lončarević, B., Ilić-Tomić, T., Milivojević, D., Škaro Bogojević, S.,& Pantelić, B.. (2023). Set of Small Molecule Polyurethane (PU) Model Substrates: Ecotoxicity Evaluation and Identification of PU Degrading Biocatalysts. in Catalysts
MDPI., 13(2), 278.
https://doi.org/10.3390/catal13020278
Topakas E, Siaperas R, Taxeidis G, Makryniotis K, Guzik M, Maslak V, Beškoski V, Lončarević B, Ilić-Tomić T, Milivojević D, Škaro Bogojević S, Pantelić B. Set of Small Molecule Polyurethane (PU) Model Substrates: Ecotoxicity Evaluation and Identification of PU Degrading Biocatalysts. in Catalysts. 2023;13(2):278.
doi:10.3390/catal13020278 .
Topakas, Evangelos, Siaperas, Romanos, Taxeidis, George, Makryniotis, Konstantinos, Guzik, Maciej, Maslak, Veselin, Beškoski, Vladimir, Lončarević, Branka, Ilić-Tomić, Tatjana, Milivojević, Dušan, Škaro Bogojević, Sanja, Pantelić, Brana, "Set of Small Molecule Polyurethane (PU) Model Substrates: Ecotoxicity Evaluation and Identification of PU Degrading Biocatalysts" in Catalysts, 13, no. 2 (2023):278,
https://doi.org/10.3390/catal13020278 . .
2
5
2
1

Supplementary data for the article: Djapovic, M.; Milivojevic, D.; Ilic-Tomic, T.; Lješević, M.; Nikolaivits, E.; Topakas, E.; Maslak, V.; Nikodinovic-Runic, J. Synthesis and Characterization of Polyethylene Terephthalate (PET) Precursors and Potential Degradation Products: Toxicity Study and Application in Discovery of Novel PETases. Chemosphere 2021, 275, 130005. https://doi.org/10.1016/j.chemosphere.2021.130005.

Đapović, Milica; Milivojević, Dušan; Ilić-Tomić, Tatjana; Lješević, Marija; Nikolaivits, Efstratios; Topakas, Evangelos; Maslak, Veselin; Nikodinović-Runić, Jasmina

(Elsevier, 2021)

TY  - DATA
AU  - Đapović, Milica
AU  - Milivojević, Dušan
AU  - Ilić-Tomić, Tatjana
AU  - Lješević, Marija
AU  - Nikolaivits, Efstratios
AU  - Topakas, Evangelos
AU  - Maslak, Veselin
AU  - Nikodinović-Runić, Jasmina
PY  - 2021
UR  - https://www.sciencedirect.com/science/article/pii/S0045653521004744
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4410
PB  - Elsevier
T2  - Chemosphere
T1  - Supplementary data for the article: Djapovic, M.; Milivojevic, D.; Ilic-Tomic, T.; Lješević, M.; Nikolaivits, E.; Topakas, E.; Maslak, V.; Nikodinovic-Runic, J. Synthesis and Characterization of Polyethylene Terephthalate (PET) Precursors and Potential Degradation Products: Toxicity Study and Application in Discovery of Novel PETases. Chemosphere 2021, 275, 130005. https://doi.org/10.1016/j.chemosphere.2021.130005.
UR  - https://hdl.handle.net/21.15107/rcub_cherry_4410
ER  - 
@misc{
author = "Đapović, Milica and Milivojević, Dušan and Ilić-Tomić, Tatjana and Lješević, Marija and Nikolaivits, Efstratios and Topakas, Evangelos and Maslak, Veselin and Nikodinović-Runić, Jasmina",
year = "2021",
publisher = "Elsevier",
journal = "Chemosphere",
title = "Supplementary data for the article: Djapovic, M.; Milivojevic, D.; Ilic-Tomic, T.; Lješević, M.; Nikolaivits, E.; Topakas, E.; Maslak, V.; Nikodinovic-Runic, J. Synthesis and Characterization of Polyethylene Terephthalate (PET) Precursors and Potential Degradation Products: Toxicity Study and Application in Discovery of Novel PETases. Chemosphere 2021, 275, 130005. https://doi.org/10.1016/j.chemosphere.2021.130005.",
url = "https://hdl.handle.net/21.15107/rcub_cherry_4410"
}
Đapović, M., Milivojević, D., Ilić-Tomić, T., Lješević, M., Nikolaivits, E., Topakas, E., Maslak, V.,& Nikodinović-Runić, J.. (2021). Supplementary data for the article: Djapovic, M.; Milivojevic, D.; Ilic-Tomic, T.; Lješević, M.; Nikolaivits, E.; Topakas, E.; Maslak, V.; Nikodinovic-Runic, J. Synthesis and Characterization of Polyethylene Terephthalate (PET) Precursors and Potential Degradation Products: Toxicity Study and Application in Discovery of Novel PETases. Chemosphere 2021, 275, 130005. https://doi.org/10.1016/j.chemosphere.2021.130005.. in Chemosphere
Elsevier..
https://hdl.handle.net/21.15107/rcub_cherry_4410
Đapović M, Milivojević D, Ilić-Tomić T, Lješević M, Nikolaivits E, Topakas E, Maslak V, Nikodinović-Runić J. Supplementary data for the article: Djapovic, M.; Milivojevic, D.; Ilic-Tomic, T.; Lješević, M.; Nikolaivits, E.; Topakas, E.; Maslak, V.; Nikodinovic-Runic, J. Synthesis and Characterization of Polyethylene Terephthalate (PET) Precursors and Potential Degradation Products: Toxicity Study and Application in Discovery of Novel PETases. Chemosphere 2021, 275, 130005. https://doi.org/10.1016/j.chemosphere.2021.130005.. in Chemosphere. 2021;.
https://hdl.handle.net/21.15107/rcub_cherry_4410 .
Đapović, Milica, Milivojević, Dušan, Ilić-Tomić, Tatjana, Lješević, Marija, Nikolaivits, Efstratios, Topakas, Evangelos, Maslak, Veselin, Nikodinović-Runić, Jasmina, "Supplementary data for the article: Djapovic, M.; Milivojevic, D.; Ilic-Tomic, T.; Lješević, M.; Nikolaivits, E.; Topakas, E.; Maslak, V.; Nikodinovic-Runic, J. Synthesis and Characterization of Polyethylene Terephthalate (PET) Precursors and Potential Degradation Products: Toxicity Study and Application in Discovery of Novel PETases. Chemosphere 2021, 275, 130005. https://doi.org/10.1016/j.chemosphere.2021.130005." in Chemosphere (2021),
https://hdl.handle.net/21.15107/rcub_cherry_4410 .

Synthesis and characterization of polyethylene terephthalate (PET) precursors and potential degradation products: Toxicity study and application in discovery of novel PETases

Đapović, Milica; Milivojević, Dušan; Ilić-Tomić, Tatjana; Lješević, Marija; Nikolaivits, Efstratios; Topakas, Evangelos; Maslak, Veselin; Nikodinović-Runić, Jasmina

(Elsevier, 2021)

TY  - JOUR
AU  - Đapović, Milica
AU  - Milivojević, Dušan
AU  - Ilić-Tomić, Tatjana
AU  - Lješević, Marija
AU  - Nikolaivits, Efstratios
AU  - Topakas, Evangelos
AU  - Maslak, Veselin
AU  - Nikodinović-Runić, Jasmina
PY  - 2021
UR  - https://www.sciencedirect.com/science/article/pii/S0045653521004744
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4409
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4411
AB  - Polyethylene terephthalate (PET) is widely used material and as such became highly enriched in nature. It is generally considered inert and safe plastic, but due to the recent increased efforts to break-down PET using biotechnological approaches, we realized the scarcity of information about structural analysis of possible degradation products and their ecotoxicological assessment. Therefore, in this study, 11 compounds belonging to the group of PET precursors and possible degradation products have been comprehensively characterized. Seven of these compounds including 1-(2-hydroxyethyl)-4-methylterephthalate, ethylene glycol bis(methyl terephthalate), methyl bis(2-hydroxyethyl terephtahalate), 1,4-benzenedicarboxylic acid, 1,4-bis[2-[[4-(methoxycarbonyl)benzoyl]oxy]ethyl] ester and methyl tris(2-hydroxyethyl terephthalate) corresponding to mono-, 1.5-, di-, 2,5- and trimer of PET were synthetized and structurally characterized for the first time. In-silico druglikeness and physico-chemical properties of these compounds were predicted using variety of platforms. No antimicrobial properties were detected even at 1000 μg/mL. Ecotoxicological impact of the compounds against marine bacteria Allivibrio fischeri proved that the 6 out of 11 tested PET-associated compounds may be classified as harmful to aquatic microorganisms, with PET trimer being one of the most toxic. In comparison, most of the compounds were not toxic on human lung fibroblasts (MRC-5) at 200 μg/mL with inhibiting concentration (IC50) values of 30 μg/mL and 50 μg/mL determined for PET dimer and trimer. Only three of these compounds including PET monomer were toxic to nematode Caenorhabditis elegans at high concentration of 500 μg/mL. In terms of the applicative potential, PET dimer can be used as suitable substrate for the screening, identification and characterization of novel PET-depolymerizing enzymes.
PB  - Elsevier
T2  - Chemosphere
T2  - ChemosphereChemosphere
T1  - Synthesis and characterization of polyethylene terephthalate (PET) precursors and potential degradation products: Toxicity study and application in discovery of novel PETases
VL  - 275
SP  - 130005
DO  - 10.1016/j.chemosphere.2021.130005
ER  - 
@article{
author = "Đapović, Milica and Milivojević, Dušan and Ilić-Tomić, Tatjana and Lješević, Marija and Nikolaivits, Efstratios and Topakas, Evangelos and Maslak, Veselin and Nikodinović-Runić, Jasmina",
year = "2021",
abstract = "Polyethylene terephthalate (PET) is widely used material and as such became highly enriched in nature. It is generally considered inert and safe plastic, but due to the recent increased efforts to break-down PET using biotechnological approaches, we realized the scarcity of information about structural analysis of possible degradation products and their ecotoxicological assessment. Therefore, in this study, 11 compounds belonging to the group of PET precursors and possible degradation products have been comprehensively characterized. Seven of these compounds including 1-(2-hydroxyethyl)-4-methylterephthalate, ethylene glycol bis(methyl terephthalate), methyl bis(2-hydroxyethyl terephtahalate), 1,4-benzenedicarboxylic acid, 1,4-bis[2-[[4-(methoxycarbonyl)benzoyl]oxy]ethyl] ester and methyl tris(2-hydroxyethyl terephthalate) corresponding to mono-, 1.5-, di-, 2,5- and trimer of PET were synthetized and structurally characterized for the first time. In-silico druglikeness and physico-chemical properties of these compounds were predicted using variety of platforms. No antimicrobial properties were detected even at 1000 μg/mL. Ecotoxicological impact of the compounds against marine bacteria Allivibrio fischeri proved that the 6 out of 11 tested PET-associated compounds may be classified as harmful to aquatic microorganisms, with PET trimer being one of the most toxic. In comparison, most of the compounds were not toxic on human lung fibroblasts (MRC-5) at 200 μg/mL with inhibiting concentration (IC50) values of 30 μg/mL and 50 μg/mL determined for PET dimer and trimer. Only three of these compounds including PET monomer were toxic to nematode Caenorhabditis elegans at high concentration of 500 μg/mL. In terms of the applicative potential, PET dimer can be used as suitable substrate for the screening, identification and characterization of novel PET-depolymerizing enzymes.",
publisher = "Elsevier",
journal = "Chemosphere, ChemosphereChemosphere",
title = "Synthesis and characterization of polyethylene terephthalate (PET) precursors and potential degradation products: Toxicity study and application in discovery of novel PETases",
volume = "275",
pages = "130005",
doi = "10.1016/j.chemosphere.2021.130005"
}
Đapović, M., Milivojević, D., Ilić-Tomić, T., Lješević, M., Nikolaivits, E., Topakas, E., Maslak, V.,& Nikodinović-Runić, J.. (2021). Synthesis and characterization of polyethylene terephthalate (PET) precursors and potential degradation products: Toxicity study and application in discovery of novel PETases. in Chemosphere
Elsevier., 275, 130005.
https://doi.org/10.1016/j.chemosphere.2021.130005
Đapović M, Milivojević D, Ilić-Tomić T, Lješević M, Nikolaivits E, Topakas E, Maslak V, Nikodinović-Runić J. Synthesis and characterization of polyethylene terephthalate (PET) precursors and potential degradation products: Toxicity study and application in discovery of novel PETases. in Chemosphere. 2021;275:130005.
doi:10.1016/j.chemosphere.2021.130005 .
Đapović, Milica, Milivojević, Dušan, Ilić-Tomić, Tatjana, Lješević, Marija, Nikolaivits, Efstratios, Topakas, Evangelos, Maslak, Veselin, Nikodinović-Runić, Jasmina, "Synthesis and characterization of polyethylene terephthalate (PET) precursors and potential degradation products: Toxicity study and application in discovery of novel PETases" in Chemosphere, 275 (2021):130005,
https://doi.org/10.1016/j.chemosphere.2021.130005 . .
7
43
13
37
35

Supplementary data for the article: Milovanovic, J.; Gündüz, M. G.; Zerva, A.; Petkovic, M.; Beskoski, V.; Thomaidis, N. S.; Topakas, E.; Nikodinovic-Runic, J. Synthesis and Laccase-Mediated Oxidation of New Condensed 1,4-Dihydropyridine Derivatives. Catalysts 2021, 11 (6), 727. https://doi.org/10.3390/catal11060727.

Milovanović, Jelena; Gündüz, Miyase Gözde; Zerva, Anastasia; Petković, Miloš; Beškoski, Vladimir; Thomaidis, Nikolaos S.; Topakas, Evangelos; Nikodinović-Runić, Jasmina

(MDPI, 2021)

TY  - DATA
AU  - Milovanović, Jelena
AU  - Gündüz, Miyase Gözde
AU  - Zerva, Anastasia
AU  - Petković, Miloš
AU  - Beškoski, Vladimir
AU  - Thomaidis, Nikolaos S.
AU  - Topakas, Evangelos
AU  - Nikodinović-Runić, Jasmina
PY  - 2021
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4568
PB  - MDPI
T2  - Catalysts
T1  - Supplementary data for the article: Milovanovic, J.; Gündüz, M. G.; Zerva, A.; Petkovic, M.; Beskoski, V.; Thomaidis, N. S.; Topakas, E.; Nikodinovic-Runic, J. Synthesis and Laccase-Mediated Oxidation of New Condensed 1,4-Dihydropyridine Derivatives. Catalysts 2021, 11 (6), 727. https://doi.org/10.3390/catal11060727.
UR  - https://hdl.handle.net/21.15107/rcub_cherry_4568
ER  - 
@misc{
author = "Milovanović, Jelena and Gündüz, Miyase Gözde and Zerva, Anastasia and Petković, Miloš and Beškoski, Vladimir and Thomaidis, Nikolaos S. and Topakas, Evangelos and Nikodinović-Runić, Jasmina",
year = "2021",
publisher = "MDPI",
journal = "Catalysts",
title = "Supplementary data for the article: Milovanovic, J.; Gündüz, M. G.; Zerva, A.; Petkovic, M.; Beskoski, V.; Thomaidis, N. S.; Topakas, E.; Nikodinovic-Runic, J. Synthesis and Laccase-Mediated Oxidation of New Condensed 1,4-Dihydropyridine Derivatives. Catalysts 2021, 11 (6), 727. https://doi.org/10.3390/catal11060727.",
url = "https://hdl.handle.net/21.15107/rcub_cherry_4568"
}
Milovanović, J., Gündüz, M. G., Zerva, A., Petković, M., Beškoski, V., Thomaidis, N. S., Topakas, E.,& Nikodinović-Runić, J.. (2021). Supplementary data for the article: Milovanovic, J.; Gündüz, M. G.; Zerva, A.; Petkovic, M.; Beskoski, V.; Thomaidis, N. S.; Topakas, E.; Nikodinovic-Runic, J. Synthesis and Laccase-Mediated Oxidation of New Condensed 1,4-Dihydropyridine Derivatives. Catalysts 2021, 11 (6), 727. https://doi.org/10.3390/catal11060727.. in Catalysts
MDPI..
https://hdl.handle.net/21.15107/rcub_cherry_4568
Milovanović J, Gündüz MG, Zerva A, Petković M, Beškoski V, Thomaidis NS, Topakas E, Nikodinović-Runić J. Supplementary data for the article: Milovanovic, J.; Gündüz, M. G.; Zerva, A.; Petkovic, M.; Beskoski, V.; Thomaidis, N. S.; Topakas, E.; Nikodinovic-Runic, J. Synthesis and Laccase-Mediated Oxidation of New Condensed 1,4-Dihydropyridine Derivatives. Catalysts 2021, 11 (6), 727. https://doi.org/10.3390/catal11060727.. in Catalysts. 2021;.
https://hdl.handle.net/21.15107/rcub_cherry_4568 .
Milovanović, Jelena, Gündüz, Miyase Gözde, Zerva, Anastasia, Petković, Miloš, Beškoski, Vladimir, Thomaidis, Nikolaos S., Topakas, Evangelos, Nikodinović-Runić, Jasmina, "Supplementary data for the article: Milovanovic, J.; Gündüz, M. G.; Zerva, A.; Petkovic, M.; Beskoski, V.; Thomaidis, N. S.; Topakas, E.; Nikodinovic-Runic, J. Synthesis and Laccase-Mediated Oxidation of New Condensed 1,4-Dihydropyridine Derivatives. Catalysts 2021, 11 (6), 727. https://doi.org/10.3390/catal11060727." in Catalysts (2021),
https://hdl.handle.net/21.15107/rcub_cherry_4568 .

Synthesis and characterization of polyethylene terephthalate (PET) precursors and potential degradation products: Toxicity study and application in discovery of novel PETases

Đapović, Milica; Milivojević, Dušan; Ilić-Tomić, Tatjana; Lješević, Marija; Nikolaivits, Efstratios; Topakas, Evangelos; Maslak, Veselin; Nikodinović-Runić, Jasmina

(Elsevier, 2021)

TY  - JOUR
AU  - Đapović, Milica
AU  - Milivojević, Dušan
AU  - Ilić-Tomić, Tatjana
AU  - Lješević, Marija
AU  - Nikolaivits, Efstratios
AU  - Topakas, Evangelos
AU  - Maslak, Veselin
AU  - Nikodinović-Runić, Jasmina
PY  - 2021
UR  - https://www.sciencedirect.com/science/article/pii/S0045653521004744
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4409
AB  - Polyethylene terephthalate (PET) is widely used material and as such became highly enriched in nature. It is generally considered inert and safe plastic, but due to the recent increased efforts to break-down PET using biotechnological approaches, we realized the scarcity of information about structural analysis of possible degradation products and their ecotoxicological assessment. Therefore, in this study, 11 compounds belonging to the group of PET precursors and possible degradation products have been comprehensively characterized. Seven of these compounds including 1-(2-hydroxyethyl)-4-methylterephthalate, ethylene glycol bis(methyl terephthalate), methyl bis(2-hydroxyethyl terephtahalate), 1,4-benzenedicarboxylic acid, 1,4-bis[2-[[4-(methoxycarbonyl)benzoyl]oxy]ethyl] ester and methyl tris(2-hydroxyethyl terephthalate) corresponding to mono-, 1.5-, di-, 2,5- and trimer of PET were synthetized and structurally characterized for the first time. In-silico druglikeness and physico-chemical properties of these compounds were predicted using variety of platforms. No antimicrobial properties were detected even at 1000 μg/mL. Ecotoxicological impact of the compounds against marine bacteria Allivibrio fischeri proved that the 6 out of 11 tested PET-associated compounds may be classified as harmful to aquatic microorganisms, with PET trimer being one of the most toxic. In comparison, most of the compounds were not toxic on human lung fibroblasts (MRC-5) at 200 μg/mL with inhibiting concentration (IC50) values of 30 μg/mL and 50 μg/mL determined for PET dimer and trimer. Only three of these compounds including PET monomer were toxic to nematode Caenorhabditis elegans at high concentration of 500 μg/mL. In terms of the applicative potential, PET dimer can be used as suitable substrate for the screening, identification and characterization of novel PET-depolymerizing enzymes.
PB  - Elsevier
T2  - Chemosphere
T2  - ChemosphereChemosphere
T1  - Synthesis and characterization of polyethylene terephthalate (PET) precursors and potential degradation products: Toxicity study and application in discovery of novel PETases
VL  - 275
SP  - 130005
DO  - 10.1016/j.chemosphere.2021.130005
ER  - 
@article{
author = "Đapović, Milica and Milivojević, Dušan and Ilić-Tomić, Tatjana and Lješević, Marija and Nikolaivits, Efstratios and Topakas, Evangelos and Maslak, Veselin and Nikodinović-Runić, Jasmina",
year = "2021",
abstract = "Polyethylene terephthalate (PET) is widely used material and as such became highly enriched in nature. It is generally considered inert and safe plastic, but due to the recent increased efforts to break-down PET using biotechnological approaches, we realized the scarcity of information about structural analysis of possible degradation products and their ecotoxicological assessment. Therefore, in this study, 11 compounds belonging to the group of PET precursors and possible degradation products have been comprehensively characterized. Seven of these compounds including 1-(2-hydroxyethyl)-4-methylterephthalate, ethylene glycol bis(methyl terephthalate), methyl bis(2-hydroxyethyl terephtahalate), 1,4-benzenedicarboxylic acid, 1,4-bis[2-[[4-(methoxycarbonyl)benzoyl]oxy]ethyl] ester and methyl tris(2-hydroxyethyl terephthalate) corresponding to mono-, 1.5-, di-, 2,5- and trimer of PET were synthetized and structurally characterized for the first time. In-silico druglikeness and physico-chemical properties of these compounds were predicted using variety of platforms. No antimicrobial properties were detected even at 1000 μg/mL. Ecotoxicological impact of the compounds against marine bacteria Allivibrio fischeri proved that the 6 out of 11 tested PET-associated compounds may be classified as harmful to aquatic microorganisms, with PET trimer being one of the most toxic. In comparison, most of the compounds were not toxic on human lung fibroblasts (MRC-5) at 200 μg/mL with inhibiting concentration (IC50) values of 30 μg/mL and 50 μg/mL determined for PET dimer and trimer. Only three of these compounds including PET monomer were toxic to nematode Caenorhabditis elegans at high concentration of 500 μg/mL. In terms of the applicative potential, PET dimer can be used as suitable substrate for the screening, identification and characterization of novel PET-depolymerizing enzymes.",
publisher = "Elsevier",
journal = "Chemosphere, ChemosphereChemosphere",
title = "Synthesis and characterization of polyethylene terephthalate (PET) precursors and potential degradation products: Toxicity study and application in discovery of novel PETases",
volume = "275",
pages = "130005",
doi = "10.1016/j.chemosphere.2021.130005"
}
Đapović, M., Milivojević, D., Ilić-Tomić, T., Lješević, M., Nikolaivits, E., Topakas, E., Maslak, V.,& Nikodinović-Runić, J.. (2021). Synthesis and characterization of polyethylene terephthalate (PET) precursors and potential degradation products: Toxicity study and application in discovery of novel PETases. in Chemosphere
Elsevier., 275, 130005.
https://doi.org/10.1016/j.chemosphere.2021.130005
Đapović M, Milivojević D, Ilić-Tomić T, Lješević M, Nikolaivits E, Topakas E, Maslak V, Nikodinović-Runić J. Synthesis and characterization of polyethylene terephthalate (PET) precursors and potential degradation products: Toxicity study and application in discovery of novel PETases. in Chemosphere. 2021;275:130005.
doi:10.1016/j.chemosphere.2021.130005 .
Đapović, Milica, Milivojević, Dušan, Ilić-Tomić, Tatjana, Lješević, Marija, Nikolaivits, Efstratios, Topakas, Evangelos, Maslak, Veselin, Nikodinović-Runić, Jasmina, "Synthesis and characterization of polyethylene terephthalate (PET) precursors and potential degradation products: Toxicity study and application in discovery of novel PETases" in Chemosphere, 275 (2021):130005,
https://doi.org/10.1016/j.chemosphere.2021.130005 . .
7
43
13
37
35

Synthesis and laccase-mediated oxidation of new condensed 1,4-dihydropyridine derivatives

Milovanović, Jelena; Gündüz, Miyase Gözde; Zerva, Anastasia; Petković, Miloš; Beškoski, Vladimir; Thomaidis, Nikolaos S.; Topakas, Evangelos; Nikodinović-Runić, Jasmina

(MDPI, 2021)

TY  - JOUR
AU  - Milovanović, Jelena
AU  - Gündüz, Miyase Gözde
AU  - Zerva, Anastasia
AU  - Petković, Miloš
AU  - Beškoski, Vladimir
AU  - Thomaidis, Nikolaos S.
AU  - Topakas, Evangelos
AU  - Nikodinović-Runić, Jasmina
PY  - 2021
UR  - https://www.mdpi.com/2073-4344/11/6/727
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4567
AB  - We describe herein the synthesis and laccase mediated oxidation of six novel 1,4-dihydropyridine (DHP)-based hexahydroquinolines (DHP1-DHP3) and decahydroacridines (DHP4-DHP6). We employed different laccase enzymes with varying redox potential to convert DHP1-DHP3 and DHP4-DHP6 to the corresponding pyridine-containing tetrahydroquinoline and octahydroacridine derivatives, respectively. Intensively coloured products were detected in all biocatalytic reactions using laccase from Trametes versicolor (TvLacc), possibly due to the presence of conjugated chromophores formed in products after oxidation. The NMR assessment confirmed that the oxidation product of DHP1 was its corresponding pyridine-bearing tetrahydroquinoline derivative. Laccase from Bacillus subtillis (BacillusLacc) was the most efficient enzyme for this group of substrates using HPLC assessment. Overall, it could be concluded that DHP2 and DHP5, bearing catecholic structures, were easily oxidized by all tested laccases, while DHP3 and DHP6 containing electron-withdrawing nitro-groups are not readily oxidized by laccases. DHP4 with decahydroacridine moiety consisting of three condensed six-membered rings that contribute not only to the volume but also to the higher redox potential of the substrate rendered this compound not to be biotransformed with any of the mentioned enzymes. Overall, we showed that multiple analytical approaches are needed in order to assess biocatalytical reactions.
PB  - MDPI
T2  - Catalysts
T1  - Synthesis and laccase-mediated oxidation of new condensed 1,4-dihydropyridine derivatives
VL  - 11
IS  - 6
SP  - 727
DO  - 10.3390/catal11060727
ER  - 
@article{
author = "Milovanović, Jelena and Gündüz, Miyase Gözde and Zerva, Anastasia and Petković, Miloš and Beškoski, Vladimir and Thomaidis, Nikolaos S. and Topakas, Evangelos and Nikodinović-Runić, Jasmina",
year = "2021",
abstract = "We describe herein the synthesis and laccase mediated oxidation of six novel 1,4-dihydropyridine (DHP)-based hexahydroquinolines (DHP1-DHP3) and decahydroacridines (DHP4-DHP6). We employed different laccase enzymes with varying redox potential to convert DHP1-DHP3 and DHP4-DHP6 to the corresponding pyridine-containing tetrahydroquinoline and octahydroacridine derivatives, respectively. Intensively coloured products were detected in all biocatalytic reactions using laccase from Trametes versicolor (TvLacc), possibly due to the presence of conjugated chromophores formed in products after oxidation. The NMR assessment confirmed that the oxidation product of DHP1 was its corresponding pyridine-bearing tetrahydroquinoline derivative. Laccase from Bacillus subtillis (BacillusLacc) was the most efficient enzyme for this group of substrates using HPLC assessment. Overall, it could be concluded that DHP2 and DHP5, bearing catecholic structures, were easily oxidized by all tested laccases, while DHP3 and DHP6 containing electron-withdrawing nitro-groups are not readily oxidized by laccases. DHP4 with decahydroacridine moiety consisting of three condensed six-membered rings that contribute not only to the volume but also to the higher redox potential of the substrate rendered this compound not to be biotransformed with any of the mentioned enzymes. Overall, we showed that multiple analytical approaches are needed in order to assess biocatalytical reactions.",
publisher = "MDPI",
journal = "Catalysts",
title = "Synthesis and laccase-mediated oxidation of new condensed 1,4-dihydropyridine derivatives",
volume = "11",
number = "6",
pages = "727",
doi = "10.3390/catal11060727"
}
Milovanović, J., Gündüz, M. G., Zerva, A., Petković, M., Beškoski, V., Thomaidis, N. S., Topakas, E.,& Nikodinović-Runić, J.. (2021). Synthesis and laccase-mediated oxidation of new condensed 1,4-dihydropyridine derivatives. in Catalysts
MDPI., 11(6), 727.
https://doi.org/10.3390/catal11060727
Milovanović J, Gündüz MG, Zerva A, Petković M, Beškoski V, Thomaidis NS, Topakas E, Nikodinović-Runić J. Synthesis and laccase-mediated oxidation of new condensed 1,4-dihydropyridine derivatives. in Catalysts. 2021;11(6):727.
doi:10.3390/catal11060727 .
Milovanović, Jelena, Gündüz, Miyase Gözde, Zerva, Anastasia, Petković, Miloš, Beškoski, Vladimir, Thomaidis, Nikolaos S., Topakas, Evangelos, Nikodinović-Runić, Jasmina, "Synthesis and laccase-mediated oxidation of new condensed 1,4-dihydropyridine derivatives" in Catalysts, 11, no. 6 (2021):727,
https://doi.org/10.3390/catal11060727 . .
1
5
1
3
3