Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200053 (University of Belgrade, Institute for Multidisciplinary Research)

Link to this page

info:eu-repo/grantAgreement/MESTD/inst-2020/200053/RS//

Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200053 (University of Belgrade, Institute for Multidisciplinary Research) (en)
Ministarstvo prosvete, nauke i tehnološkog razvoja Republike Srbije, Ugovor br. 451-03-68/2020-14/200053 (Univerzitet u Beogradu, Institut za multidisciplinarna istraživanja) (sr_RS)
Министарство просвете, науке и технолошког развоја Републике Србије, Уговор бр. 451-03-68/2020-14/200053 (Универзитет у Београду, Институт за мултидисциплинарна истраживања) (sr)
Authors

Publications

Supplementary data for the article: Milenković, I.; Radotić, K.; Trifković, J.; Vujisić, L.; Beškoski, V. P. Screening of Semi-Volatile Compounds in Plants Treated with Coated Cerium Oxide Nanoparticles by Comprehensive Two-Dimensional Gas Chromatography. Journal of Separation Science 2021, 44 (11), 2260–2268. https://doi.org/10.1002/jssc.202100145.

Milenković, Ivana; Radotić, Ksenija; Trifković, Jelena; Vujisić, Ljubodrag; Beškoski, Vladimir

(Wiley-VCH, 2021)

TY  - DATA
AU  - Milenković, Ivana
AU  - Radotić, Ksenija
AU  - Trifković, Jelena
AU  - Vujisić, Ljubodrag
AU  - Beškoski, Vladimir
PY  - 2021
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4520
PB  - Wiley-VCH
T2  - Journal of Separation Science
T1  - Supplementary data for the article: Milenković, I.; Radotić, K.; Trifković, J.; Vujisić, L.; Beškoski, V. P. Screening of Semi-Volatile Compounds in Plants Treated with Coated Cerium Oxide Nanoparticles by Comprehensive Two-Dimensional Gas Chromatography. Journal of Separation Science 2021, 44 (11), 2260–2268. https://doi.org/10.1002/jssc.202100145.
ER  - 
@misc{
author = "Milenković, Ivana and Radotić, Ksenija and Trifković, Jelena and Vujisić, Ljubodrag and Beškoski, Vladimir",
year = "2021",
publisher = "Wiley-VCH",
journal = "Journal of Separation Science",
title = "Supplementary data for the article: Milenković, I.; Radotić, K.; Trifković, J.; Vujisić, L.; Beškoski, V. P. Screening of Semi-Volatile Compounds in Plants Treated with Coated Cerium Oxide Nanoparticles by Comprehensive Two-Dimensional Gas Chromatography. Journal of Separation Science 2021, 44 (11), 2260–2268. https://doi.org/10.1002/jssc.202100145."
}
Milenković, I., Radotić, K., Trifković, J., Vujisić, L.,& Beškoski, V.. (2021). Supplementary data for the article: Milenković, I.; Radotić, K.; Trifković, J.; Vujisić, L.; Beškoski, V. P. Screening of Semi-Volatile Compounds in Plants Treated with Coated Cerium Oxide Nanoparticles by Comprehensive Two-Dimensional Gas Chromatography. Journal of Separation Science 2021, 44 (11), 2260–2268. https://doi.org/10.1002/jssc.202100145.. in Journal of Separation Science
Wiley-VCH..
Milenković I, Radotić K, Trifković J, Vujisić L, Beškoski V. Supplementary data for the article: Milenković, I.; Radotić, K.; Trifković, J.; Vujisić, L.; Beškoski, V. P. Screening of Semi-Volatile Compounds in Plants Treated with Coated Cerium Oxide Nanoparticles by Comprehensive Two-Dimensional Gas Chromatography. Journal of Separation Science 2021, 44 (11), 2260–2268. https://doi.org/10.1002/jssc.202100145.. in Journal of Separation Science. 2021;..
Milenković, Ivana, Radotić, Ksenija, Trifković, Jelena, Vujisić, Ljubodrag, Beškoski, Vladimir, "Supplementary data for the article: Milenković, I.; Radotić, K.; Trifković, J.; Vujisić, L.; Beškoski, V. P. Screening of Semi-Volatile Compounds in Plants Treated with Coated Cerium Oxide Nanoparticles by Comprehensive Two-Dimensional Gas Chromatography. Journal of Separation Science 2021, 44 (11), 2260–2268. https://doi.org/10.1002/jssc.202100145." in Journal of Separation Science (2021).

Screening of semi-volatile compounds in plants treated with coated cerium oxide nanoparticles by comprehensive two-dimensional gas chromatography

Milenković, Ivana; Radotić, Ksenija; Trifković, Jelena; Vujisić, Ljubodrag; Beškoski, Vladimir

(Wiley-VCH, 2021)

TY  - JOUR
AU  - Milenković, Ivana
AU  - Radotić, Ksenija
AU  - Trifković, Jelena
AU  - Vujisić, Ljubodrag
AU  - Beškoski, Vladimir 
PY  - 2021
UR  - https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/abs/10.1002/jssc.202100145
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4519
AB  - Literature data about semi-volatile organic compounds in plants and the effect of cerium oxide nanoparticles on them are scarce. Surface modification of nanoparticles may change nanoparticle-environment interaction, and therefore affects compounds in plants. In this research, uncoated and glucose-, levan-, and pullulan-coated cerium oxide nanoparticles were used for wheat and pea treatment during the growth. The aim was the screening of semi-volatile organic compounds from plants’ shoots using comprehensive two-dimensional gas chromatography–mass spectrometry, a powerful separation technique allowing to reach unique separation resolution, and investigation of qualitative changes after the treatment with coated cerium oxide nanoparticles. The results were analyzed by the identification of individual peaks and fingerprint analysis by image processing. Wheat samples contained a higher number of semi-volatile organic compounds (108) compared to pea (77) but were less affected by the treatments with coated nanoparticles. The highest number of compounds was detected in wheat after the treatment with levan- and pullulan-coated nanoparticles, and in pea after treatment with levan-coated nanoparticles. This article reports a successful application of a semi-volatile organic compounds profile presented only as categorical variables and unique fingerprint images for the inter-cultivar recognition. This method may be useful in screening nanoparticles’ effects on different plants.
PB  - Wiley-VCH
T2  - Journal of Separation Science
T2  - Journal of Separation Science
T1  - Screening of semi-volatile compounds in plants treated with coated cerium oxide nanoparticles by comprehensive two-dimensional gas chromatography
VL  - 44
IS  - 11
SP  - 2260
EP  - 2268
DO  - 10.1002/jssc.202100145
ER  - 
@article{
author = "Milenković, Ivana and Radotić, Ksenija and Trifković, Jelena and Vujisić, Ljubodrag and Beškoski, Vladimir ",
year = "2021",
abstract = "Literature data about semi-volatile organic compounds in plants and the effect of cerium oxide nanoparticles on them are scarce. Surface modification of nanoparticles may change nanoparticle-environment interaction, and therefore affects compounds in plants. In this research, uncoated and glucose-, levan-, and pullulan-coated cerium oxide nanoparticles were used for wheat and pea treatment during the growth. The aim was the screening of semi-volatile organic compounds from plants’ shoots using comprehensive two-dimensional gas chromatography–mass spectrometry, a powerful separation technique allowing to reach unique separation resolution, and investigation of qualitative changes after the treatment with coated cerium oxide nanoparticles. The results were analyzed by the identification of individual peaks and fingerprint analysis by image processing. Wheat samples contained a higher number of semi-volatile organic compounds (108) compared to pea (77) but were less affected by the treatments with coated nanoparticles. The highest number of compounds was detected in wheat after the treatment with levan- and pullulan-coated nanoparticles, and in pea after treatment with levan-coated nanoparticles. This article reports a successful application of a semi-volatile organic compounds profile presented only as categorical variables and unique fingerprint images for the inter-cultivar recognition. This method may be useful in screening nanoparticles’ effects on different plants.",
publisher = "Wiley-VCH",
journal = "Journal of Separation Science, Journal of Separation Science",
title = "Screening of semi-volatile compounds in plants treated with coated cerium oxide nanoparticles by comprehensive two-dimensional gas chromatography",
volume = "44",
number = "11",
pages = "2260-2268",
doi = "10.1002/jssc.202100145"
}
Milenković, I., Radotić, K., Trifković, J., Vujisić, L.,& Beškoski, V.. (2021). Screening of semi-volatile compounds in plants treated with coated cerium oxide nanoparticles by comprehensive two-dimensional gas chromatography. in Journal of Separation Science
Wiley-VCH., 44(11), 2260-2268.
https://doi.org/10.1002/jssc.202100145
Milenković I, Radotić K, Trifković J, Vujisić L, Beškoski V. Screening of semi-volatile compounds in plants treated with coated cerium oxide nanoparticles by comprehensive two-dimensional gas chromatography. in Journal of Separation Science. 2021;44(11):2260-2268.
doi:10.1002/jssc.202100145 .
Milenković, Ivana, Radotić, Ksenija, Trifković, Jelena, Vujisić, Ljubodrag, Beškoski, Vladimir , "Screening of semi-volatile compounds in plants treated with coated cerium oxide nanoparticles by comprehensive two-dimensional gas chromatography" in Journal of Separation Science, 44, no. 11 (2021):2260-2268,
https://doi.org/10.1002/jssc.202100145 . .
1
1
1
1

Optimization of phenol removal with horseradish peroxidase encapsulated within tyramine-alginate micro-beads

Pantić, Nevena; Prodanović, Radivoje; Ilić Đurđić, Karla; Polović, Natalija; Spasojević, Milica; Prodanović, Olivera

(Elsevier, 2021)

TY  - JOUR
AU  - Pantić, Nevena
AU  - Prodanović, Radivoje
AU  - Ilić Đurđić, Karla
AU  - Polović, Natalija
AU  - Spasojević, Milica
AU  - Prodanović, Olivera
PY  - 2021
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/4768
AB  - Removal of phenolic compounds from water is of major interest over the years, since they are one of the most common pollutants in aqueous systems. Horseradish peroxidase (HRP) is the most investigated biocatalyst for this purpose. Inactivation of the enzyme is a major issue which can be successfully overcome by the enzyme immobilization on different polymers. In this study, tyramine-alginate micro-beads were used as carriers for the immobilization of horseradish peroxidase. The effect of the oxidation degree of tyramine-alginates on a specific activity of the enzyme was tested. An increase in the concentration of oxidized alginate from 2.5 to 20% resulted in a gradual increase in the specific activity from 0.05 to 0.67 U/mL. HRP immobilized within these micro-beads was tested for the phenol removal in a batch reactor. Reaction conditions were optimized to achieve a high removal efficiency and substantial reusability of the system. In this study, for the first time, an internal generation of hydrogen peroxide from glucose and glucose oxidase was employed in the phenol removal process with HRP immobilized on tyramine-alginate. Within 6 h of repeated use 96% of phenol was removed when the system for internal delivery of H2O2, composed of 0.187 U/mL of glucose oxidase and 4 mmol/L of glucose was employed. A common straightforward addition of hydrogen peroxide provided the removal efficiency of only 42%, under the same reaction conditions. The highest efficiency of the phenol removal (96%) was obtained with HRP immobilized within 20 mol% oxidized tyramine-alginate micro-beads. Fifteen mol% oxidized tyramine-alginate showed lower removal efficiency in the first cycle of use (73%) but more promising reusability, since the immobilized enzyme retained 61% of its initial activity even after four consecutive cycles of use.
PB  - Elsevier
T2  - Environmental Technology & Innovation
T2  - Environmental Technology & InnovationEnvironmental Technology & Innovation
T1  - Optimization of phenol removal with horseradish peroxidase encapsulated within tyramine-alginate micro-beads
VL  - 21
SP  - 101211
DO  - 10.1016/j.eti.2020.101211
ER  - 
@article{
author = "Pantić, Nevena and Prodanović, Radivoje and Ilić Đurđić, Karla and Polović, Natalija and Spasojević, Milica and Prodanović, Olivera",
year = "2021",
abstract = "Removal of phenolic compounds from water is of major interest over the years, since they are one of the most common pollutants in aqueous systems. Horseradish peroxidase (HRP) is the most investigated biocatalyst for this purpose. Inactivation of the enzyme is a major issue which can be successfully overcome by the enzyme immobilization on different polymers. In this study, tyramine-alginate micro-beads were used as carriers for the immobilization of horseradish peroxidase. The effect of the oxidation degree of tyramine-alginates on a specific activity of the enzyme was tested. An increase in the concentration of oxidized alginate from 2.5 to 20% resulted in a gradual increase in the specific activity from 0.05 to 0.67 U/mL. HRP immobilized within these micro-beads was tested for the phenol removal in a batch reactor. Reaction conditions were optimized to achieve a high removal efficiency and substantial reusability of the system. In this study, for the first time, an internal generation of hydrogen peroxide from glucose and glucose oxidase was employed in the phenol removal process with HRP immobilized on tyramine-alginate. Within 6 h of repeated use 96% of phenol was removed when the system for internal delivery of H2O2, composed of 0.187 U/mL of glucose oxidase and 4 mmol/L of glucose was employed. A common straightforward addition of hydrogen peroxide provided the removal efficiency of only 42%, under the same reaction conditions. The highest efficiency of the phenol removal (96%) was obtained with HRP immobilized within 20 mol% oxidized tyramine-alginate micro-beads. Fifteen mol% oxidized tyramine-alginate showed lower removal efficiency in the first cycle of use (73%) but more promising reusability, since the immobilized enzyme retained 61% of its initial activity even after four consecutive cycles of use.",
publisher = "Elsevier",
journal = "Environmental Technology & Innovation, Environmental Technology & InnovationEnvironmental Technology & Innovation",
title = "Optimization of phenol removal with horseradish peroxidase encapsulated within tyramine-alginate micro-beads",
volume = "21",
pages = "101211",
doi = "10.1016/j.eti.2020.101211"
}
Pantić, N., Prodanović, R., Ilić Đurđić, K., Polović, N., Spasojević, M.,& Prodanović, O.. (2021). Optimization of phenol removal with horseradish peroxidase encapsulated within tyramine-alginate micro-beads. in Environmental Technology & Innovation
Elsevier., 21, 101211.
https://doi.org/10.1016/j.eti.2020.101211
Pantić N, Prodanović R, Ilić Đurđić K, Polović N, Spasojević M, Prodanović O. Optimization of phenol removal with horseradish peroxidase encapsulated within tyramine-alginate micro-beads. in Environmental Technology & Innovation. 2021;21:101211.
doi:10.1016/j.eti.2020.101211 .
Pantić, Nevena, Prodanović, Radivoje, Ilić Đurđić, Karla, Polović, Natalija, Spasojević, Milica, Prodanović, Olivera, "Optimization of phenol removal with horseradish peroxidase encapsulated within tyramine-alginate micro-beads" in Environmental Technology & Innovation, 21 (2021):101211,
https://doi.org/10.1016/j.eti.2020.101211 . .
2

Dopamine-modified pectin for a Streptomyces cyaneus laccase induced microbeads formation, immobilization, and textile dyes decolorization

Popović, Nikolina; Stanišić, Marija; Ilić Đurđić, Karla; Prodanović, Olivera; Polović, Natalija; Prodanović, Radivoje

(Elsevier, 2021)

TY  - JOUR
AU  - Popović, Nikolina
AU  - Stanišić, Marija
AU  - Ilić Đurđić, Karla
AU  - Prodanović, Olivera
AU  - Polović, Natalija
AU  - Prodanović, Radivoje
PY  - 2021
UR  - https://www.sciencedirect.com/science/article/pii/S235218642100047X
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4493
AB  - Pectins are a group of heterologous polysaccharides capable of forming hydrogels and applicable in many industrial processes. A new type of modified pectin was synthesized by periodate oxidation and reductive amination with dopamine and sodium cyanoborohydride. The success of modification was confirmed by UV–Vis,FTIR, and 1H NMR spectroscopy. The obtained dopamine-pectin could form hydrogels by ionic crosslinking of carboxyl groups with calcium or by crosslinking phenol groups with laccase. For enzymatic crosslinking with laccase from Streptomyces cyaneus expressed in E. coli, isolation and purification of the enzyme was done. Using emulsion-based enzymatic crosslinking polymerization, dopamine-pectin microbeads with immobilized laccase were made. The immobilized laccase showed improved thermal and pH stability in comparison to the free enzyme. The immobilized biocatalyst effectively decolorized various dyes: Amido Black 10B, Reactive Black 5, and Evans Blue. After ten cycles of repeated use, the microbead immobilized laccase could still decolorize 60% and 36% of Amido Black 10B and Reactive Black 5, respectively.
PB  - Elsevier
T2  - Environmental Technology & Innovation
T2  - Environmental Technology & InnovationEnvironmental Technology & Innovation
T1  - Dopamine-modified pectin for a Streptomyces cyaneus laccase induced microbeads formation, immobilization, and textile dyes decolorization
VL  - 22
SP  - 101399
DO  - 10.1016/j.eti.2021.101399
ER  - 
@article{
author = "Popović, Nikolina and Stanišić, Marija and Ilić Đurđić, Karla and Prodanović, Olivera and Polović, Natalija and Prodanović, Radivoje",
year = "2021",
abstract = "Pectins are a group of heterologous polysaccharides capable of forming hydrogels and applicable in many industrial processes. A new type of modified pectin was synthesized by periodate oxidation and reductive amination with dopamine and sodium cyanoborohydride. The success of modification was confirmed by UV–Vis,FTIR, and 1H NMR spectroscopy. The obtained dopamine-pectin could form hydrogels by ionic crosslinking of carboxyl groups with calcium or by crosslinking phenol groups with laccase. For enzymatic crosslinking with laccase from Streptomyces cyaneus expressed in E. coli, isolation and purification of the enzyme was done. Using emulsion-based enzymatic crosslinking polymerization, dopamine-pectin microbeads with immobilized laccase were made. The immobilized laccase showed improved thermal and pH stability in comparison to the free enzyme. The immobilized biocatalyst effectively decolorized various dyes: Amido Black 10B, Reactive Black 5, and Evans Blue. After ten cycles of repeated use, the microbead immobilized laccase could still decolorize 60% and 36% of Amido Black 10B and Reactive Black 5, respectively.",
publisher = "Elsevier",
journal = "Environmental Technology & Innovation, Environmental Technology & InnovationEnvironmental Technology & Innovation",
title = "Dopamine-modified pectin for a Streptomyces cyaneus laccase induced microbeads formation, immobilization, and textile dyes decolorization",
volume = "22",
pages = "101399",
doi = "10.1016/j.eti.2021.101399"
}
Popović, N., Stanišić, M., Ilić Đurđić, K., Prodanović, O., Polović, N.,& Prodanović, R.. (2021). Dopamine-modified pectin for a Streptomyces cyaneus laccase induced microbeads formation, immobilization, and textile dyes decolorization. in Environmental Technology & Innovation
Elsevier., 22, 101399.
https://doi.org/10.1016/j.eti.2021.101399
Popović N, Stanišić M, Ilić Đurđić K, Prodanović O, Polović N, Prodanović R. Dopamine-modified pectin for a Streptomyces cyaneus laccase induced microbeads formation, immobilization, and textile dyes decolorization. in Environmental Technology & Innovation. 2021;22:101399.
doi:10.1016/j.eti.2021.101399 .
Popović, Nikolina, Stanišić, Marija, Ilić Đurđić, Karla, Prodanović, Olivera, Polović, Natalija, Prodanović, Radivoje, "Dopamine-modified pectin for a Streptomyces cyaneus laccase induced microbeads formation, immobilization, and textile dyes decolorization" in Environmental Technology & Innovation, 22 (2021):101399,
https://doi.org/10.1016/j.eti.2021.101399 . .
2
1
1

Supplementary data for the article: Popović, N.; Stanišić, M.; Ilić Đurđić, K.; Prodanović, O.; Polović, N.; Prodanović, R. Dopamine-Modified Pectin for a Streptomyces Cyaneus Laccase Induced Microbeads Formation, Immobilization, and Textile Dyes Decolorization. Environmental Technology & Innovation 2021, 22, 101399. https://doi.org/10.1016/j.eti.2021.101399.

Popović, Nikolina; Stanišić, Marija; Ilić Đurđić, Karla; Prodanović, Olivera; Polović, Natalija; Prodanović, Radivoje

(Elsevier, 2021)

TY  - DATA
AU  - Popović, Nikolina
AU  - Stanišić, Marija
AU  - Ilić Đurđić, Karla
AU  - Prodanović, Olivera
AU  - Polović, Natalija
AU  - Prodanović, Radivoje
PY  - 2021
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4493
PB  - Elsevier
T2  - Environmental Technology & Innovation
T2  - Environmental Technology & InnovationEnvironmental Technology & Innovation
T1  - Supplementary data for the article: Popović, N.; Stanišić, M.; Ilić Đurđić, K.; Prodanović, O.; Polović, N.; Prodanović, R. Dopamine-Modified Pectin for a Streptomyces Cyaneus Laccase Induced Microbeads Formation, Immobilization, and Textile Dyes Decolorization. Environmental Technology & Innovation 2021, 22, 101399. https://doi.org/10.1016/j.eti.2021.101399.
ER  - 
@misc{
author = "Popović, Nikolina and Stanišić, Marija and Ilić Đurđić, Karla and Prodanović, Olivera and Polović, Natalija and Prodanović, Radivoje",
year = "2021",
publisher = "Elsevier",
journal = "Environmental Technology & Innovation, Environmental Technology & InnovationEnvironmental Technology & Innovation",
title = "Supplementary data for the article: Popović, N.; Stanišić, M.; Ilić Đurđić, K.; Prodanović, O.; Polović, N.; Prodanović, R. Dopamine-Modified Pectin for a Streptomyces Cyaneus Laccase Induced Microbeads Formation, Immobilization, and Textile Dyes Decolorization. Environmental Technology & Innovation 2021, 22, 101399. https://doi.org/10.1016/j.eti.2021.101399."
}
Popović, N., Stanišić, M., Ilić Đurđić, K., Prodanović, O., Polović, N.,& Prodanović, R.. (2021). Supplementary data for the article: Popović, N.; Stanišić, M.; Ilić Đurđić, K.; Prodanović, O.; Polović, N.; Prodanović, R. Dopamine-Modified Pectin for a Streptomyces Cyaneus Laccase Induced Microbeads Formation, Immobilization, and Textile Dyes Decolorization. Environmental Technology & Innovation 2021, 22, 101399. https://doi.org/10.1016/j.eti.2021.101399.. in Environmental Technology & Innovation
Elsevier..
Popović N, Stanišić M, Ilić Đurđić K, Prodanović O, Polović N, Prodanović R. Supplementary data for the article: Popović, N.; Stanišić, M.; Ilić Đurđić, K.; Prodanović, O.; Polović, N.; Prodanović, R. Dopamine-Modified Pectin for a Streptomyces Cyaneus Laccase Induced Microbeads Formation, Immobilization, and Textile Dyes Decolorization. Environmental Technology & Innovation 2021, 22, 101399. https://doi.org/10.1016/j.eti.2021.101399.. in Environmental Technology & Innovation. 2021;..
Popović, Nikolina, Stanišić, Marija, Ilić Đurđić, Karla, Prodanović, Olivera, Polović, Natalija, Prodanović, Radivoje, "Supplementary data for the article: Popović, N.; Stanišić, M.; Ilić Đurđić, K.; Prodanović, O.; Polović, N.; Prodanović, R. Dopamine-Modified Pectin for a Streptomyces Cyaneus Laccase Induced Microbeads Formation, Immobilization, and Textile Dyes Decolorization. Environmental Technology & Innovation 2021, 22, 101399. https://doi.org/10.1016/j.eti.2021.101399." in Environmental Technology & Innovation (2021).

Immobilization of yeast cell walls with surface displayed laccase from Streptomyces cyaneus within dopamine-alginate beads for dye decolorization

Popović, Nikolina; Pržulj, Dunja; Mladenović, Maja; Prodanović, Olivera; Ece, Selin; Ilić Đurđić, Karla; Ostafe, Raluca; Fischer, Rainer; Prodanović, Radivoje

(2021)

TY  - JOUR
AU  - Popović, Nikolina
AU  - Pržulj, Dunja
AU  - Mladenović, Maja
AU  - Prodanović, Olivera
AU  - Ece, Selin
AU  - Ilić Đurđić, Karla
AU  - Ostafe, Raluca
AU  - Fischer, Rainer
AU  - Prodanović, Radivoje
PY  - 2021
UR  - https://www.sciencedirect.com/science/article/pii/S0141813021008813
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4404
AB  - High amounts of toxic textile dyes are released into the environment due to coloring and wastewaters treatment processes' inefficiency. To remove dyes from the environment and wastewaters, researchers focused on applying immobilized enzymes due to mild reaction conditions and enzyme nontoxicity. Laccases are oxidases with wide substrate specificity, capable of degradation of many different dye types. Laccase from Streptomyces cyaneus was expressed on the surface of Saccharomyces cerevisiae EBY100 cells. The specific activity of surface-displayed laccase was increased by toluene-induced lysis to 3.1 U/g of cell walls. For cell wall laccase immobilization within hydrogel beads, alginate was modified by dopamine using periodate oxidation and reductive amination and characterized by UV–Vis, FTIR, and NMR spectroscopy. Cell wall laccase was immobilized within alginate and dopamine-alginate beads additionally cross-linked by oxygen and laccase. The immobilized enzyme's specific activity was two times higher using dopamine-alginate compared to native alginate beads, and immobilization yield increased 16 times. Cell wall laccase immobilized within dopamine-alginate beads decolorized Amido Black 10B, Reactive Black 5, Evans Blue, and Remazol Brilliant Blue with 100% efficiency and after ten rounds of multiple-use retained decolorization efficiency of 90% with Evans Blue and 61% with Amido Black.
T2  - International Journal of Biological Macromolecules
T1  - Immobilization of yeast cell walls with surface displayed laccase from Streptomyces cyaneus within dopamine-alginate beads for dye decolorization
VL  - 181
SP  - 1072
EP  - 1080
DO  - 10.1016/j.ijbiomac.2021.04.115
ER  - 
@article{
author = "Popović, Nikolina and Pržulj, Dunja and Mladenović, Maja and Prodanović, Olivera and Ece, Selin and Ilić Đurđić, Karla and Ostafe, Raluca and Fischer, Rainer and Prodanović, Radivoje",
year = "2021",
abstract = "High amounts of toxic textile dyes are released into the environment due to coloring and wastewaters treatment processes' inefficiency. To remove dyes from the environment and wastewaters, researchers focused on applying immobilized enzymes due to mild reaction conditions and enzyme nontoxicity. Laccases are oxidases with wide substrate specificity, capable of degradation of many different dye types. Laccase from Streptomyces cyaneus was expressed on the surface of Saccharomyces cerevisiae EBY100 cells. The specific activity of surface-displayed laccase was increased by toluene-induced lysis to 3.1 U/g of cell walls. For cell wall laccase immobilization within hydrogel beads, alginate was modified by dopamine using periodate oxidation and reductive amination and characterized by UV–Vis, FTIR, and NMR spectroscopy. Cell wall laccase was immobilized within alginate and dopamine-alginate beads additionally cross-linked by oxygen and laccase. The immobilized enzyme's specific activity was two times higher using dopamine-alginate compared to native alginate beads, and immobilization yield increased 16 times. Cell wall laccase immobilized within dopamine-alginate beads decolorized Amido Black 10B, Reactive Black 5, Evans Blue, and Remazol Brilliant Blue with 100% efficiency and after ten rounds of multiple-use retained decolorization efficiency of 90% with Evans Blue and 61% with Amido Black.",
journal = "International Journal of Biological Macromolecules",
title = "Immobilization of yeast cell walls with surface displayed laccase from Streptomyces cyaneus within dopamine-alginate beads for dye decolorization",
volume = "181",
pages = "1072-1080",
doi = "10.1016/j.ijbiomac.2021.04.115"
}
Popović, N., Pržulj, D., Mladenović, M., Prodanović, O., Ece, S., Ilić Đurđić, K., Ostafe, R., Fischer, R.,& Prodanović, R.. (2021). Immobilization of yeast cell walls with surface displayed laccase from Streptomyces cyaneus within dopamine-alginate beads for dye decolorization. in International Journal of Biological Macromolecules, 181, 1072-1080.
https://doi.org/10.1016/j.ijbiomac.2021.04.115
Popović N, Pržulj D, Mladenović M, Prodanović O, Ece S, Ilić Đurđić K, Ostafe R, Fischer R, Prodanović R. Immobilization of yeast cell walls with surface displayed laccase from Streptomyces cyaneus within dopamine-alginate beads for dye decolorization. in International Journal of Biological Macromolecules. 2021;181:1072-1080.
doi:10.1016/j.ijbiomac.2021.04.115 .
Popović, Nikolina, Pržulj, Dunja, Mladenović, Maja, Prodanović, Olivera, Ece, Selin, Ilić Đurđić, Karla, Ostafe, Raluca, Fischer, Rainer, Prodanović, Radivoje, "Immobilization of yeast cell walls with surface displayed laccase from Streptomyces cyaneus within dopamine-alginate beads for dye decolorization" in International Journal of Biological Macromolecules, 181 (2021):1072-1080,
https://doi.org/10.1016/j.ijbiomac.2021.04.115 . .
3
2
1
1

Supplementary data for the article: Popović, N.; Pržulj, D.; Mladenović, M.; Prodanović, O.; Ece, S.; Ilić Đurđić, K.; Ostafe, R.; Fischer, R.; Prodanović, R. Immobilization of Yeast Cell Walls with Surface Displayed Laccase from Streptomyces Cyaneus within Dopamine-Alginate Beads for Dye Decolorization. International Journal of Biological Macromolecules 2021, 181, 1072–1080. https://doi.org/10.1016/j.ijbiomac.2021.04.115.

Popović, Nikolina; Pržulj, Dunja; Mladenović, Maja; Prodanović, Olivera; Ece, Selin; Ilić Đurđić, Karla; Ostafe, Raluca; Fischer, Rainer; Prodanović, Radivoje

(2021)

TY  - DATA
AU  - Popović, Nikolina
AU  - Pržulj, Dunja
AU  - Mladenović, Maja
AU  - Prodanović, Olivera
AU  - Ece, Selin
AU  - Ilić Đurđić, Karla
AU  - Ostafe, Raluca
AU  - Fischer, Rainer
AU  - Prodanović, Radivoje
PY  - 2021
UR  - https://www.sciencedirect.com/science/article/pii/S0141813021008813
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4405
T2  - International Journal of Biological Macromolecules
T1  - Supplementary data for the article: Popović, N.; Pržulj, D.; Mladenović, M.; Prodanović, O.; Ece, S.; Ilić Đurđić, K.; Ostafe, R.; Fischer, R.; Prodanović, R. Immobilization of Yeast Cell Walls with Surface Displayed Laccase from Streptomyces Cyaneus within Dopamine-Alginate Beads for Dye Decolorization. International Journal of Biological Macromolecules 2021, 181, 1072–1080. https://doi.org/10.1016/j.ijbiomac.2021.04.115.
ER  - 
@misc{
author = "Popović, Nikolina and Pržulj, Dunja and Mladenović, Maja and Prodanović, Olivera and Ece, Selin and Ilić Đurđić, Karla and Ostafe, Raluca and Fischer, Rainer and Prodanović, Radivoje",
year = "2021",
journal = "International Journal of Biological Macromolecules",
title = "Supplementary data for the article: Popović, N.; Pržulj, D.; Mladenović, M.; Prodanović, O.; Ece, S.; Ilić Đurđić, K.; Ostafe, R.; Fischer, R.; Prodanović, R. Immobilization of Yeast Cell Walls with Surface Displayed Laccase from Streptomyces Cyaneus within Dopamine-Alginate Beads for Dye Decolorization. International Journal of Biological Macromolecules 2021, 181, 1072–1080. https://doi.org/10.1016/j.ijbiomac.2021.04.115."
}
Popović, N., Pržulj, D., Mladenović, M., Prodanović, O., Ece, S., Ilić Đurđić, K., Ostafe, R., Fischer, R.,& Prodanović, R.. (2021). Supplementary data for the article: Popović, N.; Pržulj, D.; Mladenović, M.; Prodanović, O.; Ece, S.; Ilić Đurđić, K.; Ostafe, R.; Fischer, R.; Prodanović, R. Immobilization of Yeast Cell Walls with Surface Displayed Laccase from Streptomyces Cyaneus within Dopamine-Alginate Beads for Dye Decolorization. International Journal of Biological Macromolecules 2021, 181, 1072–1080. https://doi.org/10.1016/j.ijbiomac.2021.04.115.. in International Journal of Biological Macromolecules.
Popović N, Pržulj D, Mladenović M, Prodanović O, Ece S, Ilić Đurđić K, Ostafe R, Fischer R, Prodanović R. Supplementary data for the article: Popović, N.; Pržulj, D.; Mladenović, M.; Prodanović, O.; Ece, S.; Ilić Đurđić, K.; Ostafe, R.; Fischer, R.; Prodanović, R. Immobilization of Yeast Cell Walls with Surface Displayed Laccase from Streptomyces Cyaneus within Dopamine-Alginate Beads for Dye Decolorization. International Journal of Biological Macromolecules 2021, 181, 1072–1080. https://doi.org/10.1016/j.ijbiomac.2021.04.115.. in International Journal of Biological Macromolecules. 2021;..
Popović, Nikolina, Pržulj, Dunja, Mladenović, Maja, Prodanović, Olivera, Ece, Selin, Ilić Đurđić, Karla, Ostafe, Raluca, Fischer, Rainer, Prodanović, Radivoje, "Supplementary data for the article: Popović, N.; Pržulj, D.; Mladenović, M.; Prodanović, O.; Ece, S.; Ilić Đurđić, K.; Ostafe, R.; Fischer, R.; Prodanović, R. Immobilization of Yeast Cell Walls with Surface Displayed Laccase from Streptomyces Cyaneus within Dopamine-Alginate Beads for Dye Decolorization. International Journal of Biological Macromolecules 2021, 181, 1072–1080. https://doi.org/10.1016/j.ijbiomac.2021.04.115." in International Journal of Biological Macromolecules (2021).

Immobilization of yeast cell walls with surface displayed laccase from Streptomyces cyaneus within dopamine-alginate beads for dye decolorization

Popović, Nikolina; Pržulj, Dunja; Mladenović, Maja; Prodanović, Olivera; Ece, Selin; Ilić Đurđić, Karla; Ostafe, Raluca; Fischer, Rainer; Prodanović, Radivoje

(2021)

TY  - JOUR
AU  - Popović, Nikolina
AU  - Pržulj, Dunja
AU  - Mladenović, Maja
AU  - Prodanović, Olivera
AU  - Ece, Selin
AU  - Ilić Đurđić, Karla
AU  - Ostafe, Raluca
AU  - Fischer, Rainer
AU  - Prodanović, Radivoje
PY  - 2021
UR  - https://www.sciencedirect.com/science/article/pii/S0141813021008813
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4406
AB  - High amounts of toxic textile dyes are released into the environment due to coloring and wastewaters treatment processes' inefficiency. To remove dyes from the environment and wastewaters, researchers focused on applying immobilized enzymes due to mild reaction conditions and enzyme nontoxicity. Laccases are oxidases with wide substrate specificity, capable of degradation of many different dye types. Laccase from Streptomyces cyaneus was expressed on the surface of Saccharomyces cerevisiae EBY100 cells. The specific activity of surface-displayed laccase was increased by toluene-induced lysis to 3.1 U/g of cell walls. For cell wall laccase immobilization within hydrogel beads, alginate was modified by dopamine using periodate oxidation and reductive amination and characterized by UV–Vis, FTIR, and NMR spectroscopy. Cell wall laccase was immobilized within alginate and dopamine-alginate beads additionally cross-linked by oxygen and laccase. The immobilized enzyme's specific activity was two times higher using dopamine-alginate compared to native alginate beads, and immobilization yield increased 16 times. Cell wall laccase immobilized within dopamine-alginate beads decolorized Amido Black 10B, Reactive Black 5, Evans Blue, and Remazol Brilliant Blue with 100% efficiency and after ten rounds of multiple-use retained decolorization efficiency of 90% with Evans Blue and 61% with Amido Black.
T2  - International Journal of Biological Macromolecules
T1  - Immobilization of yeast cell walls with surface displayed laccase from Streptomyces cyaneus within dopamine-alginate beads for dye decolorization
VL  - 181
SP  - 1072
EP  - 1080
DO  - 10.1016/j.ijbiomac.2021.04.115
ER  - 
@article{
author = "Popović, Nikolina and Pržulj, Dunja and Mladenović, Maja and Prodanović, Olivera and Ece, Selin and Ilić Đurđić, Karla and Ostafe, Raluca and Fischer, Rainer and Prodanović, Radivoje",
year = "2021",
abstract = "High amounts of toxic textile dyes are released into the environment due to coloring and wastewaters treatment processes' inefficiency. To remove dyes from the environment and wastewaters, researchers focused on applying immobilized enzymes due to mild reaction conditions and enzyme nontoxicity. Laccases are oxidases with wide substrate specificity, capable of degradation of many different dye types. Laccase from Streptomyces cyaneus was expressed on the surface of Saccharomyces cerevisiae EBY100 cells. The specific activity of surface-displayed laccase was increased by toluene-induced lysis to 3.1 U/g of cell walls. For cell wall laccase immobilization within hydrogel beads, alginate was modified by dopamine using periodate oxidation and reductive amination and characterized by UV–Vis, FTIR, and NMR spectroscopy. Cell wall laccase was immobilized within alginate and dopamine-alginate beads additionally cross-linked by oxygen and laccase. The immobilized enzyme's specific activity was two times higher using dopamine-alginate compared to native alginate beads, and immobilization yield increased 16 times. Cell wall laccase immobilized within dopamine-alginate beads decolorized Amido Black 10B, Reactive Black 5, Evans Blue, and Remazol Brilliant Blue with 100% efficiency and after ten rounds of multiple-use retained decolorization efficiency of 90% with Evans Blue and 61% with Amido Black.",
journal = "International Journal of Biological Macromolecules",
title = "Immobilization of yeast cell walls with surface displayed laccase from Streptomyces cyaneus within dopamine-alginate beads for dye decolorization",
volume = "181",
pages = "1072-1080",
doi = "10.1016/j.ijbiomac.2021.04.115"
}
Popović, N., Pržulj, D., Mladenović, M., Prodanović, O., Ece, S., Ilić Đurđić, K., Ostafe, R., Fischer, R.,& Prodanović, R.. (2021). Immobilization of yeast cell walls with surface displayed laccase from Streptomyces cyaneus within dopamine-alginate beads for dye decolorization. in International Journal of Biological Macromolecules, 181, 1072-1080.
https://doi.org/10.1016/j.ijbiomac.2021.04.115
Popović N, Pržulj D, Mladenović M, Prodanović O, Ece S, Ilić Đurđić K, Ostafe R, Fischer R, Prodanović R. Immobilization of yeast cell walls with surface displayed laccase from Streptomyces cyaneus within dopamine-alginate beads for dye decolorization. in International Journal of Biological Macromolecules. 2021;181:1072-1080.
doi:10.1016/j.ijbiomac.2021.04.115 .
Popović, Nikolina, Pržulj, Dunja, Mladenović, Maja, Prodanović, Olivera, Ece, Selin, Ilić Đurđić, Karla, Ostafe, Raluca, Fischer, Rainer, Prodanović, Radivoje, "Immobilization of yeast cell walls with surface displayed laccase from Streptomyces cyaneus within dopamine-alginate beads for dye decolorization" in International Journal of Biological Macromolecules, 181 (2021):1072-1080,
https://doi.org/10.1016/j.ijbiomac.2021.04.115 . .
3
2
1
2

Toxicity investigation of CeO2 nanoparticles coated with glucose and exopolysaccharides levan and pullulan on the bacterium Vibrio fischeri and aquatic organisms Daphnia magna and Danio rerio

Milenković, Ivana; Radotić, Ksenija; Despotović, Jovana; Lončarević, Branka; Lješević, Marija; Spasić, Slađana Z.; Nikolić, Aleksandra; Beškoski, Vladimir

(Elsevier, 2021)

TY  - JOUR
AU  - Milenković, Ivana
AU  - Radotić, Ksenija
AU  - Despotović, Jovana
AU  - Lončarević, Branka
AU  - Lješević, Marija
AU  - Spasić, Slađana Z.
AU  - Nikolić, Aleksandra
AU  - Beškoski, Vladimir 
PY  - 2021
UR  - https://www.sciencedirect.com/science/article/pii/S0166445X21001260
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4566
AB  - Cerium oxide nanoparticles (nCeO2) have widespread applications, but they can be hazardous to the environment. Some reports indicate the toxic effect of nCeO2 on tested animals, but literature data are mainly contradictory. Coating of nCeO2 can improve their suspension stability and change their interaction with the environment, which can consequently decrease their toxic effects. Herein, the exopolysaccharides levan and pullulan, due to their high water solubility, biocompatibility, and ability to form film, were used to coat nCeO2. Additionally, the monosaccharide glucose was used, since it is a common material for nanoparticle coating. This is the first study investigating the impact of carbohydrate-coated nCeO2 in comparison to uncoated nCeO2 using different model organisms. The aim of this study was to test the acute toxicity of carbohydrate-coated nCeO2 on the bacterium Vibrio fischeri NRRL B-11177, the crustacean Daphnia magna, and zebrafish Danio rerio. The second aim was to investigate the effects of nCeO2 on respiration in Daphnia magna which was performed for the first time. Finally, it was important to see the relation between Ce bioaccumulation in Daphnia magna and Danio rerio and other investigated parameters. Our results revealed that the coating decreased the toxicity of nCeO2 on Vibrio fischeri. The coating of nCeO2 did not affect the nanoparticles’ accumulation/adsorption or mortality in Daphnia magna or Danio rerio. Monitoring of respiration in Daphnia magna revealed changes in CO2 production after exposure to coated nCeO2, while the crustacean's O2 consumption was not affected by any of the coated nCeO2. In summary, this study revealed that, at 200 mg L−1, uncoated and carbohydrate-coated nCeO2 are not toxic for the tested organisms, however, the CO2 production in Daphnia magna is different when they are treated with coated and uncoated nCeO2. The highest production was in glucose and levan-coated nCeO2 according to their highest suspension stability. Daphnia magna (D. magna), Danio rerio (D. rerio), Vibrio fischeri (V. fischeri)
PB  - Elsevier
T2  - Aquatic Toxicology
T1  - Toxicity investigation of CeO2 nanoparticles coated with glucose and exopolysaccharides levan and pullulan on the bacterium Vibrio fischeri and aquatic organisms Daphnia magna and Danio rerio
VL  - 236
SP  - 105867
DO  - 10.1016/j.aquatox.2021.105867
ER  - 
@article{
author = "Milenković, Ivana and Radotić, Ksenija and Despotović, Jovana and Lončarević, Branka and Lješević, Marija and Spasić, Slađana Z. and Nikolić, Aleksandra and Beškoski, Vladimir ",
year = "2021",
abstract = "Cerium oxide nanoparticles (nCeO2) have widespread applications, but they can be hazardous to the environment. Some reports indicate the toxic effect of nCeO2 on tested animals, but literature data are mainly contradictory. Coating of nCeO2 can improve their suspension stability and change their interaction with the environment, which can consequently decrease their toxic effects. Herein, the exopolysaccharides levan and pullulan, due to their high water solubility, biocompatibility, and ability to form film, were used to coat nCeO2. Additionally, the monosaccharide glucose was used, since it is a common material for nanoparticle coating. This is the first study investigating the impact of carbohydrate-coated nCeO2 in comparison to uncoated nCeO2 using different model organisms. The aim of this study was to test the acute toxicity of carbohydrate-coated nCeO2 on the bacterium Vibrio fischeri NRRL B-11177, the crustacean Daphnia magna, and zebrafish Danio rerio. The second aim was to investigate the effects of nCeO2 on respiration in Daphnia magna which was performed for the first time. Finally, it was important to see the relation between Ce bioaccumulation in Daphnia magna and Danio rerio and other investigated parameters. Our results revealed that the coating decreased the toxicity of nCeO2 on Vibrio fischeri. The coating of nCeO2 did not affect the nanoparticles’ accumulation/adsorption or mortality in Daphnia magna or Danio rerio. Monitoring of respiration in Daphnia magna revealed changes in CO2 production after exposure to coated nCeO2, while the crustacean's O2 consumption was not affected by any of the coated nCeO2. In summary, this study revealed that, at 200 mg L−1, uncoated and carbohydrate-coated nCeO2 are not toxic for the tested organisms, however, the CO2 production in Daphnia magna is different when they are treated with coated and uncoated nCeO2. The highest production was in glucose and levan-coated nCeO2 according to their highest suspension stability. Daphnia magna (D. magna), Danio rerio (D. rerio), Vibrio fischeri (V. fischeri)",
publisher = "Elsevier",
journal = "Aquatic Toxicology",
title = "Toxicity investigation of CeO2 nanoparticles coated with glucose and exopolysaccharides levan and pullulan on the bacterium Vibrio fischeri and aquatic organisms Daphnia magna and Danio rerio",
volume = "236",
pages = "105867",
doi = "10.1016/j.aquatox.2021.105867"
}
Milenković, I., Radotić, K., Despotović, J., Lončarević, B., Lješević, M., Spasić, S. Z., Nikolić, A.,& Beškoski, V.. (2021). Toxicity investigation of CeO2 nanoparticles coated with glucose and exopolysaccharides levan and pullulan on the bacterium Vibrio fischeri and aquatic organisms Daphnia magna and Danio rerio. in Aquatic Toxicology
Elsevier., 236, 105867.
https://doi.org/10.1016/j.aquatox.2021.105867
Milenković I, Radotić K, Despotović J, Lončarević B, Lješević M, Spasić SZ, Nikolić A, Beškoski V. Toxicity investigation of CeO2 nanoparticles coated with glucose and exopolysaccharides levan and pullulan on the bacterium Vibrio fischeri and aquatic organisms Daphnia magna and Danio rerio. in Aquatic Toxicology. 2021;236:105867.
doi:10.1016/j.aquatox.2021.105867 .
Milenković, Ivana, Radotić, Ksenija, Despotović, Jovana, Lončarević, Branka, Lješević, Marija, Spasić, Slađana Z., Nikolić, Aleksandra, Beškoski, Vladimir , "Toxicity investigation of CeO2 nanoparticles coated with glucose and exopolysaccharides levan and pullulan on the bacterium Vibrio fischeri and aquatic organisms Daphnia magna and Danio rerio" in Aquatic Toxicology, 236 (2021):105867,
https://doi.org/10.1016/j.aquatox.2021.105867 . .
1
1
1
1

High-performance hydrogen evolution electrocatalysis using proton-intercalated TiO2 nanotube arrays as interactive supports for Ir nanoparticles

Lačnjevac, Uroš; Vasilić, Rastko; Dobrota, Ana; Đurđić, Slađana Z.; Tomanec, Ondřej; Zbořil, Radek; Mohajernia, Shiva; Nguyen, Nhat Truong; Skorodumova, Natalia; Manojlović, Dragan D.; Elezović, Nevenka; Pašti, Igor; Schmuki, Patrik

(Royal Society of Chemistry, 2020)

TY  - JOUR
AU  - Lačnjevac, Uroš
AU  - Vasilić, Rastko
AU  - Dobrota, Ana
AU  - Đurđić, Slađana Z.
AU  - Tomanec, Ondřej
AU  - Zbořil, Radek
AU  - Mohajernia, Shiva
AU  - Nguyen, Nhat Truong
AU  - Skorodumova, Natalia
AU  - Manojlović, Dragan D.
AU  - Elezović, Nevenka
AU  - Pašti, Igor
AU  - Schmuki, Patrik
PY  - 2020
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4288
AB  - Developing ultraefficient electrocatalytic materials for the hydrogen evolution reaction (HER) with low content of expensive platinum group metals (PGMs) via low-energy-input procedures is the key to the successful commercialization of green water electrolysis technologies for sustainable production of high-purity hydrogen. In this study, we report a facile room-temperature synthesis of ultrafine metallic Ir nanoparticles on conductive, proton-intercalated TiO2 nanotube (H-TNT) arrays via galvanic displacement. A series of experiments demonstrate that a controlled transformation of the H-TNT surface microstructure from neat open-top tubes to disordered nanostripe bundles (“nanograss”) is highly beneficial for providing an abundance of exposed Ir active sites. Consequently, for nanograss-engineered composites, outstanding HER activity metrics are achieved even at very low Ir(III) precursor concentrations. An optimum Ir@TNT cathode loaded with 5.7 μgIr cm−2 exhibits an overpotential of −63 mV at −100 mA cm−2 and a mass activity of 34 A mgIr−1 at −80 mV under acidic conditions, along with excellent catalytic durability and structural integrity. Density functional theory (DFT) simulations reveal that the hydrogen-rich TiO2 surface not only stabilizes the deposited Ir and weakens its H binding strength to a moderate intensity, but also actively takes part in the HER mechanism by refreshing the Ir catalytic sites near the Ir|H–TiO2 interface, thus substantially promoting H2 generation. The comprehensive characterization combined with theory provides an in-depth understanding of the electrocatalytic behavior of H-TNT supported PGM nanoparticles and demonstrates their high potential as competitive electrocatalyst systems for the HER.
PB  - Royal Society of Chemistry
T2  - Journal of Materials Chemistry A
T1  - High-performance hydrogen evolution electrocatalysis using proton-intercalated TiO2 nanotube arrays as interactive supports for Ir nanoparticles
VL  - 8
IS  - 43
SP  - 22773
EP  - 22790
DO  - 10.1039/D0TA07492F
ER  - 
@article{
author = "Lačnjevac, Uroš and Vasilić, Rastko and Dobrota, Ana and Đurđić, Slađana Z. and Tomanec, Ondřej and Zbořil, Radek and Mohajernia, Shiva and Nguyen, Nhat Truong and Skorodumova, Natalia and Manojlović, Dragan D. and Elezović, Nevenka and Pašti, Igor and Schmuki, Patrik",
year = "2020",
abstract = "Developing ultraefficient electrocatalytic materials for the hydrogen evolution reaction (HER) with low content of expensive platinum group metals (PGMs) via low-energy-input procedures is the key to the successful commercialization of green water electrolysis technologies for sustainable production of high-purity hydrogen. In this study, we report a facile room-temperature synthesis of ultrafine metallic Ir nanoparticles on conductive, proton-intercalated TiO2 nanotube (H-TNT) arrays via galvanic displacement. A series of experiments demonstrate that a controlled transformation of the H-TNT surface microstructure from neat open-top tubes to disordered nanostripe bundles (“nanograss”) is highly beneficial for providing an abundance of exposed Ir active sites. Consequently, for nanograss-engineered composites, outstanding HER activity metrics are achieved even at very low Ir(III) precursor concentrations. An optimum Ir@TNT cathode loaded with 5.7 μgIr cm−2 exhibits an overpotential of −63 mV at −100 mA cm−2 and a mass activity of 34 A mgIr−1 at −80 mV under acidic conditions, along with excellent catalytic durability and structural integrity. Density functional theory (DFT) simulations reveal that the hydrogen-rich TiO2 surface not only stabilizes the deposited Ir and weakens its H binding strength to a moderate intensity, but also actively takes part in the HER mechanism by refreshing the Ir catalytic sites near the Ir|H–TiO2 interface, thus substantially promoting H2 generation. The comprehensive characterization combined with theory provides an in-depth understanding of the electrocatalytic behavior of H-TNT supported PGM nanoparticles and demonstrates their high potential as competitive electrocatalyst systems for the HER.",
publisher = "Royal Society of Chemistry",
journal = "Journal of Materials Chemistry A",
title = "High-performance hydrogen evolution electrocatalysis using proton-intercalated TiO2 nanotube arrays as interactive supports for Ir nanoparticles",
volume = "8",
number = "43",
pages = "22773-22790",
doi = "10.1039/D0TA07492F"
}
Lačnjevac, U., Vasilić, R., Dobrota, A., Đurđić, S. Z., Tomanec, O., Zbořil, R., Mohajernia, S., Nguyen, N. T., Skorodumova, N., Manojlović, D. D., Elezović, N., Pašti, I.,& Schmuki, P.. (2020). High-performance hydrogen evolution electrocatalysis using proton-intercalated TiO2 nanotube arrays as interactive supports for Ir nanoparticles. in Journal of Materials Chemistry A
Royal Society of Chemistry., 8(43), 22773-22790.
https://doi.org/10.1039/D0TA07492F
Lačnjevac U, Vasilić R, Dobrota A, Đurđić SZ, Tomanec O, Zbořil R, Mohajernia S, Nguyen NT, Skorodumova N, Manojlović DD, Elezović N, Pašti I, Schmuki P. High-performance hydrogen evolution electrocatalysis using proton-intercalated TiO2 nanotube arrays as interactive supports for Ir nanoparticles. in Journal of Materials Chemistry A. 2020;8(43):22773-22790.
doi:10.1039/D0TA07492F .
Lačnjevac, Uroš, Vasilić, Rastko, Dobrota, Ana, Đurđić, Slađana Z., Tomanec, Ondřej, Zbořil, Radek, Mohajernia, Shiva, Nguyen, Nhat Truong, Skorodumova, Natalia, Manojlović, Dragan D., Elezović, Nevenka, Pašti, Igor, Schmuki, Patrik, "High-performance hydrogen evolution electrocatalysis using proton-intercalated TiO2 nanotube arrays as interactive supports for Ir nanoparticles" in Journal of Materials Chemistry A, 8, no. 43 (2020):22773-22790,
https://doi.org/10.1039/D0TA07492F . .
1
11
12
10

New inversion boundary structure in Sb-doped ZnO predicted by DFT calculations and confirmed by experimental HRTEM

Ribić, Vesna R.; Rečnik, Aleksander; Komelj, Matej; Kokalj, Anton; Branković, Zorica; Zlatović, Mario; Branković, Goran

(Elsevier, 2020)

TY  - JOUR
AU  - Ribić, Vesna R.
AU  - Rečnik, Aleksander
AU  - Komelj, Matej
AU  - Kokalj, Anton
AU  - Branković, Zorica
AU  - Zlatović, Mario
AU  - Branković, Goran
PY  - 2020
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4755
AB  - Today, ab-initio calculations are becoming a powerful tool to perform virtual experiments that have the capacity to predict and to reproduce experimentally observed non-periodic features, such as interfaces, that are responsible for quantum properties of materials. In our paper we investigate 2D quantum-well structures, known as inversion boundaries (IB). Combining atomistic modeling, DFT calculations and HRTEM analysis we provide a new fundamental insight into the structure and stability of Sb-rich basal-plane IBs in ZnO. DFT screening for potential IB model was based on the known stacking deviations in originating wurtzite structure. The results show that the model with Aβ−Bα−AβC−γB−βC sequence (IB3) is the most stable translation for Sb-doping, as opposed to previously accepted Aβ−Bα−AβC−γA−αC (IB2) model. The key to the stability of IB structures has been found to lie in their cationic stacking. We show that the energies of constituting stacking segments can be used to predict the stability of new IB structures without the need of further ab-initio calculations. DFT optimized models of IBs accurately predict the experimentally observed IB structures with lateral relaxations down to a precision of ~1 pm. The newly determined cation sublattice expansions for experimentally confirmed IB2 and IB3 models, ΔIB(Zn-Zn) are +81 pm and +77 pm, whereas the corresponding O-sublattice contractions ΔIB(O-O) are –53 pm and –57 pm, respectively. The refined structures will help to solve open questions related to their role in electron transport, phonon scattering, p-type conductivity, affinity of dopants to generate IBs and the underlying formation mechanisms, whereas the excellent match between the calculations and experiment demonstrated in our study opens new perspectives for prediction of such properties from first principles.
PB  - Elsevier
T2  - Acta Materialia
T1  - New inversion boundary structure in Sb-doped ZnO predicted by DFT calculations and confirmed by experimental HRTEM
VL  - 199
SP  - 633
EP  - 648
DO  - 10.1016/j.actamat.2020.08.035
ER  - 
@article{
author = "Ribić, Vesna R. and Rečnik, Aleksander and Komelj, Matej and Kokalj, Anton and Branković, Zorica and Zlatović, Mario and Branković, Goran",
year = "2020",
abstract = "Today, ab-initio calculations are becoming a powerful tool to perform virtual experiments that have the capacity to predict and to reproduce experimentally observed non-periodic features, such as interfaces, that are responsible for quantum properties of materials. In our paper we investigate 2D quantum-well structures, known as inversion boundaries (IB). Combining atomistic modeling, DFT calculations and HRTEM analysis we provide a new fundamental insight into the structure and stability of Sb-rich basal-plane IBs in ZnO. DFT screening for potential IB model was based on the known stacking deviations in originating wurtzite structure. The results show that the model with Aβ−Bα−AβC−γB−βC sequence (IB3) is the most stable translation for Sb-doping, as opposed to previously accepted Aβ−Bα−AβC−γA−αC (IB2) model. The key to the stability of IB structures has been found to lie in their cationic stacking. We show that the energies of constituting stacking segments can be used to predict the stability of new IB structures without the need of further ab-initio calculations. DFT optimized models of IBs accurately predict the experimentally observed IB structures with lateral relaxations down to a precision of ~1 pm. The newly determined cation sublattice expansions for experimentally confirmed IB2 and IB3 models, ΔIB(Zn-Zn) are +81 pm and +77 pm, whereas the corresponding O-sublattice contractions ΔIB(O-O) are –53 pm and –57 pm, respectively. The refined structures will help to solve open questions related to their role in electron transport, phonon scattering, p-type conductivity, affinity of dopants to generate IBs and the underlying formation mechanisms, whereas the excellent match between the calculations and experiment demonstrated in our study opens new perspectives for prediction of such properties from first principles.",
publisher = "Elsevier",
journal = "Acta Materialia",
title = "New inversion boundary structure in Sb-doped ZnO predicted by DFT calculations and confirmed by experimental HRTEM",
volume = "199",
pages = "633-648",
doi = "10.1016/j.actamat.2020.08.035"
}
Ribić, V. R., Rečnik, A., Komelj, M., Kokalj, A., Branković, Z., Zlatović, M.,& Branković, G.. (2020). New inversion boundary structure in Sb-doped ZnO predicted by DFT calculations and confirmed by experimental HRTEM. in Acta Materialia
Elsevier., 199, 633-648.
https://doi.org/10.1016/j.actamat.2020.08.035
Ribić VR, Rečnik A, Komelj M, Kokalj A, Branković Z, Zlatović M, Branković G. New inversion boundary structure in Sb-doped ZnO predicted by DFT calculations and confirmed by experimental HRTEM. in Acta Materialia. 2020;199:633-648.
doi:10.1016/j.actamat.2020.08.035 .
Ribić, Vesna R., Rečnik, Aleksander, Komelj, Matej, Kokalj, Anton, Branković, Zorica, Zlatović, Mario, Branković, Goran, "New inversion boundary structure in Sb-doped ZnO predicted by DFT calculations and confirmed by experimental HRTEM" in Acta Materialia, 199 (2020):633-648,
https://doi.org/10.1016/j.actamat.2020.08.035 . .
1
8
7

Efficient protein extraction for shotgun proteomics from hydrated and desiccated leaves of resurrection Ramonda serbica plants

Vidović, Marija; Franchin, Cinzia; Morina, Filis; Veljović-Jovanović, Sonja; Masi, Antonio; Arrigoni, Giorgio

(2020)

TY  - JOUR
AU  - Vidović, Marija
AU  - Franchin, Cinzia
AU  - Morina, Filis
AU  - Veljović-Jovanović, Sonja
AU  - Masi, Antonio
AU  - Arrigoni, Giorgio
PY  - 2020
UR  - http://www.ncbi.nlm.nih.gov/pubmed/33037906
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4505
AB  - Resurrection plant Ramonda serbica is a suitable model to investigate vegetative desiccation tolerance. However, the detailed study of these mechanisms at the protein level is hampered by the severe tissue water loss, high amount of phenolics and polysaccharide, and possible protein modifications and aggregations during the extraction and purification steps. When applied to R. serbica leaves, widely used protein extraction protocols containing polyvinylpolypyrrolidone and ascorbate, as well as the phenol/SDS/buffer-based protocol recommended for recalcitrant plant tissues failed to eliminate persistent contamination and ensure high protein quality. Here we compared three protein extraction approaches aiming to establish the optimal one for both hydrated and desiccated R. serbica leaves. To evaluate the efficacy of these protocols by shotgun proteomics, we also created the first R. serbica annotated transcriptome database, available at http://www.biomed.unipd.it/filearrigoni/Trinity_Sample_RT2.fasta . The detergent-free phenol-based extraction combined with dodecyl-β-D-maltoside-assisted extraction enabled high-yield and high-purity protein extracts. The phenol-based protocol improved the protein-band resolution, band number, and intensity upon electrophoresis, and increased the protein yield and the number of identified peptides and protein groups by LC-MS/MS. Additionally, dodecyl-β-D-maltoside enabled solubilisation and identification of more membrane-associated proteins. The presented study paves the way for investigating the desiccation tolerance in R. serbica, and we recommend this protocol for similar recalcitrant plant material.
T2  - Analytical and Bioanalytical Chemistry
T1  - Efficient protein extraction for shotgun proteomics from hydrated and desiccated leaves of resurrection Ramonda serbica plants
VL  - 412
IS  - 30
SP  - 8299
EP  - 8312
DO  - 10.1007/s00216-020-02965-2
ER  - 
@article{
author = "Vidović, Marija and Franchin, Cinzia and Morina, Filis and Veljović-Jovanović, Sonja and Masi, Antonio and Arrigoni, Giorgio",
year = "2020",
abstract = "Resurrection plant Ramonda serbica is a suitable model to investigate vegetative desiccation tolerance. However, the detailed study of these mechanisms at the protein level is hampered by the severe tissue water loss, high amount of phenolics and polysaccharide, and possible protein modifications and aggregations during the extraction and purification steps. When applied to R. serbica leaves, widely used protein extraction protocols containing polyvinylpolypyrrolidone and ascorbate, as well as the phenol/SDS/buffer-based protocol recommended for recalcitrant plant tissues failed to eliminate persistent contamination and ensure high protein quality. Here we compared three protein extraction approaches aiming to establish the optimal one for both hydrated and desiccated R. serbica leaves. To evaluate the efficacy of these protocols by shotgun proteomics, we also created the first R. serbica annotated transcriptome database, available at http://www.biomed.unipd.it/filearrigoni/Trinity_Sample_RT2.fasta . The detergent-free phenol-based extraction combined with dodecyl-β-D-maltoside-assisted extraction enabled high-yield and high-purity protein extracts. The phenol-based protocol improved the protein-band resolution, band number, and intensity upon electrophoresis, and increased the protein yield and the number of identified peptides and protein groups by LC-MS/MS. Additionally, dodecyl-β-D-maltoside enabled solubilisation and identification of more membrane-associated proteins. The presented study paves the way for investigating the desiccation tolerance in R. serbica, and we recommend this protocol for similar recalcitrant plant material.",
journal = "Analytical and Bioanalytical Chemistry",
title = "Efficient protein extraction for shotgun proteomics from hydrated and desiccated leaves of resurrection Ramonda serbica plants",
volume = "412",
number = "30",
pages = "8299-8312",
doi = "10.1007/s00216-020-02965-2"
}
Vidović, M., Franchin, C., Morina, F., Veljović-Jovanović, S., Masi, A.,& Arrigoni, G.. (2020). Efficient protein extraction for shotgun proteomics from hydrated and desiccated leaves of resurrection Ramonda serbica plants. in Analytical and Bioanalytical Chemistry, 412(30), 8299-8312.
https://doi.org/10.1007/s00216-020-02965-2
Vidović M, Franchin C, Morina F, Veljović-Jovanović S, Masi A, Arrigoni G. Efficient protein extraction for shotgun proteomics from hydrated and desiccated leaves of resurrection Ramonda serbica plants. in Analytical and Bioanalytical Chemistry. 2020;412(30):8299-8312.
doi:10.1007/s00216-020-02965-2 .
Vidović, Marija, Franchin, Cinzia, Morina, Filis, Veljović-Jovanović, Sonja, Masi, Antonio, Arrigoni, Giorgio, "Efficient protein extraction for shotgun proteomics from hydrated and desiccated leaves of resurrection Ramonda serbica plants" in Analytical and Bioanalytical Chemistry, 412, no. 30 (2020):8299-8312,
https://doi.org/10.1007/s00216-020-02965-2 . .
3
1
1
1

Supplementary data for the article: Vidović, M.; Franchin, C.; Morina, F.; Veljović-Jovanović, S.; Masi, A.; Arrigoni, G. Efficient Protein Extraction for Shotgun Proteomics from Hydrated and Desiccated Leaves of Resurrection Ramonda Serbica Plants. Anal Bioanal Chem 2020, 412 (30), 8299–8312. https://doi.org/10.1007/s00216-020-02965-2.

Vidović, Marija; Franchin, Cinzia; Morina, Filis; Veljović-Jovanović, Sonja; Masi, Antonio; Arrigoni, Giorgio

(SpringerLink, 2020)

TY  - DATA
AU  - Vidović, Marija
AU  - Franchin, Cinzia
AU  - Morina, Filis
AU  - Veljović-Jovanović, Sonja
AU  - Masi, Antonio
AU  - Arrigoni, Giorgio
PY  - 2020
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4504
PB  - SpringerLink
T2  - Analytical and Bioanalytical Chemistry
T1  - Supplementary data for the article: Vidović, M.; Franchin, C.; Morina, F.; Veljović-Jovanović, S.; Masi, A.; Arrigoni, G. Efficient Protein Extraction for Shotgun Proteomics from Hydrated and Desiccated Leaves of Resurrection Ramonda Serbica Plants. Anal Bioanal Chem 2020, 412 (30), 8299–8312. https://doi.org/10.1007/s00216-020-02965-2.
ER  - 
@misc{
author = "Vidović, Marija and Franchin, Cinzia and Morina, Filis and Veljović-Jovanović, Sonja and Masi, Antonio and Arrigoni, Giorgio",
year = "2020",
publisher = "SpringerLink",
journal = "Analytical and Bioanalytical Chemistry",
title = "Supplementary data for the article: Vidović, M.; Franchin, C.; Morina, F.; Veljović-Jovanović, S.; Masi, A.; Arrigoni, G. Efficient Protein Extraction for Shotgun Proteomics from Hydrated and Desiccated Leaves of Resurrection Ramonda Serbica Plants. Anal Bioanal Chem 2020, 412 (30), 8299–8312. https://doi.org/10.1007/s00216-020-02965-2."
}
Vidović, M., Franchin, C., Morina, F., Veljović-Jovanović, S., Masi, A.,& Arrigoni, G.. (2020). Supplementary data for the article: Vidović, M.; Franchin, C.; Morina, F.; Veljović-Jovanović, S.; Masi, A.; Arrigoni, G. Efficient Protein Extraction for Shotgun Proteomics from Hydrated and Desiccated Leaves of Resurrection Ramonda Serbica Plants. Anal Bioanal Chem 2020, 412 (30), 8299–8312. https://doi.org/10.1007/s00216-020-02965-2.. in Analytical and Bioanalytical Chemistry
SpringerLink..
Vidović M, Franchin C, Morina F, Veljović-Jovanović S, Masi A, Arrigoni G. Supplementary data for the article: Vidović, M.; Franchin, C.; Morina, F.; Veljović-Jovanović, S.; Masi, A.; Arrigoni, G. Efficient Protein Extraction for Shotgun Proteomics from Hydrated and Desiccated Leaves of Resurrection Ramonda Serbica Plants. Anal Bioanal Chem 2020, 412 (30), 8299–8312. https://doi.org/10.1007/s00216-020-02965-2.. in Analytical and Bioanalytical Chemistry. 2020;..
Vidović, Marija, Franchin, Cinzia, Morina, Filis, Veljović-Jovanović, Sonja, Masi, Antonio, Arrigoni, Giorgio, "Supplementary data for the article: Vidović, M.; Franchin, C.; Morina, F.; Veljović-Jovanović, S.; Masi, A.; Arrigoni, G. Efficient Protein Extraction for Shotgun Proteomics from Hydrated and Desiccated Leaves of Resurrection Ramonda Serbica Plants. Anal Bioanal Chem 2020, 412 (30), 8299–8312. https://doi.org/10.1007/s00216-020-02965-2." in Analytical and Bioanalytical Chemistry (2020).

Leaf Soluble Sugars and Free Amino Acids as Important Components of Abscisic Acid—Mediated Drought Response in Tomato

Živanović, Bojana; Milić Komić, Sonja; Tosti, Tomislav; Vidović, Marija; Prokić, Ljiljana; Veljović Jovanović, Sonja

(MDPI, 2020)

TY  - JOUR
AU  - Živanović, Bojana
AU  - Milić Komić, Sonja
AU  - Tosti, Tomislav
AU  - Vidović, Marija
AU  - Prokić, Ljiljana
AU  - Veljović Jovanović, Sonja
PY  - 2020
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4266
AB  - Water deficit has a global impact on plant growth and crop yield. Climate changes are going to increase the intensity, duration and frequency of severe droughts, particularly in southern and south-eastern Europe, elevating the water scarcity issues. We aimed to assess the contribution of endogenous abscisic acid (ABA) in the protective mechanisms against water deficit, including stomatal conductance, relative water potential and the accumulation of osmoprotectants, as well as on growth parameters. To achieve that, we used a suitable model system, ABA-deficient tomato mutant, flacca and its parental line. Flacca mutant exhibited constitutively higher levels of soluble sugars (e.g., galactose, arabinose, sorbitol) and free amino acids (AAs) compared with the wild type (WT). Water deficit provoked the strong accumulation of proline in both genotypes, and total soluble sugars only in flacca. Upon re-watering, these osmolytes returned to the initial levels in both genotypes. Our results indicate that flacca compensated higher stomatal conductance with a higher constitutive level of free sugars and AAs. Additionally, we suggest that the accumulation of AAs, particularly proline and its precursors and specific branched-chain AAs in both, glucose and sucrose in flacca, and sorbitol in WT, could contribute to maintaining growth rate during water deficit and recovery in both tomato genotypes.
PB  - MDPI
T2  - Plants
T1  - Leaf Soluble Sugars and Free Amino Acids as Important Components of Abscisic Acid—Mediated Drought Response in Tomato
VL  - 9
IS  - 9
SP  - 1147
DO  - 10.3390/plants9091147
ER  - 
@article{
author = "Živanović, Bojana and Milić Komić, Sonja and Tosti, Tomislav and Vidović, Marija and Prokić, Ljiljana and Veljović Jovanović, Sonja",
year = "2020",
abstract = "Water deficit has a global impact on plant growth and crop yield. Climate changes are going to increase the intensity, duration and frequency of severe droughts, particularly in southern and south-eastern Europe, elevating the water scarcity issues. We aimed to assess the contribution of endogenous abscisic acid (ABA) in the protective mechanisms against water deficit, including stomatal conductance, relative water potential and the accumulation of osmoprotectants, as well as on growth parameters. To achieve that, we used a suitable model system, ABA-deficient tomato mutant, flacca and its parental line. Flacca mutant exhibited constitutively higher levels of soluble sugars (e.g., galactose, arabinose, sorbitol) and free amino acids (AAs) compared with the wild type (WT). Water deficit provoked the strong accumulation of proline in both genotypes, and total soluble sugars only in flacca. Upon re-watering, these osmolytes returned to the initial levels in both genotypes. Our results indicate that flacca compensated higher stomatal conductance with a higher constitutive level of free sugars and AAs. Additionally, we suggest that the accumulation of AAs, particularly proline and its precursors and specific branched-chain AAs in both, glucose and sucrose in flacca, and sorbitol in WT, could contribute to maintaining growth rate during water deficit and recovery in both tomato genotypes.",
publisher = "MDPI",
journal = "Plants",
title = "Leaf Soluble Sugars and Free Amino Acids as Important Components of Abscisic Acid—Mediated Drought Response in Tomato",
volume = "9",
number = "9",
pages = "1147",
doi = "10.3390/plants9091147"
}
Živanović, B., Milić Komić, S., Tosti, T., Vidović, M., Prokić, L.,& Veljović Jovanović, S.. (2020). Leaf Soluble Sugars and Free Amino Acids as Important Components of Abscisic Acid—Mediated Drought Response in Tomato. in Plants
MDPI., 9(9), 1147.
https://doi.org/10.3390/plants9091147
Živanović B, Milić Komić S, Tosti T, Vidović M, Prokić L, Veljović Jovanović S. Leaf Soluble Sugars and Free Amino Acids as Important Components of Abscisic Acid—Mediated Drought Response in Tomato. in Plants. 2020;9(9):1147.
doi:10.3390/plants9091147 .
Živanović, Bojana, Milić Komić, Sonja, Tosti, Tomislav, Vidović, Marija, Prokić, Ljiljana, Veljović Jovanović, Sonja, "Leaf Soluble Sugars and Free Amino Acids as Important Components of Abscisic Acid—Mediated Drought Response in Tomato" in Plants, 9, no. 9 (2020):1147,
https://doi.org/10.3390/plants9091147 . .
4
4
5