Eureka project E!13303 MED-BIO-TEST

Link to this page

Eureka project E!13303 MED-BIO-TEST

Authors

Publications

Easily Prepared Co3O4 Doped Porous Carbon Material Decorated with Single-wall Carbon Nanotubes Applied in Voltammetric Sensing of Antioxidant α-lipoic Acid

Petković, Branka B.; Ognjanović, Miloš; Antić, Bratislav; Viktorovich Avdin, Vyacheslav; Manojlović, Dragan D.; Vranješ-Đurić, Sanja; Stanković, Dalibor

(Wiley, 2021)

TY  - JOUR
AU  - Petković, Branka B.
AU  - Ognjanović, Miloš
AU  - Antić, Bratislav
AU  - Viktorovich Avdin, Vyacheslav
AU  - Manojlović, Dragan D.
AU  - Vranješ-Đurić, Sanja
AU  - Stanković, Dalibor
PY  - 2021
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/4818
AB  - The homemade, porous carbon material, thermolysis prepared from Novolac phenol-formaldehyde resin, in situ modified with Co3O4 nanoparticles and mixed with single-wall carbon nanotubes, was used in selective sensing of prominent antioxidant α-lipoic acid (LA). XRD, SEM and EIS measurements were used for characterization of material composition, structure, morphology and improved conductivity. The quantification of LA at TPCo3O4&SWCNTCPE was done by a square-wave voltammetric technique in BR buffer solution at pH 6. The linear working range was recorded from 2 to 100 μM of LA and the proposed electrode material was successfully applied in the determination of LA in dietary supplements.
PB  - Wiley
T2  - Electroanalysis
T1  - Easily Prepared Co3O4 Doped Porous Carbon Material Decorated with Single-wall Carbon Nanotubes Applied in Voltammetric Sensing of Antioxidant α-lipoic Acid
VL  - 33
IS  - 2
SP  - 446
EP  - 454
DO  - 10.1002/elan.202060290
ER  - 
@article{
author = "Petković, Branka B. and Ognjanović, Miloš and Antić, Bratislav and Viktorovich Avdin, Vyacheslav and Manojlović, Dragan D. and Vranješ-Đurić, Sanja and Stanković, Dalibor",
year = "2021",
abstract = "The homemade, porous carbon material, thermolysis prepared from Novolac phenol-formaldehyde resin, in situ modified with Co3O4 nanoparticles and mixed with single-wall carbon nanotubes, was used in selective sensing of prominent antioxidant α-lipoic acid (LA). XRD, SEM and EIS measurements were used for characterization of material composition, structure, morphology and improved conductivity. The quantification of LA at TPCo3O4&SWCNTCPE was done by a square-wave voltammetric technique in BR buffer solution at pH 6. The linear working range was recorded from 2 to 100 μM of LA and the proposed electrode material was successfully applied in the determination of LA in dietary supplements.",
publisher = "Wiley",
journal = "Electroanalysis",
title = "Easily Prepared Co3O4 Doped Porous Carbon Material Decorated with Single-wall Carbon Nanotubes Applied in Voltammetric Sensing of Antioxidant α-lipoic Acid",
volume = "33",
number = "2",
pages = "446-454",
doi = "10.1002/elan.202060290"
}
Petković, B. B., Ognjanović, M., Antić, B., Viktorovich Avdin, V., Manojlović, D. D., Vranješ-Đurić, S.,& Stanković, D.. (2021). Easily Prepared Co3O4 Doped Porous Carbon Material Decorated with Single-wall Carbon Nanotubes Applied in Voltammetric Sensing of Antioxidant α-lipoic Acid. in Electroanalysis
Wiley., 33(2), 446-454.
https://doi.org/10.1002/elan.202060290
Petković BB, Ognjanović M, Antić B, Viktorovich Avdin V, Manojlović DD, Vranješ-Đurić S, Stanković D. Easily Prepared Co3O4 Doped Porous Carbon Material Decorated with Single-wall Carbon Nanotubes Applied in Voltammetric Sensing of Antioxidant α-lipoic Acid. in Electroanalysis. 2021;33(2):446-454.
doi:10.1002/elan.202060290 .
Petković, Branka B., Ognjanović, Miloš, Antić, Bratislav, Viktorovich Avdin, Vyacheslav, Manojlović, Dragan D., Vranješ-Đurić, Sanja, Stanković, Dalibor, "Easily Prepared Co3O4 Doped Porous Carbon Material Decorated with Single-wall Carbon Nanotubes Applied in Voltammetric Sensing of Antioxidant α-lipoic Acid" in Electroanalysis, 33, no. 2 (2021):446-454,
https://doi.org/10.1002/elan.202060290 . .
9
5
7
8

A novel nonenzymatic hydrogen peroxide amperometric sensor based on AgNp@GNR nanocomposites modified screen-printed carbon electrode

Stanković, Vesna; Đurđić, Slađana Z.; Ognjanović, Miloš; Mutić, Jelena; Kalcher, Kurt; Stanković, Dalibor

(Elsevier, 2020)

TY  - JOUR
AU  - Stanković, Vesna
AU  - Đurđić, Slađana Z.
AU  - Ognjanović, Miloš
AU  - Mutić, Jelena
AU  - Kalcher, Kurt
AU  - Stanković, Dalibor
PY  - 2020
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4033
AB  - A nonenzymatic hydrogen-peroxide sensor was developed by utilization of silver nanoparticles and graphene nanoribbons. The mentioned composite was inflicted on a screen-printed carbon electrode which provides disposable, ready-to-use sensor. The structure and morphology of the nanocomposite were analyzed by scanning electron microscopy and X-ray diffraction. The sensor has excellent performance toward H2O2 amperometric detection. Figures of merit include dynamic response range from 0.05 to 5 mM and detection limit of 20 μM (at S/N = 3). The fabricated sensor was used for the determination of H2O2 in milk samples. The obtained results showed that the proposed AgNp@GNR/SPCE sensor can be used for the determination of hydrogen peroxide in real samples.
PB  - Elsevier
T2  - Journal of Electroanalytical Chemistry
T1  - A novel nonenzymatic hydrogen peroxide amperometric sensor based on AgNp@GNR nanocomposites modified screen-printed carbon electrode
VL  - 876
SP  - 114487
DO  - 10.1016/j.jelechem.2020.114487
ER  - 
@article{
author = "Stanković, Vesna and Đurđić, Slađana Z. and Ognjanović, Miloš and Mutić, Jelena and Kalcher, Kurt and Stanković, Dalibor",
year = "2020",
abstract = "A nonenzymatic hydrogen-peroxide sensor was developed by utilization of silver nanoparticles and graphene nanoribbons. The mentioned composite was inflicted on a screen-printed carbon electrode which provides disposable, ready-to-use sensor. The structure and morphology of the nanocomposite were analyzed by scanning electron microscopy and X-ray diffraction. The sensor has excellent performance toward H2O2 amperometric detection. Figures of merit include dynamic response range from 0.05 to 5 mM and detection limit of 20 μM (at S/N = 3). The fabricated sensor was used for the determination of H2O2 in milk samples. The obtained results showed that the proposed AgNp@GNR/SPCE sensor can be used for the determination of hydrogen peroxide in real samples.",
publisher = "Elsevier",
journal = "Journal of Electroanalytical Chemistry",
title = "A novel nonenzymatic hydrogen peroxide amperometric sensor based on AgNp@GNR nanocomposites modified screen-printed carbon electrode",
volume = "876",
pages = "114487",
doi = "10.1016/j.jelechem.2020.114487"
}
Stanković, V., Đurđić, S. Z., Ognjanović, M., Mutić, J., Kalcher, K.,& Stanković, D.. (2020). A novel nonenzymatic hydrogen peroxide amperometric sensor based on AgNp@GNR nanocomposites modified screen-printed carbon electrode. in Journal of Electroanalytical Chemistry
Elsevier., 876, 114487.
https://doi.org/10.1016/j.jelechem.2020.114487
Stanković V, Đurđić SZ, Ognjanović M, Mutić J, Kalcher K, Stanković D. A novel nonenzymatic hydrogen peroxide amperometric sensor based on AgNp@GNR nanocomposites modified screen-printed carbon electrode. in Journal of Electroanalytical Chemistry. 2020;876:114487.
doi:10.1016/j.jelechem.2020.114487 .
Stanković, Vesna, Đurđić, Slađana Z., Ognjanović, Miloš, Mutić, Jelena, Kalcher, Kurt, Stanković, Dalibor, "A novel nonenzymatic hydrogen peroxide amperometric sensor based on AgNp@GNR nanocomposites modified screen-printed carbon electrode" in Journal of Electroanalytical Chemistry, 876 (2020):114487,
https://doi.org/10.1016/j.jelechem.2020.114487 . .
35
14
33
30

Supplementary data for the article: Stanković, V.; Đurđić, S.; Ognjanović, M.; Mutić, J.; Kalcher, K.; Stanković, D. M. A Novel Nonenzymatic Hydrogen Peroxide Amperometric Sensor Based on AgNp@GNR Nanocomposites Modified Screen-Printed Carbon Electrode. Journal of Electroanalytical Chemistry 2020, 876, 114487. https://doi.org/10.1016/j.jelechem.2020.114487

Stanković, Vesna; Đurđić, Slađana Z.; Ognjanović, Miloš; Mutić, Jelena; Kalcher, Kurt; Stanković, Dalibor

(Elsevier, 2020)

TY  - DATA
AU  - Stanković, Vesna
AU  - Đurđić, Slađana Z.
AU  - Ognjanović, Miloš
AU  - Mutić, Jelena
AU  - Kalcher, Kurt
AU  - Stanković, Dalibor
PY  - 2020
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4034
PB  - Elsevier
T2  - Journal of Electroanalytical Chemistry
T1  - Supplementary data for the article: Stanković, V.; Đurđić, S.; Ognjanović, M.; Mutić, J.; Kalcher, K.; Stanković, D. M. A Novel Nonenzymatic Hydrogen Peroxide Amperometric Sensor Based on AgNp@GNR Nanocomposites Modified Screen-Printed Carbon Electrode. Journal of Electroanalytical Chemistry 2020, 876, 114487. https://doi.org/10.1016/j.jelechem.2020.114487
UR  - https://hdl.handle.net/21.15107/rcub_cherry_4034
ER  - 
@misc{
author = "Stanković, Vesna and Đurđić, Slađana Z. and Ognjanović, Miloš and Mutić, Jelena and Kalcher, Kurt and Stanković, Dalibor",
year = "2020",
publisher = "Elsevier",
journal = "Journal of Electroanalytical Chemistry",
title = "Supplementary data for the article: Stanković, V.; Đurđić, S.; Ognjanović, M.; Mutić, J.; Kalcher, K.; Stanković, D. M. A Novel Nonenzymatic Hydrogen Peroxide Amperometric Sensor Based on AgNp@GNR Nanocomposites Modified Screen-Printed Carbon Electrode. Journal of Electroanalytical Chemistry 2020, 876, 114487. https://doi.org/10.1016/j.jelechem.2020.114487",
url = "https://hdl.handle.net/21.15107/rcub_cherry_4034"
}
Stanković, V., Đurđić, S. Z., Ognjanović, M., Mutić, J., Kalcher, K.,& Stanković, D.. (2020). Supplementary data for the article: Stanković, V.; Đurđić, S.; Ognjanović, M.; Mutić, J.; Kalcher, K.; Stanković, D. M. A Novel Nonenzymatic Hydrogen Peroxide Amperometric Sensor Based on AgNp@GNR Nanocomposites Modified Screen-Printed Carbon Electrode. Journal of Electroanalytical Chemistry 2020, 876, 114487. https://doi.org/10.1016/j.jelechem.2020.114487. in Journal of Electroanalytical Chemistry
Elsevier..
https://hdl.handle.net/21.15107/rcub_cherry_4034
Stanković V, Đurđić SZ, Ognjanović M, Mutić J, Kalcher K, Stanković D. Supplementary data for the article: Stanković, V.; Đurđić, S.; Ognjanović, M.; Mutić, J.; Kalcher, K.; Stanković, D. M. A Novel Nonenzymatic Hydrogen Peroxide Amperometric Sensor Based on AgNp@GNR Nanocomposites Modified Screen-Printed Carbon Electrode. Journal of Electroanalytical Chemistry 2020, 876, 114487. https://doi.org/10.1016/j.jelechem.2020.114487. in Journal of Electroanalytical Chemistry. 2020;.
https://hdl.handle.net/21.15107/rcub_cherry_4034 .
Stanković, Vesna, Đurđić, Slađana Z., Ognjanović, Miloš, Mutić, Jelena, Kalcher, Kurt, Stanković, Dalibor, "Supplementary data for the article: Stanković, V.; Đurđić, S.; Ognjanović, M.; Mutić, J.; Kalcher, K.; Stanković, D. M. A Novel Nonenzymatic Hydrogen Peroxide Amperometric Sensor Based on AgNp@GNR Nanocomposites Modified Screen-Printed Carbon Electrode. Journal of Electroanalytical Chemistry 2020, 876, 114487. https://doi.org/10.1016/j.jelechem.2020.114487" in Journal of Electroanalytical Chemistry (2020),
https://hdl.handle.net/21.15107/rcub_cherry_4034 .