Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200123 (University of Priština - Kosovska Mitrovica, Faculty of Natural Sciences and Mathematics)

Link to this page

info:eu-repo/grantAgreement/MESTD/inst-2020/200123/RS//

Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200123 (University of Priština - Kosovska Mitrovica, Faculty of Natural Sciences and Mathematics) (en)
Ministarstvo prosvete, nauke i tehnološkog razvoja Republike Srbije, Ugovor br. 451-03-68/2020-14/200123 (Univerzitet u Prištini sa privremenim sedištem u Kosovskoj Mitrovici, Prirodno-matematički fakultet) (sr_RS)
Министарство просвете, науке и технолошког развоја Републике Србије, Уговор бр. 451-03-68/2020-14/200123 (Универзитет у Приштини са привременим седиштем у Косовској Митровици, Природно-математички факултет) (sr)
Authors

Publications

CeO2-doped – domestic carbon material decorated with MWCNT as an efficient green sensing platform for electrooxidation of dopamine

Stanković, Dalibor; Ognjanović, Miloš; Fabián, Martin; Avdin, Vyacheslav Viktorovich; Manojlović, Dragan D.; Vranješ-Đurić, Sanja; Petković, Branka B.

(Elsevier, 2021)

TY  - JOUR
AU  - Stanković, Dalibor
AU  - Ognjanović, Miloš
AU  - Fabián, Martin
AU  - Avdin, Vyacheslav Viktorovich
AU  - Manojlović, Dragan D.
AU  - Vranješ-Đurić, Sanja
AU  - Petković, Branka B.
PY  - 2021
UR  - https://www.sciencedirect.com/science/article/pii/S2468023021002881
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4545
AB  - The goal of this work was to develop green electrode material that unites all advantages of domestic made, synthesized porous carbon powder and ceria dioxide nanoparticles known due to exceptional catalytic properties. Thermal decomposition of Novolac phenol-formaldehyde resin and cerium sulfate resulting in producing a high-performance CeO2 porous carbon material highly sensitive to dopamine (DA) electrooxidation. Morphological and structural characteristics of the material were determined by SEM and XRD measurements, while electrochemical characterization was performed by EIS and CV. The sensitivity of DA determination on the proposed CeO2-doped carbon material was enhanced by adding multi-wall carbon nanotubes to finally prepare a mixture for a specific carbon paste electrode (TPCeO2&MWCNT@CPE). SWV technique was used for quantification of dopamine in Britton-Robinson buffer pH 6 in the concentration range of 0.5-100 μM of DA, with the detection limit of 0.14 μM and quantification limit of 0.44 μM. Good selectivity overstudied bioactive compounds enables the successful and efficient application of the proposed electrode and developed an analytical procedure for the determination of dopamine in spiked urine samples.
PB  - Elsevier
T2  - Surfaces and Interfaces
T1  - CeO2-doped – domestic carbon material decorated with MWCNT as an efficient green sensing platform for electrooxidation of dopamine
VL  - 25
SP  - 101211
DO  - 10.1016/j.surfin.2021.101211
ER  - 
@article{
author = "Stanković, Dalibor and Ognjanović, Miloš and Fabián, Martin and Avdin, Vyacheslav Viktorovich and Manojlović, Dragan D. and Vranješ-Đurić, Sanja and Petković, Branka B.",
year = "2021",
abstract = "The goal of this work was to develop green electrode material that unites all advantages of domestic made, synthesized porous carbon powder and ceria dioxide nanoparticles known due to exceptional catalytic properties. Thermal decomposition of Novolac phenol-formaldehyde resin and cerium sulfate resulting in producing a high-performance CeO2 porous carbon material highly sensitive to dopamine (DA) electrooxidation. Morphological and structural characteristics of the material were determined by SEM and XRD measurements, while electrochemical characterization was performed by EIS and CV. The sensitivity of DA determination on the proposed CeO2-doped carbon material was enhanced by adding multi-wall carbon nanotubes to finally prepare a mixture for a specific carbon paste electrode (TPCeO2&MWCNT@CPE). SWV technique was used for quantification of dopamine in Britton-Robinson buffer pH 6 in the concentration range of 0.5-100 μM of DA, with the detection limit of 0.14 μM and quantification limit of 0.44 μM. Good selectivity overstudied bioactive compounds enables the successful and efficient application of the proposed electrode and developed an analytical procedure for the determination of dopamine in spiked urine samples.",
publisher = "Elsevier",
journal = "Surfaces and Interfaces",
title = "CeO2-doped – domestic carbon material decorated with MWCNT as an efficient green sensing platform for electrooxidation of dopamine",
volume = "25",
pages = "101211",
doi = "10.1016/j.surfin.2021.101211"
}
Stanković, D., Ognjanović, M., Fabián, M., Avdin, V. V., Manojlović, D. D., Vranješ-Đurić, S.,& Petković, B. B.. (2021). CeO2-doped – domestic carbon material decorated with MWCNT as an efficient green sensing platform for electrooxidation of dopamine. in Surfaces and Interfaces
Elsevier., 25, 101211.
https://doi.org/10.1016/j.surfin.2021.101211
Stanković D, Ognjanović M, Fabián M, Avdin VV, Manojlović DD, Vranješ-Đurić S, Petković BB. CeO2-doped – domestic carbon material decorated with MWCNT as an efficient green sensing platform for electrooxidation of dopamine. in Surfaces and Interfaces. 2021;25:101211.
doi:10.1016/j.surfin.2021.101211 .
Stanković, Dalibor, Ognjanović, Miloš, Fabián, Martin, Avdin, Vyacheslav Viktorovich, Manojlović, Dragan D., Vranješ-Đurić, Sanja, Petković, Branka B., "CeO2-doped – domestic carbon material decorated with MWCNT as an efficient green sensing platform for electrooxidation of dopamine" in Surfaces and Interfaces, 25 (2021):101211,
https://doi.org/10.1016/j.surfin.2021.101211 . .
4
2
3
2

Easily Prepared Co3O4 Doped Porous Carbon Material Decorated with Single-wall Carbon Nanotubes Applied in Voltammetric Sensing of Antioxidant α-lipoic Acid

Petković, Branka B.; Ognjanović, Miloš; Antić, Bratislav; Viktorovich Avdin, Vyacheslav; Manojlović, Dragan D.; Vranješ-Đurić, Sanja; Stanković, Dalibor

(Wiley, 2021)

TY  - JOUR
AU  - Petković, Branka B.
AU  - Ognjanović, Miloš
AU  - Antić, Bratislav
AU  - Viktorovich Avdin, Vyacheslav
AU  - Manojlović, Dragan D.
AU  - Vranješ-Đurić, Sanja
AU  - Stanković, Dalibor
PY  - 2021
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/4818
AB  - The homemade, porous carbon material, thermolysis prepared from Novolac phenol-formaldehyde resin, in situ modified with Co3O4 nanoparticles and mixed with single-wall carbon nanotubes, was used in selective sensing of prominent antioxidant α-lipoic acid (LA). XRD, SEM and EIS measurements were used for characterization of material composition, structure, morphology and improved conductivity. The quantification of LA at TPCo3O4&SWCNTCPE was done by a square-wave voltammetric technique in BR buffer solution at pH 6. The linear working range was recorded from 2 to 100 μM of LA and the proposed electrode material was successfully applied in the determination of LA in dietary supplements.
PB  - Wiley
T2  - Electroanalysis
T1  - Easily Prepared Co3O4 Doped Porous Carbon Material Decorated with Single-wall Carbon Nanotubes Applied in Voltammetric Sensing of Antioxidant α-lipoic Acid
VL  - 33
IS  - 2
SP  - 446
EP  - 454
DO  - 10.1002/elan.202060290
ER  - 
@article{
author = "Petković, Branka B. and Ognjanović, Miloš and Antić, Bratislav and Viktorovich Avdin, Vyacheslav and Manojlović, Dragan D. and Vranješ-Đurić, Sanja and Stanković, Dalibor",
year = "2021",
abstract = "The homemade, porous carbon material, thermolysis prepared from Novolac phenol-formaldehyde resin, in situ modified with Co3O4 nanoparticles and mixed with single-wall carbon nanotubes, was used in selective sensing of prominent antioxidant α-lipoic acid (LA). XRD, SEM and EIS measurements were used for characterization of material composition, structure, morphology and improved conductivity. The quantification of LA at TPCo3O4&SWCNTCPE was done by a square-wave voltammetric technique in BR buffer solution at pH 6. The linear working range was recorded from 2 to 100 μM of LA and the proposed electrode material was successfully applied in the determination of LA in dietary supplements.",
publisher = "Wiley",
journal = "Electroanalysis",
title = "Easily Prepared Co3O4 Doped Porous Carbon Material Decorated with Single-wall Carbon Nanotubes Applied in Voltammetric Sensing of Antioxidant α-lipoic Acid",
volume = "33",
number = "2",
pages = "446-454",
doi = "10.1002/elan.202060290"
}
Petković, B. B., Ognjanović, M., Antić, B., Viktorovich Avdin, V., Manojlović, D. D., Vranješ-Đurić, S.,& Stanković, D.. (2021). Easily Prepared Co3O4 Doped Porous Carbon Material Decorated with Single-wall Carbon Nanotubes Applied in Voltammetric Sensing of Antioxidant α-lipoic Acid. in Electroanalysis
Wiley., 33(2), 446-454.
https://doi.org/10.1002/elan.202060290
Petković BB, Ognjanović M, Antić B, Viktorovich Avdin V, Manojlović DD, Vranješ-Đurić S, Stanković D. Easily Prepared Co3O4 Doped Porous Carbon Material Decorated with Single-wall Carbon Nanotubes Applied in Voltammetric Sensing of Antioxidant α-lipoic Acid. in Electroanalysis. 2021;33(2):446-454.
doi:10.1002/elan.202060290 .
Petković, Branka B., Ognjanović, Miloš, Antić, Bratislav, Viktorovich Avdin, Vyacheslav, Manojlović, Dragan D., Vranješ-Đurić, Sanja, Stanković, Dalibor, "Easily Prepared Co3O4 Doped Porous Carbon Material Decorated with Single-wall Carbon Nanotubes Applied in Voltammetric Sensing of Antioxidant α-lipoic Acid" in Electroanalysis, 33, no. 2 (2021):446-454,
https://doi.org/10.1002/elan.202060290 . .
9
5
7
8