EPSRC [EP/I01974X]

Link to this page

EPSRC [EP/I01974X]

Authors

Publications

Probing the Carbon-Hydrogen Activation of Alkanes Following Photolysis of Tp'Rh(CNR)(carbodiimide): A Computational and Time Resolved Infrared Spectroscopic Study

Guan, Jia; Wriglesworth, Alisdair; Sun, Xue Zhong; Brothers, Edward N.; Zarić, Snežana D.; Evans, Meagan E.; Jones, William D.; Towrie, Michael; Hall, Michael B.; George, Michael W.

(Amer Chemical Soc, Washington, 2018)

TY  - JOUR
AU  - Guan, Jia
AU  - Wriglesworth, Alisdair
AU  - Sun, Xue Zhong
AU  - Brothers, Edward N.
AU  - Zarić, Snežana D.
AU  - Evans, Meagan E.
AU  - Jones, William D.
AU  - Towrie, Michael
AU  - Hall, Michael B.
AU  - George, Michael W.
PY  - 2018
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/2893
AB  - Carbon-hydrogen bond activation of alkanes by Tp'Rh(CNR) (Tp' = Tp = trispyrazolylborate or Tp* = tris(3,5- dimethylpyrazolyl)borate) were followed by time-resolved infrared spectroscopy (TRIR) in the upsilon(CNR) and upsilon(B-H) spectral regions on Tp*Rh(CNCH2CMe3), and their reaction mechanisms were modeled by density functional theory (DFT) on TpRh(CNMe). The major intermediate species were: kappa(3)-eta(1)-alkane complex (1); kappa(2)-kappa(2)-alkane complex (2); and kappa(3)-alkyl hydride (3). Calculations predict that the barrier between 1 and 2 arises from a triplet-singlet crossing and intermediate 2 proceeds over the rate-determining C-H activation barrier to give the final product 3. The activation lifetimes measured for the Tp*Rh(CNR) and Tp*Rh(CO) fragments with n-heptane and four cycloalkanes (C5H10, C6H12, C7H14, and C8H16) increase with alkanes size and show a dramatic increase between C6H12 and C7H14. A similar step-like behavior was observed previously with CpRh(CO) and Cp*Rh(CO) fragments and is attributed to the wider difference in C-H bonds that appear at C7H14. However, Tp'Rh(CNR) and Tp'Rh(CO) fragments have much longer absolute lifetimes compared to those of CpRh(CO) and Cp*Rh(CO) fragments, because the reduced electron density in dechelated kappa(2)-eta(2)-alkane Tp' complexes stabilizes the d(8) Rh(I) in a square-planar geometry and weakens the metal's ability for oxidative addition of the C-H bond. Further, the Tp'Rh(CNR) fragment has significantly slower rates of C-H activation in comparison to the Tp'Rh(CO) fragment for the larger cycloalkanes, because the steric bulk of the neopentyl isocyanide ligand hinders the rechelation in kappa(2)-Tp'Rh(CNR)(cycloalkane) species and results in the C-H activation without the assistance of the rechelation.
PB  - Amer Chemical Soc, Washington
T2  - Journal of the American Chemical Society
T1  - Probing the Carbon-Hydrogen Activation of Alkanes Following Photolysis of Tp'Rh(CNR)(carbodiimide): A Computational and Time Resolved Infrared Spectroscopic Study
VL  - 140
IS  - 5
SP  - 1842
EP  - 1854
DO  - 10.1021/jacs.7b12152
ER  - 
@article{
author = "Guan, Jia and Wriglesworth, Alisdair and Sun, Xue Zhong and Brothers, Edward N. and Zarić, Snežana D. and Evans, Meagan E. and Jones, William D. and Towrie, Michael and Hall, Michael B. and George, Michael W.",
year = "2018",
abstract = "Carbon-hydrogen bond activation of alkanes by Tp'Rh(CNR) (Tp' = Tp = trispyrazolylborate or Tp* = tris(3,5- dimethylpyrazolyl)borate) were followed by time-resolved infrared spectroscopy (TRIR) in the upsilon(CNR) and upsilon(B-H) spectral regions on Tp*Rh(CNCH2CMe3), and their reaction mechanisms were modeled by density functional theory (DFT) on TpRh(CNMe). The major intermediate species were: kappa(3)-eta(1)-alkane complex (1); kappa(2)-kappa(2)-alkane complex (2); and kappa(3)-alkyl hydride (3). Calculations predict that the barrier between 1 and 2 arises from a triplet-singlet crossing and intermediate 2 proceeds over the rate-determining C-H activation barrier to give the final product 3. The activation lifetimes measured for the Tp*Rh(CNR) and Tp*Rh(CO) fragments with n-heptane and four cycloalkanes (C5H10, C6H12, C7H14, and C8H16) increase with alkanes size and show a dramatic increase between C6H12 and C7H14. A similar step-like behavior was observed previously with CpRh(CO) and Cp*Rh(CO) fragments and is attributed to the wider difference in C-H bonds that appear at C7H14. However, Tp'Rh(CNR) and Tp'Rh(CO) fragments have much longer absolute lifetimes compared to those of CpRh(CO) and Cp*Rh(CO) fragments, because the reduced electron density in dechelated kappa(2)-eta(2)-alkane Tp' complexes stabilizes the d(8) Rh(I) in a square-planar geometry and weakens the metal's ability for oxidative addition of the C-H bond. Further, the Tp'Rh(CNR) fragment has significantly slower rates of C-H activation in comparison to the Tp'Rh(CO) fragment for the larger cycloalkanes, because the steric bulk of the neopentyl isocyanide ligand hinders the rechelation in kappa(2)-Tp'Rh(CNR)(cycloalkane) species and results in the C-H activation without the assistance of the rechelation.",
publisher = "Amer Chemical Soc, Washington",
journal = "Journal of the American Chemical Society",
title = "Probing the Carbon-Hydrogen Activation of Alkanes Following Photolysis of Tp'Rh(CNR)(carbodiimide): A Computational and Time Resolved Infrared Spectroscopic Study",
volume = "140",
number = "5",
pages = "1842-1854",
doi = "10.1021/jacs.7b12152"
}
Guan, J., Wriglesworth, A., Sun, X. Z., Brothers, E. N., Zarić, S. D., Evans, M. E., Jones, W. D., Towrie, M., Hall, M. B.,& George, M. W.. (2018). Probing the Carbon-Hydrogen Activation of Alkanes Following Photolysis of Tp'Rh(CNR)(carbodiimide): A Computational and Time Resolved Infrared Spectroscopic Study. in Journal of the American Chemical Society
Amer Chemical Soc, Washington., 140(5), 1842-1854.
https://doi.org/10.1021/jacs.7b12152
Guan J, Wriglesworth A, Sun XZ, Brothers EN, Zarić SD, Evans ME, Jones WD, Towrie M, Hall MB, George MW. Probing the Carbon-Hydrogen Activation of Alkanes Following Photolysis of Tp'Rh(CNR)(carbodiimide): A Computational and Time Resolved Infrared Spectroscopic Study. in Journal of the American Chemical Society. 2018;140(5):1842-1854.
doi:10.1021/jacs.7b12152 .
Guan, Jia, Wriglesworth, Alisdair, Sun, Xue Zhong, Brothers, Edward N., Zarić, Snežana D., Evans, Meagan E., Jones, William D., Towrie, Michael, Hall, Michael B., George, Michael W., "Probing the Carbon-Hydrogen Activation of Alkanes Following Photolysis of Tp'Rh(CNR)(carbodiimide): A Computational and Time Resolved Infrared Spectroscopic Study" in Journal of the American Chemical Society, 140, no. 5 (2018):1842-1854,
https://doi.org/10.1021/jacs.7b12152 . .
2
28
17
27
27

Supplementary data for the article: Guan, J.; Wriglesworth, A.; Sun, X. Z.; Brothers, E. N.; Zarić, S. D.; Evans, M. E.; Jones, W. D.; Towrie, M.; Hall, M. B.; George, M. W. Probing the Carbon-Hydrogen Activation of Alkanes Following Photolysis of Tp′Rh(CNR)(Carbodiimide): A Computational and Time-Resolved Infrared Spectroscopic Study. Journal of the American Chemical Society 2018, 140 (5), 1842–1854. https://doi.org/10.1021/jacs.7b12152

Guan, Jia; Wriglesworth, Alisdair; Sun, Xue Zhong; Brothers, Edward N.; Zarić, Snežana D.; Evans, Meagan E.; Jones, William D.; Towrie, Michael; Hall, Michael B.; George, Michael W.

(Amer Chemical Soc, Washington, 2018)

TY  - DATA
AU  - Guan, Jia
AU  - Wriglesworth, Alisdair
AU  - Sun, Xue Zhong
AU  - Brothers, Edward N.
AU  - Zarić, Snežana D.
AU  - Evans, Meagan E.
AU  - Jones, William D.
AU  - Towrie, Michael
AU  - Hall, Michael B.
AU  - George, Michael W.
PY  - 2018
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/2942
PB  - Amer Chemical Soc, Washington
T2  - Journal of the American Chemical Society
T1  - Supplementary data for the article: Guan, J.; Wriglesworth, A.; Sun, X. Z.; Brothers, E. N.; Zarić, S. D.; Evans, M. E.; Jones, W. D.; Towrie, M.; Hall, M. B.; George, M. W. Probing the Carbon-Hydrogen Activation of Alkanes Following Photolysis of Tp′Rh(CNR)(Carbodiimide): A Computational and Time-Resolved Infrared Spectroscopic Study. Journal of the American Chemical Society 2018, 140 (5), 1842–1854. https://doi.org/10.1021/jacs.7b12152
UR  - https://hdl.handle.net/21.15107/rcub_cherry_2942
ER  - 
@misc{
author = "Guan, Jia and Wriglesworth, Alisdair and Sun, Xue Zhong and Brothers, Edward N. and Zarić, Snežana D. and Evans, Meagan E. and Jones, William D. and Towrie, Michael and Hall, Michael B. and George, Michael W.",
year = "2018",
publisher = "Amer Chemical Soc, Washington",
journal = "Journal of the American Chemical Society",
title = "Supplementary data for the article: Guan, J.; Wriglesworth, A.; Sun, X. Z.; Brothers, E. N.; Zarić, S. D.; Evans, M. E.; Jones, W. D.; Towrie, M.; Hall, M. B.; George, M. W. Probing the Carbon-Hydrogen Activation of Alkanes Following Photolysis of Tp′Rh(CNR)(Carbodiimide): A Computational and Time-Resolved Infrared Spectroscopic Study. Journal of the American Chemical Society 2018, 140 (5), 1842–1854. https://doi.org/10.1021/jacs.7b12152",
url = "https://hdl.handle.net/21.15107/rcub_cherry_2942"
}
Guan, J., Wriglesworth, A., Sun, X. Z., Brothers, E. N., Zarić, S. D., Evans, M. E., Jones, W. D., Towrie, M., Hall, M. B.,& George, M. W.. (2018). Supplementary data for the article: Guan, J.; Wriglesworth, A.; Sun, X. Z.; Brothers, E. N.; Zarić, S. D.; Evans, M. E.; Jones, W. D.; Towrie, M.; Hall, M. B.; George, M. W. Probing the Carbon-Hydrogen Activation of Alkanes Following Photolysis of Tp′Rh(CNR)(Carbodiimide): A Computational and Time-Resolved Infrared Spectroscopic Study. Journal of the American Chemical Society 2018, 140 (5), 1842–1854. https://doi.org/10.1021/jacs.7b12152. in Journal of the American Chemical Society
Amer Chemical Soc, Washington..
https://hdl.handle.net/21.15107/rcub_cherry_2942
Guan J, Wriglesworth A, Sun XZ, Brothers EN, Zarić SD, Evans ME, Jones WD, Towrie M, Hall MB, George MW. Supplementary data for the article: Guan, J.; Wriglesworth, A.; Sun, X. Z.; Brothers, E. N.; Zarić, S. D.; Evans, M. E.; Jones, W. D.; Towrie, M.; Hall, M. B.; George, M. W. Probing the Carbon-Hydrogen Activation of Alkanes Following Photolysis of Tp′Rh(CNR)(Carbodiimide): A Computational and Time-Resolved Infrared Spectroscopic Study. Journal of the American Chemical Society 2018, 140 (5), 1842–1854. https://doi.org/10.1021/jacs.7b12152. in Journal of the American Chemical Society. 2018;.
https://hdl.handle.net/21.15107/rcub_cherry_2942 .
Guan, Jia, Wriglesworth, Alisdair, Sun, Xue Zhong, Brothers, Edward N., Zarić, Snežana D., Evans, Meagan E., Jones, William D., Towrie, Michael, Hall, Michael B., George, Michael W., "Supplementary data for the article: Guan, J.; Wriglesworth, A.; Sun, X. Z.; Brothers, E. N.; Zarić, S. D.; Evans, M. E.; Jones, W. D.; Towrie, M.; Hall, M. B.; George, M. W. Probing the Carbon-Hydrogen Activation of Alkanes Following Photolysis of Tp′Rh(CNR)(Carbodiimide): A Computational and Time-Resolved Infrared Spectroscopic Study. Journal of the American Chemical Society 2018, 140 (5), 1842–1854. https://doi.org/10.1021/jacs.7b12152" in Journal of the American Chemical Society (2018),
https://hdl.handle.net/21.15107/rcub_cherry_2942 .

Probing the Carbon-Hydrogen Activation of Alkanes Following Photolysis of Tp'Rh(CNR)(carbodiimide): A Computational and Time Resolved Infrared Spectroscopic Study

Guan, Jia; Wriglesworth, Alisdair; Sun, Xue Zhong; Brothers, Edward N.; Zarić, Snežana D.; Evans, Meagan E.; Jones, William D.; Towrie, Michael; Hall, Michael B.; George, Michael W.

(Amer Chemical Soc, Washington, 2018)

TY  - JOUR
AU  - Guan, Jia
AU  - Wriglesworth, Alisdair
AU  - Sun, Xue Zhong
AU  - Brothers, Edward N.
AU  - Zarić, Snežana D.
AU  - Evans, Meagan E.
AU  - Jones, William D.
AU  - Towrie, Michael
AU  - Hall, Michael B.
AU  - George, Michael W.
PY  - 2018
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/2091
AB  - Carbon-hydrogen bond activation of alkanes by Tp'Rh(CNR) (Tp' = Tp = trispyrazolylborate or Tp* = tris(3,5- dimethylpyrazolyl)borate) were followed by time-resolved infrared spectroscopy (TRIR) in the upsilon(CNR) and upsilon(B-H) spectral regions on Tp*Rh(CNCH2CMe3), and their reaction mechanisms were modeled by density functional theory (DFT) on TpRh(CNMe). The major intermediate species were: kappa(3)-eta(1)-alkane complex (1); kappa(2)-kappa(2)-alkane complex (2); and kappa(3)-alkyl hydride (3). Calculations predict that the barrier between 1 and 2 arises from a triplet-singlet crossing and intermediate 2 proceeds over the rate-determining C-H activation barrier to give the final product 3. The activation lifetimes measured for the Tp*Rh(CNR) and Tp*Rh(CO) fragments with n-heptane and four cycloalkanes (C5H10, C6H12, C7H14, and C8H16) increase with alkanes size and show a dramatic increase between C6H12 and C7H14. A similar step-like behavior was observed previously with CpRh(CO) and Cp*Rh(CO) fragments and is attributed to the wider difference in C-H bonds that appear at C7H14. However, Tp'Rh(CNR) and Tp'Rh(CO) fragments have much longer absolute lifetimes compared to those of CpRh(CO) and Cp*Rh(CO) fragments, because the reduced electron density in dechelated kappa(2)-eta(2)-alkane Tp' complexes stabilizes the d(8) Rh(I) in a square-planar geometry and weakens the metal's ability for oxidative addition of the C-H bond. Further, the Tp'Rh(CNR) fragment has significantly slower rates of C-H activation in comparison to the Tp'Rh(CO) fragment for the larger cycloalkanes, because the steric bulk of the neopentyl isocyanide ligand hinders the rechelation in kappa(2)-Tp'Rh(CNR)(cycloalkane) species and results in the C-H activation without the assistance of the rechelation.
PB  - Amer Chemical Soc, Washington
T2  - Journal of the American Chemical Society
T1  - Probing the Carbon-Hydrogen Activation of Alkanes Following Photolysis of Tp'Rh(CNR)(carbodiimide): A Computational and Time Resolved Infrared Spectroscopic Study
VL  - 140
IS  - 5
SP  - 1842
EP  - 1854
DO  - 10.1021/jacs.7b12152
ER  - 
@article{
author = "Guan, Jia and Wriglesworth, Alisdair and Sun, Xue Zhong and Brothers, Edward N. and Zarić, Snežana D. and Evans, Meagan E. and Jones, William D. and Towrie, Michael and Hall, Michael B. and George, Michael W.",
year = "2018",
abstract = "Carbon-hydrogen bond activation of alkanes by Tp'Rh(CNR) (Tp' = Tp = trispyrazolylborate or Tp* = tris(3,5- dimethylpyrazolyl)borate) were followed by time-resolved infrared spectroscopy (TRIR) in the upsilon(CNR) and upsilon(B-H) spectral regions on Tp*Rh(CNCH2CMe3), and their reaction mechanisms were modeled by density functional theory (DFT) on TpRh(CNMe). The major intermediate species were: kappa(3)-eta(1)-alkane complex (1); kappa(2)-kappa(2)-alkane complex (2); and kappa(3)-alkyl hydride (3). Calculations predict that the barrier between 1 and 2 arises from a triplet-singlet crossing and intermediate 2 proceeds over the rate-determining C-H activation barrier to give the final product 3. The activation lifetimes measured for the Tp*Rh(CNR) and Tp*Rh(CO) fragments with n-heptane and four cycloalkanes (C5H10, C6H12, C7H14, and C8H16) increase with alkanes size and show a dramatic increase between C6H12 and C7H14. A similar step-like behavior was observed previously with CpRh(CO) and Cp*Rh(CO) fragments and is attributed to the wider difference in C-H bonds that appear at C7H14. However, Tp'Rh(CNR) and Tp'Rh(CO) fragments have much longer absolute lifetimes compared to those of CpRh(CO) and Cp*Rh(CO) fragments, because the reduced electron density in dechelated kappa(2)-eta(2)-alkane Tp' complexes stabilizes the d(8) Rh(I) in a square-planar geometry and weakens the metal's ability for oxidative addition of the C-H bond. Further, the Tp'Rh(CNR) fragment has significantly slower rates of C-H activation in comparison to the Tp'Rh(CO) fragment for the larger cycloalkanes, because the steric bulk of the neopentyl isocyanide ligand hinders the rechelation in kappa(2)-Tp'Rh(CNR)(cycloalkane) species and results in the C-H activation without the assistance of the rechelation.",
publisher = "Amer Chemical Soc, Washington",
journal = "Journal of the American Chemical Society",
title = "Probing the Carbon-Hydrogen Activation of Alkanes Following Photolysis of Tp'Rh(CNR)(carbodiimide): A Computational and Time Resolved Infrared Spectroscopic Study",
volume = "140",
number = "5",
pages = "1842-1854",
doi = "10.1021/jacs.7b12152"
}
Guan, J., Wriglesworth, A., Sun, X. Z., Brothers, E. N., Zarić, S. D., Evans, M. E., Jones, W. D., Towrie, M., Hall, M. B.,& George, M. W.. (2018). Probing the Carbon-Hydrogen Activation of Alkanes Following Photolysis of Tp'Rh(CNR)(carbodiimide): A Computational and Time Resolved Infrared Spectroscopic Study. in Journal of the American Chemical Society
Amer Chemical Soc, Washington., 140(5), 1842-1854.
https://doi.org/10.1021/jacs.7b12152
Guan J, Wriglesworth A, Sun XZ, Brothers EN, Zarić SD, Evans ME, Jones WD, Towrie M, Hall MB, George MW. Probing the Carbon-Hydrogen Activation of Alkanes Following Photolysis of Tp'Rh(CNR)(carbodiimide): A Computational and Time Resolved Infrared Spectroscopic Study. in Journal of the American Chemical Society. 2018;140(5):1842-1854.
doi:10.1021/jacs.7b12152 .
Guan, Jia, Wriglesworth, Alisdair, Sun, Xue Zhong, Brothers, Edward N., Zarić, Snežana D., Evans, Meagan E., Jones, William D., Towrie, Michael, Hall, Michael B., George, Michael W., "Probing the Carbon-Hydrogen Activation of Alkanes Following Photolysis of Tp'Rh(CNR)(carbodiimide): A Computational and Time Resolved Infrared Spectroscopic Study" in Journal of the American Chemical Society, 140, no. 5 (2018):1842-1854,
https://doi.org/10.1021/jacs.7b12152 . .
2
28
17
28
27