Bilateral project (no. 451-03-01963/2017-09/09).

Link to this page

Bilateral project (no. 451-03-01963/2017-09/09).

Authors

Publications

Ramonda serbica de novo transcriptome database related to the article: Pantelic, A.; Stevanović, S.; Milic-Komic, S.; Kilibarda, N.; Vidovic, M. Characterization and expression analysis of the late embryogenesis abundant (LEA) proteins family in hydrated and desiccated Ramonda serbica Panc. leaves

Pantelić, Ana; Stevanovic, Strahinja; Milic-Komic, Sonja; Kilibarda, Natasa; Vidović, Marija

(MDPI, 2022)

TY  - DATA
AU  - Pantelić, Ana
AU  - Stevanovic, Strahinja
AU  - Milic-Komic, Sonja
AU  - Kilibarda, Natasa
AU  - Vidović, Marija
PY  - 2022
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/4882
AB  - Ramonda serbica de novo transcriptome database
PB  - MDPI
T2  - International Journal of Molecular Science
T1  - Ramonda serbica de novo transcriptome database related to the article: Pantelic, A.; Stevanović, S.; Milic-Komic, S.; Kilibarda, N.; Vidovic, M. Characterization and expression analysis of the late embryogenesis abundant (LEA) proteins family in hydrated and desiccated Ramonda serbica Panc. leaves
VL  - n/a
UR  - https://hdl.handle.net/21.15107/rcub_cherry_4882
ER  - 
@misc{
author = "Pantelić, Ana and Stevanovic, Strahinja and Milic-Komic, Sonja and Kilibarda, Natasa and Vidović, Marija",
year = "2022",
abstract = "Ramonda serbica de novo transcriptome database",
publisher = "MDPI",
journal = "International Journal of Molecular Science",
title = "Ramonda serbica de novo transcriptome database related to the article: Pantelic, A.; Stevanović, S.; Milic-Komic, S.; Kilibarda, N.; Vidovic, M. Characterization and expression analysis of the late embryogenesis abundant (LEA) proteins family in hydrated and desiccated Ramonda serbica Panc. leaves",
volume = "n/a",
url = "https://hdl.handle.net/21.15107/rcub_cherry_4882"
}
Pantelić, A., Stevanovic, S., Milic-Komic, S., Kilibarda, N.,& Vidović, M.. (2022). Ramonda serbica de novo transcriptome database related to the article: Pantelic, A.; Stevanović, S.; Milic-Komic, S.; Kilibarda, N.; Vidovic, M. Characterization and expression analysis of the late embryogenesis abundant (LEA) proteins family in hydrated and desiccated Ramonda serbica Panc. leaves. in International Journal of Molecular Science
MDPI., n/a.
https://hdl.handle.net/21.15107/rcub_cherry_4882
Pantelić A, Stevanovic S, Milic-Komic S, Kilibarda N, Vidović M. Ramonda serbica de novo transcriptome database related to the article: Pantelic, A.; Stevanović, S.; Milic-Komic, S.; Kilibarda, N.; Vidovic, M. Characterization and expression analysis of the late embryogenesis abundant (LEA) proteins family in hydrated and desiccated Ramonda serbica Panc. leaves. in International Journal of Molecular Science. 2022;n/a.
https://hdl.handle.net/21.15107/rcub_cherry_4882 .
Pantelić, Ana, Stevanovic, Strahinja, Milic-Komic, Sonja, Kilibarda, Natasa, Vidović, Marija, "Ramonda serbica de novo transcriptome database related to the article: Pantelic, A.; Stevanović, S.; Milic-Komic, S.; Kilibarda, N.; Vidovic, M. Characterization and expression analysis of the late embryogenesis abundant (LEA) proteins family in hydrated and desiccated Ramonda serbica Panc. leaves" in International Journal of Molecular Science, n/a (2022),
https://hdl.handle.net/21.15107/rcub_cherry_4882 .

De Novo Transcriptome Sequencing of Ramonda serbica: Identification of the Candidate Genes Involved in the Desiccation Tolerance

Vidović, Marija; Stevanović, Strahinja; Veljović-Jovanović, Sonja

(2021)

TY  - CONF
AU  - Vidović, Marija
AU  - Stevanović, Strahinja
AU  - Veljović-Jovanović, Sonja
PY  - 2021
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4509
AB  - Ramonda serbica Panc. is a resurrection plant that can survive a long period of severe dehydration-desiccation. Desiccation induces cellular membrane integrity loss, protein aggregation, and denaturation, as well as accelerated generation of reactive oxygen species. However, R. serbica can fully recover its metabolic functions already one day upon watering [1]. The aim of our study was to obtain more insight into the desiccation tolerance mechanisms by differential de novo transcriptomics of hydrated (HL) and desiccated leaves (DL). 
For R. serbica transcriptome construction, the total high-quality RNA from HL and DL was extracted according to our previously optimised protocol [2]. Highly purified cDNA libraries were sequenced on an Illumina Hi-Seq platform. The ambiguous nucleotides, adapter sequences, and low-quality sequences were trimmed, and the quality of the reads was checked before and after the trimming. In total, 39608813 (with Q30=94%) and 37482969 (with Q30=94.1%) clean reads were obtained in HL and DL, respectively, and used to perform transcriptome assembly by Trinity software. After removing the redundancy, 189456 transcripts with 189003 unigenes were obtained (32.6% with the length between 500-1kbp).
Comparative analysis revealed that a large portion of R. serbica sequences (49.1%) was similar to sequences found in the genome of another resurrection plant Boea hygrometrica. Furthermore, among obtained unigenes, 64.6% and 42.3% were annotated by NCBI non-redundant protein and nucleotide sequences database (db), 23% by PFAM db, 22.5% by Clusters of Orthologous Groups of proteins db, 48.02% by Swiss-Prot db, 23 % KEGG db and 13.73 by Gene Ontology db. The majority of annotated genes were associated with translation, ribosomal structure, posttranslational modifications, protein turnover, signalling pathways and cytoskeleton and encoded chaperonins and late embryogenesis abundant (LEA) proteins. 
Aiming to provide a list of candidates involved in the desiccation tolerance in R. serbica we analysed differentially expressed genes in HL and DL. Genes associated with transmembrane transport, reproduction, cell proliferation, and protein folding were up-regulated in HL compared with DL. On the other hand, genes encoding proteins involved in cell wall architecture, LEA proteins and antioxidative defence were up-regulated in DL.
C3  - Biologia Serbica
T1  - De Novo Transcriptome Sequencing of Ramonda serbica: Identification of the Candidate Genes Involved in the Desiccation Tolerance
VL  - 43
IS  - 1 (spec. ed.)
SP  - 75
EP  - 76
UR  - https://hdl.handle.net/21.15107/rcub_cherry_4509
ER  - 
@conference{
author = "Vidović, Marija and Stevanović, Strahinja and Veljović-Jovanović, Sonja",
year = "2021",
abstract = "Ramonda serbica Panc. is a resurrection plant that can survive a long period of severe dehydration-desiccation. Desiccation induces cellular membrane integrity loss, protein aggregation, and denaturation, as well as accelerated generation of reactive oxygen species. However, R. serbica can fully recover its metabolic functions already one day upon watering [1]. The aim of our study was to obtain more insight into the desiccation tolerance mechanisms by differential de novo transcriptomics of hydrated (HL) and desiccated leaves (DL). 
For R. serbica transcriptome construction, the total high-quality RNA from HL and DL was extracted according to our previously optimised protocol [2]. Highly purified cDNA libraries were sequenced on an Illumina Hi-Seq platform. The ambiguous nucleotides, adapter sequences, and low-quality sequences were trimmed, and the quality of the reads was checked before and after the trimming. In total, 39608813 (with Q30=94%) and 37482969 (with Q30=94.1%) clean reads were obtained in HL and DL, respectively, and used to perform transcriptome assembly by Trinity software. After removing the redundancy, 189456 transcripts with 189003 unigenes were obtained (32.6% with the length between 500-1kbp).
Comparative analysis revealed that a large portion of R. serbica sequences (49.1%) was similar to sequences found in the genome of another resurrection plant Boea hygrometrica. Furthermore, among obtained unigenes, 64.6% and 42.3% were annotated by NCBI non-redundant protein and nucleotide sequences database (db), 23% by PFAM db, 22.5% by Clusters of Orthologous Groups of proteins db, 48.02% by Swiss-Prot db, 23 % KEGG db and 13.73 by Gene Ontology db. The majority of annotated genes were associated with translation, ribosomal structure, posttranslational modifications, protein turnover, signalling pathways and cytoskeleton and encoded chaperonins and late embryogenesis abundant (LEA) proteins. 
Aiming to provide a list of candidates involved in the desiccation tolerance in R. serbica we analysed differentially expressed genes in HL and DL. Genes associated with transmembrane transport, reproduction, cell proliferation, and protein folding were up-regulated in HL compared with DL. On the other hand, genes encoding proteins involved in cell wall architecture, LEA proteins and antioxidative defence were up-regulated in DL.",
journal = "Biologia Serbica",
title = "De Novo Transcriptome Sequencing of Ramonda serbica: Identification of the Candidate Genes Involved in the Desiccation Tolerance",
volume = "43",
number = "1 (spec. ed.)",
pages = "75-76",
url = "https://hdl.handle.net/21.15107/rcub_cherry_4509"
}
Vidović, M., Stevanović, S.,& Veljović-Jovanović, S.. (2021). De Novo Transcriptome Sequencing of Ramonda serbica: Identification of the Candidate Genes Involved in the Desiccation Tolerance. in Biologia Serbica, 43(1 (spec. ed.)), 75-76.
https://hdl.handle.net/21.15107/rcub_cherry_4509
Vidović M, Stevanović S, Veljović-Jovanović S. De Novo Transcriptome Sequencing of Ramonda serbica: Identification of the Candidate Genes Involved in the Desiccation Tolerance. in Biologia Serbica. 2021;43(1 (spec. ed.)):75-76.
https://hdl.handle.net/21.15107/rcub_cherry_4509 .
Vidović, Marija, Stevanović, Strahinja, Veljović-Jovanović, Sonja, "De Novo Transcriptome Sequencing of Ramonda serbica: Identification of the Candidate Genes Involved in the Desiccation Tolerance" in Biologia Serbica, 43, no. 1 (spec. ed.) (2021):75-76,
https://hdl.handle.net/21.15107/rcub_cherry_4509 .