Plant Biodiversity of Serbia and the Balkans - assesment, sustainable use and protection

Link to this page

info:eu-repo/grantAgreement/MESTD/Basic Research (BR or ON)/173030/RS//

Plant Biodiversity of Serbia and the Balkans - assesment, sustainable use and protection (en)
Биодиверзитет биљног света Србије и Балканског полуострва - процена, одрживо коришћење и заштита (sr)
Biodiverzitet biljnog sveta Srbije i Balkanskog poluostrva - procena, održivo korišćenje i zaštita (sr_RS)
Authors

Publications

Ecological potential of Epilobium dodonaei Vill. for restoration of metalliferous mine wastes

Ranđelović, Dragana; Gajić, Gordana; Mutić, Jelena; Pavlović, Pavle; Mihailović, Nevena; Jovanović, Slobodan

(Elsevier Science Bv, Amsterdam, 2016)

TY  - JOUR
AU  - Ranđelović, Dragana
AU  - Gajić, Gordana
AU  - Mutić, Jelena
AU  - Pavlović, Pavle
AU  - Mihailović, Nevena
AU  - Jovanović, Slobodan
PY  - 2016
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/2332
AB  - Metalliferous mine wastes represent one of the major sources of environmental contamination from mining activities. Bor region (Serbia) is one of the largest copper mine basins in Europe where long-term mining caused severe environmental deterioration and created one of the most degraded locations in Serbia and Europe. At the spontaneously colonized metalliferous mine wastes in Bor, plant species Epilobium dodonaei dominates in the mine slopes and mine waste surfaces. Epilobium dodonaei has the status of endangered and protected species in parts of European range (i. e. plant is included in the Red lists of the countries in the Carpathian mountains region), primarily due to losses of natural gravel habitats. The main focus of this research was physico-chemical characterization of mine waste, assessment of phytoremediation potential and plant metabolic stress response of Epilobium dodonaei at the hot spot metalliferous mine site in order to evaluate the possibility for application of endangered species in ecological restoration. The Bor mine wastes are characterized by coarse soil texture, various pH (4.58-8.30), and elevated concentrations of arsenic (44.5-271 mg kg(-1)) and copper (311-2820 mg kg(-1)) that exceed the Serbian limiting threshold and remediation values. Oxidation of metal-sulfide minerals on waste surface leads to increased acidity, followed by elevated metal mobility of the mine spoil solution. Content of arsenic, copper, lead and zinc in roots of E. dodonaei was correlated with pseudo-total and EDTA-available concentrations in Bor mine spoils. Furthermore, the content of arsenic, copper, lead and zinc in roots (3.98 mg kg(-1), 140 mg kg(-1), 3.19 mg kg(-1), and 72.8 mg kg(-1), respectively) and shoots (4.69 mg kg(-1),57.7 mg kg(-1), 1.17 mg kg(-1), and 59.3 mg kg(-1), respectively) of E. dodonaei reflected the multi-metal pollution at the investigated site. Epilobium dodonaei largely retains copper, lead and zinc in roots than in shoots and has the potential for phytoremediation of mine wastes. Epilobium dodonaei at Bor mine spoil had a high content of malondialdehyde in roots and leaves as well as reduced chlorophylls and carotenoids content in leaves, indicating great oxidative stress. However, elevated arsenic and copper content could promote biosynthesis of antioxidants in roots and leaves of E. dodonaei at mine spoil. Creation of an endangered species habitat on mine waste rocks of the Bor mining area and similar sites of Carpatho-Balkan metallogenic province could successfully contribute to the preservation of E. dodonaei. Development of practical procedures for the selection and application of endangered plant species in reclamation should create stronger link between ecological restoration and conservation biology. Finally, the application of endangered plant species should take a more prominent role in the restoration process and ecosystem design. (C) 2016 Elsevier B. V. All rights reserved.
PB  - Elsevier Science Bv, Amsterdam
T2  - Ecological Engineering
T1  - Ecological potential of Epilobium dodonaei Vill. for restoration of metalliferous mine wastes
VL  - 95
SP  - 800
EP  - 810
DO  - 10.1016/j.ecoleng.2016.07.015
ER  - 
@article{
author = "Ranđelović, Dragana and Gajić, Gordana and Mutić, Jelena and Pavlović, Pavle and Mihailović, Nevena and Jovanović, Slobodan",
year = "2016",
abstract = "Metalliferous mine wastes represent one of the major sources of environmental contamination from mining activities. Bor region (Serbia) is one of the largest copper mine basins in Europe where long-term mining caused severe environmental deterioration and created one of the most degraded locations in Serbia and Europe. At the spontaneously colonized metalliferous mine wastes in Bor, plant species Epilobium dodonaei dominates in the mine slopes and mine waste surfaces. Epilobium dodonaei has the status of endangered and protected species in parts of European range (i. e. plant is included in the Red lists of the countries in the Carpathian mountains region), primarily due to losses of natural gravel habitats. The main focus of this research was physico-chemical characterization of mine waste, assessment of phytoremediation potential and plant metabolic stress response of Epilobium dodonaei at the hot spot metalliferous mine site in order to evaluate the possibility for application of endangered species in ecological restoration. The Bor mine wastes are characterized by coarse soil texture, various pH (4.58-8.30), and elevated concentrations of arsenic (44.5-271 mg kg(-1)) and copper (311-2820 mg kg(-1)) that exceed the Serbian limiting threshold and remediation values. Oxidation of metal-sulfide minerals on waste surface leads to increased acidity, followed by elevated metal mobility of the mine spoil solution. Content of arsenic, copper, lead and zinc in roots of E. dodonaei was correlated with pseudo-total and EDTA-available concentrations in Bor mine spoils. Furthermore, the content of arsenic, copper, lead and zinc in roots (3.98 mg kg(-1), 140 mg kg(-1), 3.19 mg kg(-1), and 72.8 mg kg(-1), respectively) and shoots (4.69 mg kg(-1),57.7 mg kg(-1), 1.17 mg kg(-1), and 59.3 mg kg(-1), respectively) of E. dodonaei reflected the multi-metal pollution at the investigated site. Epilobium dodonaei largely retains copper, lead and zinc in roots than in shoots and has the potential for phytoremediation of mine wastes. Epilobium dodonaei at Bor mine spoil had a high content of malondialdehyde in roots and leaves as well as reduced chlorophylls and carotenoids content in leaves, indicating great oxidative stress. However, elevated arsenic and copper content could promote biosynthesis of antioxidants in roots and leaves of E. dodonaei at mine spoil. Creation of an endangered species habitat on mine waste rocks of the Bor mining area and similar sites of Carpatho-Balkan metallogenic province could successfully contribute to the preservation of E. dodonaei. Development of practical procedures for the selection and application of endangered plant species in reclamation should create stronger link between ecological restoration and conservation biology. Finally, the application of endangered plant species should take a more prominent role in the restoration process and ecosystem design. (C) 2016 Elsevier B. V. All rights reserved.",
publisher = "Elsevier Science Bv, Amsterdam",
journal = "Ecological Engineering",
title = "Ecological potential of Epilobium dodonaei Vill. for restoration of metalliferous mine wastes",
volume = "95",
pages = "800-810",
doi = "10.1016/j.ecoleng.2016.07.015"
}
Ranđelović, D., Gajić, G., Mutić, J., Pavlović, P., Mihailović, N.,& Jovanović, S.. (2016). Ecological potential of Epilobium dodonaei Vill. for restoration of metalliferous mine wastes. in Ecological Engineering
Elsevier Science Bv, Amsterdam., 95, 800-810.
https://doi.org/10.1016/j.ecoleng.2016.07.015
Ranđelović D, Gajić G, Mutić J, Pavlović P, Mihailović N, Jovanović S. Ecological potential of Epilobium dodonaei Vill. for restoration of metalliferous mine wastes. in Ecological Engineering. 2016;95:800-810.
doi:10.1016/j.ecoleng.2016.07.015 .
Ranđelović, Dragana, Gajić, Gordana, Mutić, Jelena, Pavlović, Pavle, Mihailović, Nevena, Jovanović, Slobodan, "Ecological potential of Epilobium dodonaei Vill. for restoration of metalliferous mine wastes" in Ecological Engineering, 95 (2016):800-810,
https://doi.org/10.1016/j.ecoleng.2016.07.015 . .
39
18
36
34

The resurrection flowering plant Ramonda nathaliae on serpentine soil - coping with extreme mineral element stress

Rakic, Tamara; Ilijević, Konstantin; Lazarevic, Maja; Gržetić, Ivan; Stevanović, Vladimir; Stevanovic, Branka

(Elsevier Gmbh, Urban & Fischer Verlag, Jena, 2013)

TY  - JOUR
AU  - Rakic, Tamara
AU  - Ilijević, Konstantin
AU  - Lazarevic, Maja
AU  - Gržetić, Ivan
AU  - Stevanović, Vladimir
AU  - Stevanovic, Branka
PY  - 2013
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/1458
AB  - Ramonda nathaliae (Gesneriaceae) is a rare desiccation tolerant flowering plant species of the Northern Hemisphere. This, mainly calcicole, preglacial relict species is endemic in the Balkan Peninsula, where it has survived in its refugial habitats of gorges and mountain slopes. At present, only two localities within its narrow range are known where it thrives in hostile serpentine habitats, and the adverse serpentine environment is bound to present further challenge to the adaptive capacity of R. nathaliae. In general, the occurrence of a resurrection flowering plant on serpentine soil is exceptional and the soil-plant relation of R. nathaliae in those circumstances is described here for the first time. The aim of this study was (i) to analyze mineral elements composition in soil from both serpentine and limestone habitats of the species and to compare the way peculiarities of the substrates are reflected in roots and leaves of plants from the respective soils; (ii) to evaluate the effect of heavy metal overload on the habit of serpentine R. nathaliae individuals. Serpentine soil, characterized by high levels of phytotoxic heavy metals (Ni, Cr, Co, Mn), hosts plants showing elevated metal contents in their organs. Ramonda plants from serpentine populations are able to maintain balance of Ca to Mg favourable to Ca (2.0 in roots, 2.7 in leaves) despite a strongly unfavourable Ca/Mg ratio in the soil (0.09). The greatest difference in concentrations was observed for the Ni content in plant tissues: serpentine plants had 57 and 20 times more Ni in their roots and leaves than the plants from limestone. Aluminium was present in similar concentrations in both soils, and was highly accumulated in plant tissues of the plants from both substrates. Metal-specific metabolic activity is demonstrated in bioaccumulation indices of several essential minerals (Ca, Mg, Cu, Zn). A significantly higher metal content found in roots in relation to leaves might indicate the plant's ability to immobilize the metals within the root tissues. Mycorrhizal fungi colonize plant roots from both substrates and apparently are important in improving the supply of nutrients, but they could also take part in toxic metal immobilization. The price of adaptation to the hostile environment is evident in the habit of R. nathaliae plants growing on serpentine: reduced size of rosettes and leaves, as well as chlorotic and necrotic leaf tips and margins.
PB  - Elsevier Gmbh, Urban & Fischer Verlag, Jena
T2  - Flora
T1  - The resurrection flowering plant Ramonda nathaliae on serpentine soil - coping with extreme mineral element stress
VL  - 208
IS  - 10-12
SP  - 618
EP  - 625
DO  - 10.1016/j.flora.2013.09.006
ER  - 
@article{
author = "Rakic, Tamara and Ilijević, Konstantin and Lazarevic, Maja and Gržetić, Ivan and Stevanović, Vladimir and Stevanovic, Branka",
year = "2013",
abstract = "Ramonda nathaliae (Gesneriaceae) is a rare desiccation tolerant flowering plant species of the Northern Hemisphere. This, mainly calcicole, preglacial relict species is endemic in the Balkan Peninsula, where it has survived in its refugial habitats of gorges and mountain slopes. At present, only two localities within its narrow range are known where it thrives in hostile serpentine habitats, and the adverse serpentine environment is bound to present further challenge to the adaptive capacity of R. nathaliae. In general, the occurrence of a resurrection flowering plant on serpentine soil is exceptional and the soil-plant relation of R. nathaliae in those circumstances is described here for the first time. The aim of this study was (i) to analyze mineral elements composition in soil from both serpentine and limestone habitats of the species and to compare the way peculiarities of the substrates are reflected in roots and leaves of plants from the respective soils; (ii) to evaluate the effect of heavy metal overload on the habit of serpentine R. nathaliae individuals. Serpentine soil, characterized by high levels of phytotoxic heavy metals (Ni, Cr, Co, Mn), hosts plants showing elevated metal contents in their organs. Ramonda plants from serpentine populations are able to maintain balance of Ca to Mg favourable to Ca (2.0 in roots, 2.7 in leaves) despite a strongly unfavourable Ca/Mg ratio in the soil (0.09). The greatest difference in concentrations was observed for the Ni content in plant tissues: serpentine plants had 57 and 20 times more Ni in their roots and leaves than the plants from limestone. Aluminium was present in similar concentrations in both soils, and was highly accumulated in plant tissues of the plants from both substrates. Metal-specific metabolic activity is demonstrated in bioaccumulation indices of several essential minerals (Ca, Mg, Cu, Zn). A significantly higher metal content found in roots in relation to leaves might indicate the plant's ability to immobilize the metals within the root tissues. Mycorrhizal fungi colonize plant roots from both substrates and apparently are important in improving the supply of nutrients, but they could also take part in toxic metal immobilization. The price of adaptation to the hostile environment is evident in the habit of R. nathaliae plants growing on serpentine: reduced size of rosettes and leaves, as well as chlorotic and necrotic leaf tips and margins.",
publisher = "Elsevier Gmbh, Urban & Fischer Verlag, Jena",
journal = "Flora",
title = "The resurrection flowering plant Ramonda nathaliae on serpentine soil - coping with extreme mineral element stress",
volume = "208",
number = "10-12",
pages = "618-625",
doi = "10.1016/j.flora.2013.09.006"
}
Rakic, T., Ilijević, K., Lazarevic, M., Gržetić, I., Stevanović, V.,& Stevanovic, B.. (2013). The resurrection flowering plant Ramonda nathaliae on serpentine soil - coping with extreme mineral element stress. in Flora
Elsevier Gmbh, Urban & Fischer Verlag, Jena., 208(10-12), 618-625.
https://doi.org/10.1016/j.flora.2013.09.006
Rakic T, Ilijević K, Lazarevic M, Gržetić I, Stevanović V, Stevanovic B. The resurrection flowering plant Ramonda nathaliae on serpentine soil - coping with extreme mineral element stress. in Flora. 2013;208(10-12):618-625.
doi:10.1016/j.flora.2013.09.006 .
Rakic, Tamara, Ilijević, Konstantin, Lazarevic, Maja, Gržetić, Ivan, Stevanović, Vladimir, Stevanovic, Branka, "The resurrection flowering plant Ramonda nathaliae on serpentine soil - coping with extreme mineral element stress" in Flora, 208, no. 10-12 (2013):618-625,
https://doi.org/10.1016/j.flora.2013.09.006 . .
6
11
9
13
7