The NATO Science for Peace and Security Programme , Project number G5320

Link to this page

The NATO Science for Peace and Security Programme , Project number G5320

Authors

Publications

The effects of ionizing radiation on the structure and antioxidative and metal-binding capacity of the cell wall of microalga Chlorella sorokiniana

Danilović Luković, Jelena; Zechmann, Bernd; Jevtović, Mima; Bogdanović Pristov, Jelena; Stanić, Marina; Marco Lizzul, Alessandro; Pittman, Jon K.; Spasojević, Ivan

(Elsevier, 2020)

TY  - JOUR
AU  - Danilović Luković, Jelena
AU  - Zechmann, Bernd
AU  - Jevtović, Mima
AU  - Bogdanović Pristov, Jelena
AU  - Stanić, Marina
AU  - Marco Lizzul, Alessandro
AU  - Pittman, Jon K.
AU  - Spasojević, Ivan
PY  - 2020
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4241
AB  - The impact of ionizing radiation on microorganisms such as microalgae is a topic of increasing importance for understanding the dynamics of aquatic ecosystems in response to environmental radiation, and for the development of efficient approaches for bioremediation of mining and nuclear power plants wastewaters. Currently, nothing is known about the effects of ionizing radiation on the microalgal cell wall, which represents the first line of defence against chemical and physical environmental stresses. Using various microscopy, spectroscopy and biochemical techniques we show that the unicellular alga Chlorella sorokiniana elicits a fast response to ionizing radiation. Within one day after irradiation with doses of 1–5 Gy, the fibrilar layer of the cell wall became thicker, the fraction of uronic acids was higher, and the capacity to remove the main reactive product of water radiolysis increased. In addition, the isolated cell wall fraction showed significant binding capacity for Cu2+, Mn2+, and Cr3+. The irradiation further increased the binding capacity for Cu2+, which appears to be mainly bound to glucosamine moieties within a chitosan-like polymer in the outer rigid layer of the wall. These results imply that the cell wall represents a dynamic structure that is involved in the protective response of microalgae to ionizing radiation. It appears that microalgae may exhibit a significant control of metal mobility in aquatic ecosystems via biosorption by the cell wall matrix.
PB  - Elsevier
T2  - Chemosphere
T1  - The effects of ionizing radiation on the structure and antioxidative and metal-binding capacity of the cell wall of microalga Chlorella sorokiniana
VL  - 260
SP  - 127553
DO  - 10.1016/j.chemosphere.2020.127553
ER  - 
@article{
author = "Danilović Luković, Jelena and Zechmann, Bernd and Jevtović, Mima and Bogdanović Pristov, Jelena and Stanić, Marina and Marco Lizzul, Alessandro and Pittman, Jon K. and Spasojević, Ivan",
year = "2020",
abstract = "The impact of ionizing radiation on microorganisms such as microalgae is a topic of increasing importance for understanding the dynamics of aquatic ecosystems in response to environmental radiation, and for the development of efficient approaches for bioremediation of mining and nuclear power plants wastewaters. Currently, nothing is known about the effects of ionizing radiation on the microalgal cell wall, which represents the first line of defence against chemical and physical environmental stresses. Using various microscopy, spectroscopy and biochemical techniques we show that the unicellular alga Chlorella sorokiniana elicits a fast response to ionizing radiation. Within one day after irradiation with doses of 1–5 Gy, the fibrilar layer of the cell wall became thicker, the fraction of uronic acids was higher, and the capacity to remove the main reactive product of water radiolysis increased. In addition, the isolated cell wall fraction showed significant binding capacity for Cu2+, Mn2+, and Cr3+. The irradiation further increased the binding capacity for Cu2+, which appears to be mainly bound to glucosamine moieties within a chitosan-like polymer in the outer rigid layer of the wall. These results imply that the cell wall represents a dynamic structure that is involved in the protective response of microalgae to ionizing radiation. It appears that microalgae may exhibit a significant control of metal mobility in aquatic ecosystems via biosorption by the cell wall matrix.",
publisher = "Elsevier",
journal = "Chemosphere",
title = "The effects of ionizing radiation on the structure and antioxidative and metal-binding capacity of the cell wall of microalga Chlorella sorokiniana",
volume = "260",
pages = "127553",
doi = "10.1016/j.chemosphere.2020.127553"
}
Danilović Luković, J., Zechmann, B., Jevtović, M., Bogdanović Pristov, J., Stanić, M., Marco Lizzul, A., Pittman, J. K.,& Spasojević, I.. (2020). The effects of ionizing radiation on the structure and antioxidative and metal-binding capacity of the cell wall of microalga Chlorella sorokiniana. in Chemosphere
Elsevier., 260, 127553.
https://doi.org/10.1016/j.chemosphere.2020.127553
Danilović Luković J, Zechmann B, Jevtović M, Bogdanović Pristov J, Stanić M, Marco Lizzul A, Pittman JK, Spasojević I. The effects of ionizing radiation on the structure and antioxidative and metal-binding capacity of the cell wall of microalga Chlorella sorokiniana. in Chemosphere. 2020;260:127553.
doi:10.1016/j.chemosphere.2020.127553 .
Danilović Luković, Jelena, Zechmann, Bernd, Jevtović, Mima, Bogdanović Pristov, Jelena, Stanić, Marina, Marco Lizzul, Alessandro, Pittman, Jon K., Spasojević, Ivan, "The effects of ionizing radiation on the structure and antioxidative and metal-binding capacity of the cell wall of microalga Chlorella sorokiniana" in Chemosphere, 260 (2020):127553,
https://doi.org/10.1016/j.chemosphere.2020.127553 . .
6
4
1