PHOTOGUN4MICROBES - Are photoactive nanoparticles salvation for global infectional treath?

Link to this page

info:eu-repo/grantAgreement/ScienceFundRS/Ideje/7741955/RS//

PHOTOGUN4MICROBES - Are photoactive nanoparticles salvation for global infectional treath? (en)
Authors

Publications

Blue-light-driven photoactivity of L-cysteine-modified graphene quantum dots and their antibacterial effects

Milenković, Mila; Ciasca, Gabriele; Bonasera, Aurelio; Scopelliti, Michelangelo; Marković, Olivera; Verbić, Tatjana; Todorović Marković, Biljana; Jovanović, Svetlana

(Elsevier, 2024)

TY  - JOUR
AU  - Milenković, Mila
AU  - Ciasca, Gabriele
AU  - Bonasera, Aurelio
AU  - Scopelliti, Michelangelo
AU  - Marković, Olivera
AU  - Verbić, Tatjana
AU  - Todorović Marković, Biljana
AU  - Jovanović, Svetlana
PY  - 2024
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/6303
AB  - The widespread abuse of traditional antibiotics has led to a global rise in antibiotic-resistant bacteria, which give 
in return unprecedented health risks. Therefore, there is a large and urgent need for the development of new, 
smart antibacterial agents able to efficiently kill or inhibit bacterial growth. In this study, we investigated the 
antibacterial activity of S, N-doped Graphene Quantum Dots (GQDs) as a light-triggered antibacterial agent. 
Gamma irradiation was employed as a tool to achieve one-step modification of GQDs in the presence of L cysteine amino acid as a source of heteroatoms. X-ray Photoelectron Spectroscopy (XPS), nuclear magnetic 
resonance (NMR), and zeta potential measurements provided the necessary data to clarify the structure of 
modified dots and verify the introduction of both S- and N-atoms in GQDs structure, but also severe changes in 
the aromatic, sp2 domains. Namely, γ-irradiation caused a bonding of S atoms in 1.14 at.% mainly as thiol 
groups, and N in 1.81 at.% as amino groups, but sp2 contribution in GQD structure was lowered from 63.00 to 
4.86 at.%, as measured in dots irradiated at a dose of 200 kGy. Fluorescence quenching measurements showed 
that L-cysteine-modified dots are able to bind to human serum albumin. The antibacterial activity of GQDs 
combined with 1 and 6 h of blue light (470 nm) irradiation was tested against 8 bacterial strains. GQD-cys-25 
sample provided the best results, with minimum inhibitory concentration (MIC) as low as 125 μg/mL against 
S. aureus, E. faecalis, and E. coli after only 1 h of blue light exposure.
PB  - Elsevier
T2  - Journal of Photochemistry & Photobiology, B: Biology
T1  - Blue-light-driven photoactivity of L-cysteine-modified graphene quantum  dots and their antibacterial effects
VL  - 250
SP  - 112818
DO  - 10.1016/j.jphotobiol.2023.112818
ER  - 
@article{
author = "Milenković, Mila and Ciasca, Gabriele and Bonasera, Aurelio and Scopelliti, Michelangelo and Marković, Olivera and Verbić, Tatjana and Todorović Marković, Biljana and Jovanović, Svetlana",
year = "2024",
abstract = "The widespread abuse of traditional antibiotics has led to a global rise in antibiotic-resistant bacteria, which give 
in return unprecedented health risks. Therefore, there is a large and urgent need for the development of new, 
smart antibacterial agents able to efficiently kill or inhibit bacterial growth. In this study, we investigated the 
antibacterial activity of S, N-doped Graphene Quantum Dots (GQDs) as a light-triggered antibacterial agent. 
Gamma irradiation was employed as a tool to achieve one-step modification of GQDs in the presence of L cysteine amino acid as a source of heteroatoms. X-ray Photoelectron Spectroscopy (XPS), nuclear magnetic 
resonance (NMR), and zeta potential measurements provided the necessary data to clarify the structure of 
modified dots and verify the introduction of both S- and N-atoms in GQDs structure, but also severe changes in 
the aromatic, sp2 domains. Namely, γ-irradiation caused a bonding of S atoms in 1.14 at.% mainly as thiol 
groups, and N in 1.81 at.% as amino groups, but sp2 contribution in GQD structure was lowered from 63.00 to 
4.86 at.%, as measured in dots irradiated at a dose of 200 kGy. Fluorescence quenching measurements showed 
that L-cysteine-modified dots are able to bind to human serum albumin. The antibacterial activity of GQDs 
combined with 1 and 6 h of blue light (470 nm) irradiation was tested against 8 bacterial strains. GQD-cys-25 
sample provided the best results, with minimum inhibitory concentration (MIC) as low as 125 μg/mL against 
S. aureus, E. faecalis, and E. coli after only 1 h of blue light exposure.",
publisher = "Elsevier",
journal = "Journal of Photochemistry & Photobiology, B: Biology",
title = "Blue-light-driven photoactivity of L-cysteine-modified graphene quantum  dots and their antibacterial effects",
volume = "250",
pages = "112818",
doi = "10.1016/j.jphotobiol.2023.112818"
}
Milenković, M., Ciasca, G., Bonasera, A., Scopelliti, M., Marković, O., Verbić, T., Todorović Marković, B.,& Jovanović, S.. (2024). Blue-light-driven photoactivity of L-cysteine-modified graphene quantum  dots and their antibacterial effects. in Journal of Photochemistry & Photobiology, B: Biology
Elsevier., 250, 112818.
https://doi.org/10.1016/j.jphotobiol.2023.112818
Milenković M, Ciasca G, Bonasera A, Scopelliti M, Marković O, Verbić T, Todorović Marković B, Jovanović S. Blue-light-driven photoactivity of L-cysteine-modified graphene quantum  dots and their antibacterial effects. in Journal of Photochemistry & Photobiology, B: Biology. 2024;250:112818.
doi:10.1016/j.jphotobiol.2023.112818 .
Milenković, Mila, Ciasca, Gabriele, Bonasera, Aurelio, Scopelliti, Michelangelo, Marković, Olivera, Verbić, Tatjana, Todorović Marković, Biljana, Jovanović, Svetlana, "Blue-light-driven photoactivity of L-cysteine-modified graphene quantum  dots and their antibacterial effects" in Journal of Photochemistry & Photobiology, B: Biology, 250 (2024):112818,
https://doi.org/10.1016/j.jphotobiol.2023.112818 . .

Gamma rays induced synthesis of graphene oxide/gold nanoparticle composites: structural and photothermal study

Kepić, Dejan P.; Stefanović, Anđela M.; Budimir, Milica D.; Pavlović, Vladimir B.; Bonasera, Aurelio; Scopelliti, Michelangelo; Todorović-Marković, Biljana

(Elsevier, 2023)

TY  - JOUR
AU  - Kepić, Dejan P.
AU  - Stefanović, Anđela M.
AU  - Budimir, Milica D.
AU  - Pavlović, Vladimir B.
AU  - Bonasera, Aurelio
AU  - Scopelliti, Michelangelo
AU  - Todorović-Marković, Biljana
PY  - 2023
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5627
AB  - Gamma irradiation provides an alternative pathway to conventional gold nanoparticle synthesis because it is simple, fast, and economical. Here, we employed gamma irradiation at low doses (1–20 kGy) to obtain gold nanoparticles (Au NPs) anchored onto graphene oxide (GO) sheets. GO was selected as a suitable platform for the nucleation and growth of Au NPs because of its large surface area and good dispersibility in water due to the presence of polar oxygen-containing functional groups in its structure. Gamma irradiation at all the applied doses led to the reduction of chloroauric acid and the formation of evenly distributed Au NPs at the GO surface, simultaneously causing the reduction of GO and partial restoration of the graphene structure. As-prepared Au NPs have predominately spheric shapes and the smallest nanoparticles were reported for the dose of 1 kGy. The increase in the irradiation dose caused either the growth of larger particles (5 and 10 kGy) or the broad distribution of particles’ sizes (20 kGy). All samples showed a temperature increase upon exposure to 800 nm laser and photothermal efficiency was the highest for the sample prepared at 20 kGy.
PB  - Elsevier
T2  - Radiation Physics and Chemistry
T1  - Gamma rays induced synthesis of graphene oxide/gold nanoparticle composites: structural and photothermal study
VL  - 202
SP  - 110545
DO  - 10.1016/j.radphyschem.2022.110545
ER  - 
@article{
author = "Kepić, Dejan P. and Stefanović, Anđela M. and Budimir, Milica D. and Pavlović, Vladimir B. and Bonasera, Aurelio and Scopelliti, Michelangelo and Todorović-Marković, Biljana",
year = "2023",
abstract = "Gamma irradiation provides an alternative pathway to conventional gold nanoparticle synthesis because it is simple, fast, and economical. Here, we employed gamma irradiation at low doses (1–20 kGy) to obtain gold nanoparticles (Au NPs) anchored onto graphene oxide (GO) sheets. GO was selected as a suitable platform for the nucleation and growth of Au NPs because of its large surface area and good dispersibility in water due to the presence of polar oxygen-containing functional groups in its structure. Gamma irradiation at all the applied doses led to the reduction of chloroauric acid and the formation of evenly distributed Au NPs at the GO surface, simultaneously causing the reduction of GO and partial restoration of the graphene structure. As-prepared Au NPs have predominately spheric shapes and the smallest nanoparticles were reported for the dose of 1 kGy. The increase in the irradiation dose caused either the growth of larger particles (5 and 10 kGy) or the broad distribution of particles’ sizes (20 kGy). All samples showed a temperature increase upon exposure to 800 nm laser and photothermal efficiency was the highest for the sample prepared at 20 kGy.",
publisher = "Elsevier",
journal = "Radiation Physics and Chemistry",
title = "Gamma rays induced synthesis of graphene oxide/gold nanoparticle composites: structural and photothermal study",
volume = "202",
pages = "110545",
doi = "10.1016/j.radphyschem.2022.110545"
}
Kepić, D. P., Stefanović, A. M., Budimir, M. D., Pavlović, V. B., Bonasera, A., Scopelliti, M.,& Todorović-Marković, B.. (2023). Gamma rays induced synthesis of graphene oxide/gold nanoparticle composites: structural and photothermal study. in Radiation Physics and Chemistry
Elsevier., 202, 110545.
https://doi.org/10.1016/j.radphyschem.2022.110545
Kepić DP, Stefanović AM, Budimir MD, Pavlović VB, Bonasera A, Scopelliti M, Todorović-Marković B. Gamma rays induced synthesis of graphene oxide/gold nanoparticle composites: structural and photothermal study. in Radiation Physics and Chemistry. 2023;202:110545.
doi:10.1016/j.radphyschem.2022.110545 .
Kepić, Dejan P., Stefanović, Anđela M., Budimir, Milica D., Pavlović, Vladimir B., Bonasera, Aurelio, Scopelliti, Michelangelo, Todorović-Marković, Biljana, "Gamma rays induced synthesis of graphene oxide/gold nanoparticle composites: structural and photothermal study" in Radiation Physics and Chemistry, 202 (2023):110545,
https://doi.org/10.1016/j.radphyschem.2022.110545 . .
4
3
1

Blue luminescent amino-functionalized graphene quantum dots as a responsive material for potential detection of metal ions and malathion

Dorontic, Sladjana; Bonasera, Aurelio; Scopelliti, Michelangelo; Mojsin, Marija; Stevanovic, Milena; Marković, Olivera S.; Jovanović, Svetlana

(Elsevier, 2022)

TY  - JOUR
AU  - Dorontic, Sladjana
AU  - Bonasera, Aurelio
AU  - Scopelliti, Michelangelo
AU  - Mojsin, Marija
AU  - Stevanovic, Milena
AU  - Marković, Olivera S.
AU  - Jovanović, Svetlana
PY  - 2022
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5935
AB  - Large amounts of hazardous and toxic substances in the environment require non-toxic, cheap, easy, rapid, and 
sensitive methods for their detection. Blue luminescent graphene quantum dots (GQDs) were produced by 
electrochemical cleavage of graphite electrodes followed by gamma irradiation in the presence of ethylenedi amine (EDA). Modified dots were able to detect metal ions (Co2+, Pd2+, Fe3+) due to photoluminescence 
quenching. The highest sensitivity was detected for the sample irradiated at a dose of 25 kGy. The limits of 
detection (LODs) were 1.79, 2.55, and 0.66 μmol L− 1 for Co2+, Fe3+, and Pd2+, respectively. It was observed that 
GQDs irradiated at 200 kGy act as an ultra-sensitive turn-on probe for Malathion detection with LOD of 94 nmol 
L− 1
. Atomic force microscopy images proved the aggregation of GQDs in the presence of the investigated metal 
ions. Results obtained by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and LIVE/ 
DEAD cytotoxicity test indicated that GQDs irradiated with EDA are not toxic towards MRC-5 cells, which makes 
them a promising, eco-friendly and safe material for sensing application.
PB  - Elsevier
T2  - Journal of Luminescence
T1  - Blue luminescent amino-functionalized  graphene quantum dots as a responsive material for potential detection of metal ions and  malathion
VL  - 252
SP  - 119311
DO  - 10.1016/j.jlumin.2022.119311
ER  - 
@article{
author = "Dorontic, Sladjana and Bonasera, Aurelio and Scopelliti, Michelangelo and Mojsin, Marija and Stevanovic, Milena and Marković, Olivera S. and Jovanović, Svetlana",
year = "2022",
abstract = "Large amounts of hazardous and toxic substances in the environment require non-toxic, cheap, easy, rapid, and 
sensitive methods for their detection. Blue luminescent graphene quantum dots (GQDs) were produced by 
electrochemical cleavage of graphite electrodes followed by gamma irradiation in the presence of ethylenedi amine (EDA). Modified dots were able to detect metal ions (Co2+, Pd2+, Fe3+) due to photoluminescence 
quenching. The highest sensitivity was detected for the sample irradiated at a dose of 25 kGy. The limits of 
detection (LODs) were 1.79, 2.55, and 0.66 μmol L− 1 for Co2+, Fe3+, and Pd2+, respectively. It was observed that 
GQDs irradiated at 200 kGy act as an ultra-sensitive turn-on probe for Malathion detection with LOD of 94 nmol 
L− 1
. Atomic force microscopy images proved the aggregation of GQDs in the presence of the investigated metal 
ions. Results obtained by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and LIVE/ 
DEAD cytotoxicity test indicated that GQDs irradiated with EDA are not toxic towards MRC-5 cells, which makes 
them a promising, eco-friendly and safe material for sensing application.",
publisher = "Elsevier",
journal = "Journal of Luminescence",
title = "Blue luminescent amino-functionalized  graphene quantum dots as a responsive material for potential detection of metal ions and  malathion",
volume = "252",
pages = "119311",
doi = "10.1016/j.jlumin.2022.119311"
}
Dorontic, S., Bonasera, A., Scopelliti, M., Mojsin, M., Stevanovic, M., Marković, O. S.,& Jovanović, S.. (2022). Blue luminescent amino-functionalized  graphene quantum dots as a responsive material for potential detection of metal ions and  malathion. in Journal of Luminescence
Elsevier., 252, 119311.
https://doi.org/10.1016/j.jlumin.2022.119311
Dorontic S, Bonasera A, Scopelliti M, Mojsin M, Stevanovic M, Marković OS, Jovanović S. Blue luminescent amino-functionalized  graphene quantum dots as a responsive material for potential detection of metal ions and  malathion. in Journal of Luminescence. 2022;252:119311.
doi:10.1016/j.jlumin.2022.119311 .
Dorontic, Sladjana, Bonasera, Aurelio, Scopelliti, Michelangelo, Mojsin, Marija, Stevanovic, Milena, Marković, Olivera S., Jovanović, Svetlana, "Blue luminescent amino-functionalized  graphene quantum dots as a responsive material for potential detection of metal ions and  malathion" in Journal of Luminescence, 252 (2022):119311,
https://doi.org/10.1016/j.jlumin.2022.119311 . .
1
1
1