COST Action [928]

Link to this page

COST Action [928]

Authors

Publications

Digestibility and allergenicity assessment of enzymatically crosslinked beta-casein

Stanić, Dragana; Monogioudi, Evanthia; Dilek, Ercili; Radosavljević, Jelena; Atanasković-Marković, Marina; Vučković, Olga; Raija, Lantto; Mattinen, Maija; Buchert, Johanna; Ćirković-Veličković, Tanja

(Wiley-V C H Verlag Gmbh, Weinheim, 2010)

TY  - JOUR
AU  - Stanić, Dragana
AU  - Monogioudi, Evanthia
AU  - Dilek, Ercili
AU  - Radosavljević, Jelena
AU  - Atanasković-Marković, Marina
AU  - Vučković, Olga
AU  - Raija, Lantto
AU  - Mattinen, Maija
AU  - Buchert, Johanna
AU  - Ćirković-Veličković, Tanja
PY  - 2010
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/1126
AB  - Crosslinking enzymes are frequently used in bioprocessing of dairy products. The aim of this study was to examine the effects of enzymatic crosslinking on IgE binding, allergenicity and digestion stability of beta-casein (CN). beta-CN was crosslinked by transglutaminase, tyrosinase, mushroom tyrosinase/caffeic acid and laccase/caffeic acid. The IgE binding to beta-CN was compared in vitro by CAP inhibition assay, ELISA inhibition as well as ex vivo by basophil activation assay. Crosslinked CNs were digested by simulated gastric fluid for 15 and 60 min and obtained digests analyzed for their ability to inhibit IgE binding by CAP inhibition assay and SDS-PAGE. The ability of crosslinked CNs to activate basophils was significantly reduced in seven patients in the case of CN crosslinked by laccase and moderately reduced in the case of tyrosinase/caffeic acid crosslinked CN (in two cow's milk allergy patients tested with different allergen concentrations). The response to various crosslinked CNs differed individually among patients' sera tested by ELISA inhibition assay. The presence of caffeic acid hampered digestion by pepsin, and this effect was most pronounced for the tyrosinase/caffeic acid crosslinked CN. The laccase/caffeic acid and mushroom tyrosinase/caffeic acid had the highest potential in mitigating IgE binding and allergenicity of the beta-CN out of all investigated enzymes. The presence of a small phenolic compound also increased digestion stability of beta-CN.
PB  - Wiley-V C H Verlag Gmbh, Weinheim
T2  - Molecular Nutrition and Food Research
T1  - Digestibility and allergenicity assessment of enzymatically crosslinked beta-casein
VL  - 54
IS  - 9
SP  - 1273
EP  - 1284
DO  - 10.1002/mnfr.200900184
ER  - 
@article{
author = "Stanić, Dragana and Monogioudi, Evanthia and Dilek, Ercili and Radosavljević, Jelena and Atanasković-Marković, Marina and Vučković, Olga and Raija, Lantto and Mattinen, Maija and Buchert, Johanna and Ćirković-Veličković, Tanja",
year = "2010",
abstract = "Crosslinking enzymes are frequently used in bioprocessing of dairy products. The aim of this study was to examine the effects of enzymatic crosslinking on IgE binding, allergenicity and digestion stability of beta-casein (CN). beta-CN was crosslinked by transglutaminase, tyrosinase, mushroom tyrosinase/caffeic acid and laccase/caffeic acid. The IgE binding to beta-CN was compared in vitro by CAP inhibition assay, ELISA inhibition as well as ex vivo by basophil activation assay. Crosslinked CNs were digested by simulated gastric fluid for 15 and 60 min and obtained digests analyzed for their ability to inhibit IgE binding by CAP inhibition assay and SDS-PAGE. The ability of crosslinked CNs to activate basophils was significantly reduced in seven patients in the case of CN crosslinked by laccase and moderately reduced in the case of tyrosinase/caffeic acid crosslinked CN (in two cow's milk allergy patients tested with different allergen concentrations). The response to various crosslinked CNs differed individually among patients' sera tested by ELISA inhibition assay. The presence of caffeic acid hampered digestion by pepsin, and this effect was most pronounced for the tyrosinase/caffeic acid crosslinked CN. The laccase/caffeic acid and mushroom tyrosinase/caffeic acid had the highest potential in mitigating IgE binding and allergenicity of the beta-CN out of all investigated enzymes. The presence of a small phenolic compound also increased digestion stability of beta-CN.",
publisher = "Wiley-V C H Verlag Gmbh, Weinheim",
journal = "Molecular Nutrition and Food Research",
title = "Digestibility and allergenicity assessment of enzymatically crosslinked beta-casein",
volume = "54",
number = "9",
pages = "1273-1284",
doi = "10.1002/mnfr.200900184"
}
Stanić, D., Monogioudi, E., Dilek, E., Radosavljević, J., Atanasković-Marković, M., Vučković, O., Raija, L., Mattinen, M., Buchert, J.,& Ćirković-Veličković, T.. (2010). Digestibility and allergenicity assessment of enzymatically crosslinked beta-casein. in Molecular Nutrition and Food Research
Wiley-V C H Verlag Gmbh, Weinheim., 54(9), 1273-1284.
https://doi.org/10.1002/mnfr.200900184
Stanić D, Monogioudi E, Dilek E, Radosavljević J, Atanasković-Marković M, Vučković O, Raija L, Mattinen M, Buchert J, Ćirković-Veličković T. Digestibility and allergenicity assessment of enzymatically crosslinked beta-casein. in Molecular Nutrition and Food Research. 2010;54(9):1273-1284.
doi:10.1002/mnfr.200900184 .
Stanić, Dragana, Monogioudi, Evanthia, Dilek, Ercili, Radosavljević, Jelena, Atanasković-Marković, Marina, Vučković, Olga, Raija, Lantto, Mattinen, Maija, Buchert, Johanna, Ćirković-Veličković, Tanja, "Digestibility and allergenicity assessment of enzymatically crosslinked beta-casein" in Molecular Nutrition and Food Research, 54, no. 9 (2010):1273-1284,
https://doi.org/10.1002/mnfr.200900184 . .
6
70
66
68
70