Ministry of Science and Higher Education of the Russian Federation (agreement No. 075-15-2022-1135)

Link to this page

Ministry of Science and Higher Education of the Russian Federation (agreement No. 075-15-2022-1135)

Authors

Publications

Microspherical Titanium-Phosphorus Double Oxide: Hierarchical Structure Development for Sensing Applications

Korina, Elena; Abramyan, Anton; Bol’shakov, Oleg; Avdin, Vyacheslav V.; Savić, Slađana D.; Manojlović, Dragan D.; Stanković, Vesna; Stanković, Dalibor

(MDPI, 2023)

TY  - JOUR
AU  - Korina, Elena
AU  - Abramyan, Anton
AU  - Bol’shakov, Oleg
AU  - Avdin, Vyacheslav V.
AU  - Savić, Slađana D.
AU  - Manojlović, Dragan D.
AU  - Stanković, Vesna
AU  - Stanković, Dalibor
PY  - 2023
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5770
AB  - Stable, water-soluble titanium complexed with mandelic acid was used as a precursor for titanium phosphorus double oxide obtained in hydrothermal conditions in the presence of phosphoric acid. Surprisingly, hydrolysis of organic complexes provided a microstructured sphere with narrow size distribution, low aggregation and a small fraction of morphological irregularities. Obtained microspheres had a complex structure comprised of flakes, whose size could be manipulated with temperature conditions. Samples were found to be electrochemically active against sulcotrione, a well-recognized herbicide. Electrochemical sensors based on the synthesized microspheres were successfully adapted for natural water reservoir analysis and exhibited low levels of detection of 0.61 µM, limit of quantification of 1.86 µM, wide dynamic linear range from 2 to 200 µM, good selectivity, excellent reproducibility and in-time stability.
PB  - MDPI
T2  - Sensors
T1  - Microspherical Titanium-Phosphorus Double Oxide: Hierarchical Structure Development for Sensing Applications
VL  - 23
IS  - 2
SP  - 933
DO  - 10.3390/s23020933
ER  - 
@article{
author = "Korina, Elena and Abramyan, Anton and Bol’shakov, Oleg and Avdin, Vyacheslav V. and Savić, Slađana D. and Manojlović, Dragan D. and Stanković, Vesna and Stanković, Dalibor",
year = "2023",
abstract = "Stable, water-soluble titanium complexed with mandelic acid was used as a precursor for titanium phosphorus double oxide obtained in hydrothermal conditions in the presence of phosphoric acid. Surprisingly, hydrolysis of organic complexes provided a microstructured sphere with narrow size distribution, low aggregation and a small fraction of morphological irregularities. Obtained microspheres had a complex structure comprised of flakes, whose size could be manipulated with temperature conditions. Samples were found to be electrochemically active against sulcotrione, a well-recognized herbicide. Electrochemical sensors based on the synthesized microspheres were successfully adapted for natural water reservoir analysis and exhibited low levels of detection of 0.61 µM, limit of quantification of 1.86 µM, wide dynamic linear range from 2 to 200 µM, good selectivity, excellent reproducibility and in-time stability.",
publisher = "MDPI",
journal = "Sensors",
title = "Microspherical Titanium-Phosphorus Double Oxide: Hierarchical Structure Development for Sensing Applications",
volume = "23",
number = "2",
pages = "933",
doi = "10.3390/s23020933"
}
Korina, E., Abramyan, A., Bol’shakov, O., Avdin, V. V., Savić, S. D., Manojlović, D. D., Stanković, V.,& Stanković, D.. (2023). Microspherical Titanium-Phosphorus Double Oxide: Hierarchical Structure Development for Sensing Applications. in Sensors
MDPI., 23(2), 933.
https://doi.org/10.3390/s23020933
Korina E, Abramyan A, Bol’shakov O, Avdin VV, Savić SD, Manojlović DD, Stanković V, Stanković D. Microspherical Titanium-Phosphorus Double Oxide: Hierarchical Structure Development for Sensing Applications. in Sensors. 2023;23(2):933.
doi:10.3390/s23020933 .
Korina, Elena, Abramyan, Anton, Bol’shakov, Oleg, Avdin, Vyacheslav V., Savić, Slađana D., Manojlović, Dragan D., Stanković, Vesna, Stanković, Dalibor, "Microspherical Titanium-Phosphorus Double Oxide: Hierarchical Structure Development for Sensing Applications" in Sensors, 23, no. 2 (2023):933,
https://doi.org/10.3390/s23020933 . .

The Effect of Rare-Earth Elements on the Morphological Aspect of Borate and Electrocatalytic Sensing of Biological Compounds

Morozov, Roman; Stanković, Dalibor; Avdin, Viacheslav V.; Zherebtsov, Dmitri; Romashov, Mikhail; Selezneva, Anastasia; Uchaev, Daniil; Senin, Anatoly; Chernukha, Alexander

(MDPI, 2023)

TY  - JOUR
AU  - Morozov, Roman
AU  - Stanković, Dalibor
AU  - Avdin, Viacheslav V.
AU  - Zherebtsov, Dmitri
AU  - Romashov, Mikhail
AU  - Selezneva, Anastasia
AU  - Uchaev, Daniil
AU  - Senin, Anatoly
AU  - Chernukha, Alexander
PY  - 2023
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/6382
AB  - Adjusting the morphological characteristics of a material can result in improved electrocatalytic capabilities of the material itself. An example of this is the introduction of rare-earth elements into the borate structure, which gives a new perspective on the possibilities of this type of material in the field of (bio)sensing. In this paper, we present the preparation of borates including La, Nd and Dy and their application for the modification of a glassy carbon electrode, which is used for the non-enzymatic detection of a biologically relevant molecule, vitamin B6 (pyridoxine). Compared with the others, dysprosium borate has the best electrocatalytic performance, showing the highest current and the lowest impedance, respectively, as determined using cyclic voltammetry and impedance tests. Quantitative testing of B6 was performed in DPV mode in a Britton–Robinson buffer solution with a pH of 6 and an oxidation potential of about +0.8 V. The calibration graph for the evaluation of B6 has a linear range from 1 to 100 μM, with a correlation coefficient of 0.9985 and a detection limit of 0.051 μM. The DyBO3-modified electrode can be used repeatedly, retaining more than 90% of the initial signal level after six cycles. The satisfactory selectivity offered a potential practical application of the chosen method for the monitoring of pyridoxine in artificially prepared biological fluids with acceptable recovery. In light of all the obtained results, this paper shows an important approach for the successful design of electrocatalysts with tuned architecture and opens new strategies for the development of materials for the needs of electrochemical (bio)sensing.
PB  - MDPI
T2  - Biosensors
T1  - The Effect of Rare-Earth Elements on the Morphological Aspect of Borate and Electrocatalytic Sensing of Biological Compounds
VL  - 13
IS  - 10
SP  - 901
DO  - 10.3390/bios13100901
ER  - 
@article{
author = "Morozov, Roman and Stanković, Dalibor and Avdin, Viacheslav V. and Zherebtsov, Dmitri and Romashov, Mikhail and Selezneva, Anastasia and Uchaev, Daniil and Senin, Anatoly and Chernukha, Alexander",
year = "2023",
abstract = "Adjusting the morphological characteristics of a material can result in improved electrocatalytic capabilities of the material itself. An example of this is the introduction of rare-earth elements into the borate structure, which gives a new perspective on the possibilities of this type of material in the field of (bio)sensing. In this paper, we present the preparation of borates including La, Nd and Dy and their application for the modification of a glassy carbon electrode, which is used for the non-enzymatic detection of a biologically relevant molecule, vitamin B6 (pyridoxine). Compared with the others, dysprosium borate has the best electrocatalytic performance, showing the highest current and the lowest impedance, respectively, as determined using cyclic voltammetry and impedance tests. Quantitative testing of B6 was performed in DPV mode in a Britton–Robinson buffer solution with a pH of 6 and an oxidation potential of about +0.8 V. The calibration graph for the evaluation of B6 has a linear range from 1 to 100 μM, with a correlation coefficient of 0.9985 and a detection limit of 0.051 μM. The DyBO3-modified electrode can be used repeatedly, retaining more than 90% of the initial signal level after six cycles. The satisfactory selectivity offered a potential practical application of the chosen method for the monitoring of pyridoxine in artificially prepared biological fluids with acceptable recovery. In light of all the obtained results, this paper shows an important approach for the successful design of electrocatalysts with tuned architecture and opens new strategies for the development of materials for the needs of electrochemical (bio)sensing.",
publisher = "MDPI",
journal = "Biosensors",
title = "The Effect of Rare-Earth Elements on the Morphological Aspect of Borate and Electrocatalytic Sensing of Biological Compounds",
volume = "13",
number = "10",
pages = "901",
doi = "10.3390/bios13100901"
}
Morozov, R., Stanković, D., Avdin, V. V., Zherebtsov, D., Romashov, M., Selezneva, A., Uchaev, D., Senin, A.,& Chernukha, A.. (2023). The Effect of Rare-Earth Elements on the Morphological Aspect of Borate and Electrocatalytic Sensing of Biological Compounds. in Biosensors
MDPI., 13(10), 901.
https://doi.org/10.3390/bios13100901
Morozov R, Stanković D, Avdin VV, Zherebtsov D, Romashov M, Selezneva A, Uchaev D, Senin A, Chernukha A. The Effect of Rare-Earth Elements on the Morphological Aspect of Borate and Electrocatalytic Sensing of Biological Compounds. in Biosensors. 2023;13(10):901.
doi:10.3390/bios13100901 .
Morozov, Roman, Stanković, Dalibor, Avdin, Viacheslav V., Zherebtsov, Dmitri, Romashov, Mikhail, Selezneva, Anastasia, Uchaev, Daniil, Senin, Anatoly, Chernukha, Alexander, "The Effect of Rare-Earth Elements on the Morphological Aspect of Borate and Electrocatalytic Sensing of Biological Compounds" in Biosensors, 13, no. 10 (2023):901,
https://doi.org/10.3390/bios13100901 . .

La(OH)3 Multi-Walled Carbon Nanotube/Carbon Paste-Based Sensing Approach for the Detection of Uric Acid—A Product of Environmentally Stressed Cells

Knežević, Sara; Ognjanović, Miloš; Stanković, Vesna; Zlatanova, Milena; Nešić, Andrijana N.; Gavrović-Jankulović, Marija; Stanković, Dalibor

(MDPI, 2022)

TY  - JOUR
AU  - Knežević, Sara
AU  - Ognjanović, Miloš
AU  - Stanković, Vesna
AU  - Zlatanova, Milena
AU  - Nešić, Andrijana N.
AU  - Gavrović-Jankulović, Marija
AU  - Stanković, Dalibor
PY  - 2022
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5622
AB  - This paper aims to develop an amperometric, non-enzymatic sensor for detecting and quantifying UA as an alert signal induced by allergens with protease activity in human cell lines (HEK293 and HeLa). Uric acid (UA) has been classified as a damage-associated molecular pattern (DAMP) molecule that serves a physiological purpose inside the cell, while outside the cell it can be an indicator of cell damage. Cell damage or stress can be caused by different health problems or by environmental irritants, such as allergens. We can act and prevent the events that generate stress by determining the extent to which cells are under stress. Amperometric calibration measurements were performed with a carbon paste electrode modified with La(OH)3@MWCNT, at the potential of 0.3 V. The calibration curve was constructed in a linear operating range from 0.67 μM to 121 μM UA. The proposed sensor displayed good reproducibility with an RSD of 3.65% calculated for five subsequent measurements, and a low detection limit of 64.28 nM, determined using the 3 S/m method. Interference studies and the real sample analysis of allergen-treated cell lines proved that the proposed sensing platform possesses excellent sensitivity, reproducibility, and stability. Therefore, it can potentially be used to evaluate stress factors in medical research and clinical practice.
PB  - MDPI
T2  - Biosensors
T1  - La(OH)3 Multi-Walled Carbon Nanotube/Carbon Paste-Based Sensing Approach for the Detection of Uric Acid—A Product of Environmentally Stressed Cells
VL  - 12
IS  - 9
SP  - 705
DO  - 10.3390/bios12090705
ER  - 
@article{
author = "Knežević, Sara and Ognjanović, Miloš and Stanković, Vesna and Zlatanova, Milena and Nešić, Andrijana N. and Gavrović-Jankulović, Marija and Stanković, Dalibor",
year = "2022",
abstract = "This paper aims to develop an amperometric, non-enzymatic sensor for detecting and quantifying UA as an alert signal induced by allergens with protease activity in human cell lines (HEK293 and HeLa). Uric acid (UA) has been classified as a damage-associated molecular pattern (DAMP) molecule that serves a physiological purpose inside the cell, while outside the cell it can be an indicator of cell damage. Cell damage or stress can be caused by different health problems or by environmental irritants, such as allergens. We can act and prevent the events that generate stress by determining the extent to which cells are under stress. Amperometric calibration measurements were performed with a carbon paste electrode modified with La(OH)3@MWCNT, at the potential of 0.3 V. The calibration curve was constructed in a linear operating range from 0.67 μM to 121 μM UA. The proposed sensor displayed good reproducibility with an RSD of 3.65% calculated for five subsequent measurements, and a low detection limit of 64.28 nM, determined using the 3 S/m method. Interference studies and the real sample analysis of allergen-treated cell lines proved that the proposed sensing platform possesses excellent sensitivity, reproducibility, and stability. Therefore, it can potentially be used to evaluate stress factors in medical research and clinical practice.",
publisher = "MDPI",
journal = "Biosensors",
title = "La(OH)3 Multi-Walled Carbon Nanotube/Carbon Paste-Based Sensing Approach for the Detection of Uric Acid—A Product of Environmentally Stressed Cells",
volume = "12",
number = "9",
pages = "705",
doi = "10.3390/bios12090705"
}
Knežević, S., Ognjanović, M., Stanković, V., Zlatanova, M., Nešić, A. N., Gavrović-Jankulović, M.,& Stanković, D.. (2022). La(OH)3 Multi-Walled Carbon Nanotube/Carbon Paste-Based Sensing Approach for the Detection of Uric Acid—A Product of Environmentally Stressed Cells. in Biosensors
MDPI., 12(9), 705.
https://doi.org/10.3390/bios12090705
Knežević S, Ognjanović M, Stanković V, Zlatanova M, Nešić AN, Gavrović-Jankulović M, Stanković D. La(OH)3 Multi-Walled Carbon Nanotube/Carbon Paste-Based Sensing Approach for the Detection of Uric Acid—A Product of Environmentally Stressed Cells. in Biosensors. 2022;12(9):705.
doi:10.3390/bios12090705 .
Knežević, Sara, Ognjanović, Miloš, Stanković, Vesna, Zlatanova, Milena, Nešić, Andrijana N., Gavrović-Jankulović, Marija, Stanković, Dalibor, "La(OH)3 Multi-Walled Carbon Nanotube/Carbon Paste-Based Sensing Approach for the Detection of Uric Acid—A Product of Environmentally Stressed Cells" in Biosensors, 12, no. 9 (2022):705,
https://doi.org/10.3390/bios12090705 . .
1
6
6
5

Supplementary material for: Knežević, S., Ognjanović, M., Stanković, V., Zlatanova, M., Nešić, A., Gavrović-Jankulović, M.,& Stanković, D.. (2022). La(OH)3 Multi-Walled Carbon Nanotube/Carbon Paste-Based Sensing Approach for the Detection of Uric Acid—A Product of Environmentally Stressed Cells. in Biosensors MDPI., 12(9), 705. https://doi.org/10.3390/bios12090705

Knežević, Sara; Ognjanović, Miloš; Stanković, Vesna; Zlatanova, Milena; Nešić, Andrijana N.; Gavrović-Jankulović, Marija; Stanković, Dalibor

(MDPI, 2022)

TY  - DATA
AU  - Knežević, Sara
AU  - Ognjanović, Miloš
AU  - Stanković, Vesna
AU  - Zlatanova, Milena
AU  - Nešić, Andrijana N.
AU  - Gavrović-Jankulović, Marija
AU  - Stanković, Dalibor
PY  - 2022
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5632
AB  - This paper aims to develop an amperometric, non-enzymatic sensor for detecting and quantifying UA as an alert signal induced by allergens with protease activity in human cell lines (HEK293 and HeLa). Uric acid (UA) has been classified as a damage-associated molecular pattern (DAMP) molecule that serves a physiological purpose inside the cell, while outside the cell it can be an indicator of cell damage. Cell damage or stress can be caused by different health problems or by environmental irritants, such as allergens. We can act and prevent the events that generate stress by determining the extent to which cells are under stress. Amperometric calibration measurements were performed with a carbon paste electrode modified with La(OH)3@MWCNT, at the potential of 0.3 V. The calibration curve was constructed in a linear operating range from 0.67 μM to 121 μM UA. The proposed sensor displayed good reproducibility with an RSD of 3.65% calculated for five subsequent measurements, and a low detection limit of 64.28 nM, determined using the 3 S/m method. Interference studies and the real sample analysis of allergen-treated cell lines proved that the proposed sensing platform possesses excellent sensitivity, reproducibility, and stability. Therefore, it can potentially be used to evaluate stress factors in medical research and clinical practice.
PB  - MDPI
T2  - Biosensors
T1  - Supplementary material for: Knežević, S., Ognjanović, M., Stanković, V., Zlatanova, M., Nešić, A., Gavrović-Jankulović, M.,& Stanković, D.. (2022). La(OH)3 Multi-Walled Carbon Nanotube/Carbon Paste-Based Sensing Approach for the Detection of Uric Acid—A Product of Environmentally Stressed Cells. in Biosensors MDPI., 12(9), 705. https://doi.org/10.3390/bios12090705
VL  - 12
IS  - 9
SP  - 705
UR  - https://hdl.handle.net/21.15107/rcub_cherry_5632
ER  - 
@misc{
author = "Knežević, Sara and Ognjanović, Miloš and Stanković, Vesna and Zlatanova, Milena and Nešić, Andrijana N. and Gavrović-Jankulović, Marija and Stanković, Dalibor",
year = "2022",
abstract = "This paper aims to develop an amperometric, non-enzymatic sensor for detecting and quantifying UA as an alert signal induced by allergens with protease activity in human cell lines (HEK293 and HeLa). Uric acid (UA) has been classified as a damage-associated molecular pattern (DAMP) molecule that serves a physiological purpose inside the cell, while outside the cell it can be an indicator of cell damage. Cell damage or stress can be caused by different health problems or by environmental irritants, such as allergens. We can act and prevent the events that generate stress by determining the extent to which cells are under stress. Amperometric calibration measurements were performed with a carbon paste electrode modified with La(OH)3@MWCNT, at the potential of 0.3 V. The calibration curve was constructed in a linear operating range from 0.67 μM to 121 μM UA. The proposed sensor displayed good reproducibility with an RSD of 3.65% calculated for five subsequent measurements, and a low detection limit of 64.28 nM, determined using the 3 S/m method. Interference studies and the real sample analysis of allergen-treated cell lines proved that the proposed sensing platform possesses excellent sensitivity, reproducibility, and stability. Therefore, it can potentially be used to evaluate stress factors in medical research and clinical practice.",
publisher = "MDPI",
journal = "Biosensors",
title = "Supplementary material for: Knežević, S., Ognjanović, M., Stanković, V., Zlatanova, M., Nešić, A., Gavrović-Jankulović, M.,& Stanković, D.. (2022). La(OH)3 Multi-Walled Carbon Nanotube/Carbon Paste-Based Sensing Approach for the Detection of Uric Acid—A Product of Environmentally Stressed Cells. in Biosensors MDPI., 12(9), 705. https://doi.org/10.3390/bios12090705",
volume = "12",
number = "9",
pages = "705",
url = "https://hdl.handle.net/21.15107/rcub_cherry_5632"
}
Knežević, S., Ognjanović, M., Stanković, V., Zlatanova, M., Nešić, A. N., Gavrović-Jankulović, M.,& Stanković, D.. (2022). Supplementary material for: Knežević, S., Ognjanović, M., Stanković, V., Zlatanova, M., Nešić, A., Gavrović-Jankulović, M.,& Stanković, D.. (2022). La(OH)3 Multi-Walled Carbon Nanotube/Carbon Paste-Based Sensing Approach for the Detection of Uric Acid—A Product of Environmentally Stressed Cells. in Biosensors MDPI., 12(9), 705. https://doi.org/10.3390/bios12090705. in Biosensors
MDPI., 12(9), 705.
https://hdl.handle.net/21.15107/rcub_cherry_5632
Knežević S, Ognjanović M, Stanković V, Zlatanova M, Nešić AN, Gavrović-Jankulović M, Stanković D. Supplementary material for: Knežević, S., Ognjanović, M., Stanković, V., Zlatanova, M., Nešić, A., Gavrović-Jankulović, M.,& Stanković, D.. (2022). La(OH)3 Multi-Walled Carbon Nanotube/Carbon Paste-Based Sensing Approach for the Detection of Uric Acid—A Product of Environmentally Stressed Cells. in Biosensors MDPI., 12(9), 705. https://doi.org/10.3390/bios12090705. in Biosensors. 2022;12(9):705.
https://hdl.handle.net/21.15107/rcub_cherry_5632 .
Knežević, Sara, Ognjanović, Miloš, Stanković, Vesna, Zlatanova, Milena, Nešić, Andrijana N., Gavrović-Jankulović, Marija, Stanković, Dalibor, "Supplementary material for: Knežević, S., Ognjanović, M., Stanković, V., Zlatanova, M., Nešić, A., Gavrović-Jankulović, M.,& Stanković, D.. (2022). La(OH)3 Multi-Walled Carbon Nanotube/Carbon Paste-Based Sensing Approach for the Detection of Uric Acid—A Product of Environmentally Stressed Cells. in Biosensors MDPI., 12(9), 705. https://doi.org/10.3390/bios12090705" in Biosensors, 12, no. 9 (2022):705,
https://hdl.handle.net/21.15107/rcub_cherry_5632 .