Microbial diversity study and characterization of beneficial environmental microorganisms

Link to this page

info:eu-repo/grantAgreement/MESTD/Basic Research (BR or ON)/173048/RS//

Microbial diversity study and characterization of beneficial environmental microorganisms (en)
Изучавање микробиолошког диверзитета и карактеризација корисних срединских микроорганизама (sr)
Izučavanje mikrobiološkog diverziteta i karakterizacija korisnih sredinskih mikroorganizama (sr_RS)
Authors

Publications

Supplementary data for article: Simić, S.; Jeremic, S.; Djokic, L.; Božić, N.; Vujčić, Z.; Lončar, N.; Senthamaraikannan, R.; Babu, R.; Opsenica, I. M.; Nikodinovic-Runic, J. Development of an Efficient Biocatalytic System Based on Bacterial Laccase for the Oxidation of Selected 1,4-Dihydropyridines. Enzyme and Microbial Technology 2020, 132. https://doi.org/10.1016/j.enzmictec.2019.109411

Simić, Stefan; Jeremić, Sanja; Đokić, Lidija; Božić, Nataša; Vujčić, Zoran; Lončar, Nikola L.; Senthamaraikannan, Ramsankar; Babu, Ramesh P.; Opsenica, Igor; Nikodinović-Runić, Jasmina

(2020)

TY  - BOOK
AU  - Simić, Stefan
AU  - Jeremić, Sanja
AU  - Đokić, Lidija
AU  - Božić, Nataša
AU  - Vujčić, Zoran
AU  - Lončar, Nikola L.
AU  - Senthamaraikannan, Ramsankar
AU  - Babu, Ramesh P.
AU  - Opsenica, Igor
AU  - Nikodinović-Runić, Jasmina
PY  - 2020
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/3357
T2  - Enzyme and Microbial Technology
T1  - Supplementary data for article: Simić, S.; Jeremic, S.; Djokic, L.; Božić, N.; Vujčić, Z.; Lončar, N.; Senthamaraikannan, R.; Babu, R.; Opsenica, I. M.; Nikodinovic-Runic, J. Development of an Efficient Biocatalytic System Based on Bacterial Laccase for the Oxidation of Selected 1,4-Dihydropyridines. Enzyme and Microbial Technology 2020, 132. https://doi.org/10.1016/j.enzmictec.2019.109411
ER  - 
@book{
author = "Simić, Stefan and Jeremić, Sanja and Đokić, Lidija and Božić, Nataša and Vujčić, Zoran and Lončar, Nikola L. and Senthamaraikannan, Ramsankar and Babu, Ramesh P. and Opsenica, Igor and Nikodinović-Runić, Jasmina",
year = "2020",
url = "http://cherry.chem.bg.ac.rs/handle/123456789/3357",
journal = "Enzyme and Microbial Technology",
title = "Supplementary data for article: Simić, S.; Jeremic, S.; Djokic, L.; Božić, N.; Vujčić, Z.; Lončar, N.; Senthamaraikannan, R.; Babu, R.; Opsenica, I. M.; Nikodinovic-Runic, J. Development of an Efficient Biocatalytic System Based on Bacterial Laccase for the Oxidation of Selected 1,4-Dihydropyridines. Enzyme and Microbial Technology 2020, 132. https://doi.org/10.1016/j.enzmictec.2019.109411"
}
Simić, S., Jeremić, S., Đokić, L., Božić, N., Vujčić, Z., Lončar, N. L., Senthamaraikannan, R., Babu, R. P., Opsenica, I.,& Nikodinović-Runić, J. (2020). Supplementary data for article: Simić, S.; Jeremic, S.; Djokic, L.; Božić, N.; Vujčić, Z.; Lončar, N.; Senthamaraikannan, R.; Babu, R.; Opsenica, I. M.; Nikodinovic-Runic, J. Development of an Efficient Biocatalytic System Based on Bacterial Laccase for the Oxidation of Selected 1,4-Dihydropyridines. Enzyme and Microbial Technology 2020, 132. https://doi.org/10.1016/j.enzmictec.2019.109411.
Enzyme and Microbial Technology.
Simić S, Jeremić S, Đokić L, Božić N, Vujčić Z, Lončar NL, Senthamaraikannan R, Babu RP, Opsenica I, Nikodinović-Runić J. Supplementary data for article: Simić, S.; Jeremic, S.; Djokic, L.; Božić, N.; Vujčić, Z.; Lončar, N.; Senthamaraikannan, R.; Babu, R.; Opsenica, I. M.; Nikodinovic-Runic, J. Development of an Efficient Biocatalytic System Based on Bacterial Laccase for the Oxidation of Selected 1,4-Dihydropyridines. Enzyme and Microbial Technology 2020, 132. https://doi.org/10.1016/j.enzmictec.2019.109411. Enzyme and Microbial Technology. 2020;
Simić Stefan, Jeremić Sanja, Đokić Lidija, Božić Nataša, Vujčić Zoran, Lončar Nikola L., Senthamaraikannan Ramsankar, Babu Ramesh P., Opsenica Igor, Nikodinović-Runić Jasmina, "Supplementary data for article: Simić, S.; Jeremic, S.; Djokic, L.; Božić, N.; Vujčić, Z.; Lončar, N.; Senthamaraikannan, R.; Babu, R.; Opsenica, I. M.; Nikodinovic-Runic, J. Development of an Efficient Biocatalytic System Based on Bacterial Laccase for the Oxidation of Selected 1,4-Dihydropyridines. Enzyme and Microbial Technology 2020, 132. https://doi.org/10.1016/j.enzmictec.2019.109411" (2020)

Chemo- and biocatalytic esterification of marchantin A and cytotoxic activity of ester derivatives

Novaković, Miroslav M.; Simić, Stefan; Koračak, Ljiljana; Zlatović, Mario; Ilić-Tomič, Tatjana; Asakawa, Yoshinori; Nikodinović-Runić, Jasmina; Opsenica, Igor

(Elsevier, 2020)

TY  - JOUR
AU  - Novaković, Miroslav M.
AU  - Simić, Stefan
AU  - Koračak, Ljiljana
AU  - Zlatović, Mario
AU  - Ilić-Tomič, Tatjana
AU  - Asakawa, Yoshinori
AU  - Nikodinović-Runić, Jasmina
AU  - Opsenica, Igor
PY  - 2020
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/3867
AB  - Chemical and biocatalytic synthesis of seven previously undescribed marchantin A ester derivatives has been presented. Chemical synthesis afforded three peresterified bisbibenzyl products (TE1-TE3), while enzymatic method, using lipase, produced regioselective monoester derivatives (ME1-ME4). The antiproliferative activities of all prepared derivatives of marchantin A were tested on MRC-5 healthy human lung fibroblast, A549 human lung cancer, and MDA-MB-231 human breast cancer cell lines. All tested esters were less cytotoxic in comparison to marchantin A, but they also exhibited lower cytotoxicity against healthy cells. Monoesters displayed higher cytotoxic activities than the corresponding peresterified products, presumably due to the presence of free catechol group. Monohexanoyl ester ME3 displayed the same IC50 like marchantin A against MDA-MB-231 cells, but the selectivity was higher. In this way, regioselective enzymatic monoesterification enhanced selectivity of marchantin A. ME3 was also the most active among all derivatives against lung cancer cells A549 with the slightly lower activity and selectivity in comparison to marchantin A.
PB  - Elsevier
T2  - Fitoterapia
T1  - Chemo- and biocatalytic esterification of marchantin A and cytotoxic activity of ester derivatives
VL  - 142
SP  - 104520
DO  - 10.1016/j.fitote.2020.104520
ER  - 
@article{
author = "Novaković, Miroslav M. and Simić, Stefan and Koračak, Ljiljana and Zlatović, Mario and Ilić-Tomič, Tatjana and Asakawa, Yoshinori and Nikodinović-Runić, Jasmina and Opsenica, Igor",
year = "2020",
url = "http://cherry.chem.bg.ac.rs/handle/123456789/3867",
abstract = "Chemical and biocatalytic synthesis of seven previously undescribed marchantin A ester derivatives has been presented. Chemical synthesis afforded three peresterified bisbibenzyl products (TE1-TE3), while enzymatic method, using lipase, produced regioselective monoester derivatives (ME1-ME4). The antiproliferative activities of all prepared derivatives of marchantin A were tested on MRC-5 healthy human lung fibroblast, A549 human lung cancer, and MDA-MB-231 human breast cancer cell lines. All tested esters were less cytotoxic in comparison to marchantin A, but they also exhibited lower cytotoxicity against healthy cells. Monoesters displayed higher cytotoxic activities than the corresponding peresterified products, presumably due to the presence of free catechol group. Monohexanoyl ester ME3 displayed the same IC50 like marchantin A against MDA-MB-231 cells, but the selectivity was higher. In this way, regioselective enzymatic monoesterification enhanced selectivity of marchantin A. ME3 was also the most active among all derivatives against lung cancer cells A549 with the slightly lower activity and selectivity in comparison to marchantin A.",
publisher = "Elsevier",
journal = "Fitoterapia",
title = "Chemo- and biocatalytic esterification of marchantin A and cytotoxic activity of ester derivatives",
volume = "142",
pages = "104520",
doi = "10.1016/j.fitote.2020.104520"
}
Novaković, M. M., Simić, S., Koračak, L., Zlatović, M., Ilić-Tomič, T., Asakawa, Y., Nikodinović-Runić, J.,& Opsenica, I. (2020). Chemo- and biocatalytic esterification of marchantin A and cytotoxic activity of ester derivatives.
FitoterapiaElsevier., 142, 104520.
https://doi.org/10.1016/j.fitote.2020.104520
Novaković MM, Simić S, Koračak L, Zlatović M, Ilić-Tomič T, Asakawa Y, Nikodinović-Runić J, Opsenica I. Chemo- and biocatalytic esterification of marchantin A and cytotoxic activity of ester derivatives. Fitoterapia. 2020;142:104520
Novaković Miroslav M., Simić Stefan, Koračak Ljiljana, Zlatović Mario, Ilić-Tomič Tatjana, Asakawa Yoshinori, Nikodinović-Runić Jasmina, Opsenica Igor, "Chemo- and biocatalytic esterification of marchantin A and cytotoxic activity of ester derivatives" 142 (2020):104520,
https://doi.org/10.1016/j.fitote.2020.104520 .
1
1
1
1

Supplementary data for the article: Novakovic, M.; Simić, S.; Koračak, L.; Zlatović, M.; Ilic-Tomic, T.; Asakawa, Y.; Nikodinovic-Runic, J.; Opsenica, I. Chemo- and Biocatalytic Esterification of Marchantin A and Cytotoxic Activity of Ester Derivatives. Fitoterapia 2020, 142. https://doi.org/10.1016/j.fitote.2020.104520.oxic activity of ester derivatives http://cherry.chem.bg.ac.rs/handle/123456789/3867

Novaković, Miroslav M.; Simić, Stefan; Koračak, Ljiljana; Zlatović, Mario; Ilić-Tomič, Tatjana; Asakawa, Yoshinori; Nikodinović-Runić, Jasmina; Opsenica, Igor

(Elsevier, 2020)

TY  - BOOK
AU  - Novaković, Miroslav M.
AU  - Simić, Stefan
AU  - Koračak, Ljiljana
AU  - Zlatović, Mario
AU  - Ilić-Tomič, Tatjana
AU  - Asakawa, Yoshinori
AU  - Nikodinović-Runić, Jasmina
AU  - Opsenica, Igor
PY  - 2020
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/3889
PB  - Elsevier
T2  - Fitoterapia
T1  - Supplementary data for the article: Novakovic, M.; Simić, S.; Koračak, L.; Zlatović, M.; Ilic-Tomic, T.; Asakawa, Y.; Nikodinovic-Runic, J.; Opsenica, I. Chemo- and Biocatalytic Esterification of Marchantin A and Cytotoxic Activity of Ester Derivatives. Fitoterapia 2020, 142. https://doi.org/10.1016/j.fitote.2020.104520.oxic activity of ester derivatives http://cherry.chem.bg.ac.rs/handle/123456789/3867
ER  - 
@book{
author = "Novaković, Miroslav M. and Simić, Stefan and Koračak, Ljiljana and Zlatović, Mario and Ilić-Tomič, Tatjana and Asakawa, Yoshinori and Nikodinović-Runić, Jasmina and Opsenica, Igor",
year = "2020",
url = "http://cherry.chem.bg.ac.rs/handle/123456789/3889",
publisher = "Elsevier",
journal = "Fitoterapia",
title = "Supplementary data for the article: Novakovic, M.; Simić, S.; Koračak, L.; Zlatović, M.; Ilic-Tomic, T.; Asakawa, Y.; Nikodinovic-Runic, J.; Opsenica, I. Chemo- and Biocatalytic Esterification of Marchantin A and Cytotoxic Activity of Ester Derivatives. Fitoterapia 2020, 142. https://doi.org/10.1016/j.fitote.2020.104520.oxic activity of ester derivatives http://cherry.chem.bg.ac.rs/handle/123456789/3867"
}
Novaković, M. M., Simić, S., Koračak, L., Zlatović, M., Ilić-Tomič, T., Asakawa, Y., Nikodinović-Runić, J.,& Opsenica, I. (2020). Supplementary data for the article: Novakovic, M.; Simić, S.; Koračak, L.; Zlatović, M.; Ilic-Tomic, T.; Asakawa, Y.; Nikodinovic-Runic, J.; Opsenica, I. Chemo- and Biocatalytic Esterification of Marchantin A and Cytotoxic Activity of Ester Derivatives. Fitoterapia 2020, 142. https://doi.org/10.1016/j.fitote.2020.104520.oxic activity of ester derivatives http://cherry.chem.bg.ac.rs/handle/123456789/3867.
FitoterapiaElsevier..
Novaković MM, Simić S, Koračak L, Zlatović M, Ilić-Tomič T, Asakawa Y, Nikodinović-Runić J, Opsenica I. Supplementary data for the article: Novakovic, M.; Simić, S.; Koračak, L.; Zlatović, M.; Ilic-Tomic, T.; Asakawa, Y.; Nikodinovic-Runic, J.; Opsenica, I. Chemo- and Biocatalytic Esterification of Marchantin A and Cytotoxic Activity of Ester Derivatives. Fitoterapia 2020, 142. https://doi.org/10.1016/j.fitote.2020.104520.oxic activity of ester derivatives http://cherry.chem.bg.ac.rs/handle/123456789/3867. Fitoterapia. 2020;
Novaković Miroslav M., Simić Stefan, Koračak Ljiljana, Zlatović Mario, Ilić-Tomič Tatjana, Asakawa Yoshinori, Nikodinović-Runić Jasmina, Opsenica Igor, "Supplementary data for the article: Novakovic, M.; Simić, S.; Koračak, L.; Zlatović, M.; Ilic-Tomic, T.; Asakawa, Y.; Nikodinovic-Runic, J.; Opsenica, I. Chemo- and Biocatalytic Esterification of Marchantin A and Cytotoxic Activity of Ester Derivatives. Fitoterapia 2020, 142. https://doi.org/10.1016/j.fitote.2020.104520.oxic activity of ester derivatives http://cherry.chem.bg.ac.rs/handle/123456789/3867" (2020)

Chemo- and biocatalytic esterification of marchantin A and cytotoxic activity of ester derivatives

Novaković, Miroslav M.; Simić, Stefan; Koračak, Ljiljana; Zlatović, Mario; Ilić-Tomič, Tatjana; Asakawa, Yoshinori; Nikodinović-Runić, Jasmina; Opsenica, Igor

(Elsevier, 2020)

TY  - JOUR
AU  - Novaković, Miroslav M.
AU  - Simić, Stefan
AU  - Koračak, Ljiljana
AU  - Zlatović, Mario
AU  - Ilić-Tomič, Tatjana
AU  - Asakawa, Yoshinori
AU  - Nikodinović-Runić, Jasmina
AU  - Opsenica, Igor
PY  - 2020
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/3890
AB  - Chemical and biocatalytic synthesis of seven previously undescribed marchantin A ester derivatives has been presented. Chemical synthesis afforded three peresterified bisbibenzyl products (TE1-TE3), while enzymatic method, using lipase, produced regioselective monoester derivatives (ME1-ME4). The antiproliferative activities of all prepared derivatives of marchantin A were tested on MRC-5 healthy human lung fibroblast, A549 human lung cancer, and MDA-MB-231 human breast cancer cell lines. All tested esters were less cytotoxic in comparison to marchantin A, but they also exhibited lower cytotoxicity against healthy cells. Monoesters displayed higher cytotoxic activities than the corresponding peresterified products, presumably due to the presence of free catechol group. Monohexanoyl ester ME3 displayed the same IC50 like marchantin A against MDA-MB-231 cells, but the selectivity was higher. In this way, regioselective enzymatic monoesterification enhanced selectivity of marchantin A. ME3 was also the most active among all derivatives against lung cancer cells A549 with the slightly lower activity and selectivity in comparison to marchantin A.
PB  - Elsevier
T2  - Fitoterapia
T1  - Chemo- and biocatalytic esterification of marchantin A and cytotoxic activity of ester derivatives
VL  - 142
SP  - 104520
DO  - 10.1016/j.fitote.2020.104520
ER  - 
@article{
author = "Novaković, Miroslav M. and Simić, Stefan and Koračak, Ljiljana and Zlatović, Mario and Ilić-Tomič, Tatjana and Asakawa, Yoshinori and Nikodinović-Runić, Jasmina and Opsenica, Igor",
year = "2020",
url = "http://cherry.chem.bg.ac.rs/handle/123456789/3890",
abstract = "Chemical and biocatalytic synthesis of seven previously undescribed marchantin A ester derivatives has been presented. Chemical synthesis afforded three peresterified bisbibenzyl products (TE1-TE3), while enzymatic method, using lipase, produced regioselective monoester derivatives (ME1-ME4). The antiproliferative activities of all prepared derivatives of marchantin A were tested on MRC-5 healthy human lung fibroblast, A549 human lung cancer, and MDA-MB-231 human breast cancer cell lines. All tested esters were less cytotoxic in comparison to marchantin A, but they also exhibited lower cytotoxicity against healthy cells. Monoesters displayed higher cytotoxic activities than the corresponding peresterified products, presumably due to the presence of free catechol group. Monohexanoyl ester ME3 displayed the same IC50 like marchantin A against MDA-MB-231 cells, but the selectivity was higher. In this way, regioselective enzymatic monoesterification enhanced selectivity of marchantin A. ME3 was also the most active among all derivatives against lung cancer cells A549 with the slightly lower activity and selectivity in comparison to marchantin A.",
publisher = "Elsevier",
journal = "Fitoterapia",
title = "Chemo- and biocatalytic esterification of marchantin A and cytotoxic activity of ester derivatives",
volume = "142",
pages = "104520",
doi = "10.1016/j.fitote.2020.104520"
}
Novaković, M. M., Simić, S., Koračak, L., Zlatović, M., Ilić-Tomič, T., Asakawa, Y., Nikodinović-Runić, J.,& Opsenica, I. (2020). Chemo- and biocatalytic esterification of marchantin A and cytotoxic activity of ester derivatives.
FitoterapiaElsevier., 142, 104520.
https://doi.org/10.1016/j.fitote.2020.104520
Novaković MM, Simić S, Koračak L, Zlatović M, Ilić-Tomič T, Asakawa Y, Nikodinović-Runić J, Opsenica I. Chemo- and biocatalytic esterification of marchantin A and cytotoxic activity of ester derivatives. Fitoterapia. 2020;142:104520
Novaković Miroslav M., Simić Stefan, Koračak Ljiljana, Zlatović Mario, Ilić-Tomič Tatjana, Asakawa Yoshinori, Nikodinović-Runić Jasmina, Opsenica Igor, "Chemo- and biocatalytic esterification of marchantin A and cytotoxic activity of ester derivatives" 142 (2020):104520,
https://doi.org/10.1016/j.fitote.2020.104520 .
1
1
1
1

Bisaurones – enzymatic production and biological evaluation

Novaković, Miroslav M.; Ilić-Tomić, Tatjana; Tešević, Vele; Simić, Katarina; Ivanović, Stefan; Simić, Stefan; Opsenica, Igor; Nikodinović-Runić, Jasmina

(Royal Society of Chemistry, 2020)

TY  - JOUR
AU  - Novaković, Miroslav M.
AU  - Ilić-Tomić, Tatjana
AU  - Tešević, Vele
AU  - Simić, Katarina
AU  - Ivanović, Stefan
AU  - Simić, Stefan
AU  - Opsenica, Igor
AU  - Nikodinović-Runić, Jasmina
PY  - 2020
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/4052
AB  - The Trametes versicolor laccase catalyzed oxidation of chalcone butein afforded four dimers of aurone sulfuretin (i.e. two regioisomeric pairs of diasteromers, 1-4) as the major products. The formation of the dimers was explained by a two step process involving the initial cyclization of butein into aurone sulfuretin, followed by the combination of two molecules of sulfuretin. The coupling process occurred between the 2,10-double bond of one molecule of sulfuretin and the (3′,4′) catechol group of the other to yield a dimeric structure. This was confirmed by the experiment involving the laccase catalyzed oxidation of sulfuretin yielding the same dimeric bisaurones. Compounds 1, 3 and 4, were isolated using semipreparative HPLC and characterized by the detailed analysis of the NMR, MS, IR, and UV-vis data. The structure of compound 2, isolated as a mixture containing ca. 25% of compound 1, was proposed by the comparison of 1H NMR data to compound 1 and by using LC-ESIMS analysis. The starting chalcone butein and the products of the biocatalytic transformation, aurone sulfuretin and sulfuretin dimers 1, 3 and 4, were evaluated for their cytotoxic and antioxidative properties in vitro using a healthy human fibroblast (MRC5) cell line. The biotransformation products showed lower cytotoxicity but higher antioxidative properties. The C. coggygria bark methanol extract rich in butein and sulfuretin was also biotransformed by laccase. The transformed extract exhibited significantly improved antioxidative activities.
PB  - Royal Society of Chemistry
T2  - New Journal of Chemistry
T1  - Bisaurones – enzymatic production and biological evaluation
VL  - 44
IS  - 23
SP  - 9647
EP  - 9655
DO  - 10.1039/d0nj00758g
ER  - 
@article{
author = "Novaković, Miroslav M. and Ilić-Tomić, Tatjana and Tešević, Vele and Simić, Katarina and Ivanović, Stefan and Simić, Stefan and Opsenica, Igor and Nikodinović-Runić, Jasmina",
year = "2020",
url = "http://cherry.chem.bg.ac.rs/handle/123456789/4052",
abstract = "The Trametes versicolor laccase catalyzed oxidation of chalcone butein afforded four dimers of aurone sulfuretin (i.e. two regioisomeric pairs of diasteromers, 1-4) as the major products. The formation of the dimers was explained by a two step process involving the initial cyclization of butein into aurone sulfuretin, followed by the combination of two molecules of sulfuretin. The coupling process occurred between the 2,10-double bond of one molecule of sulfuretin and the (3′,4′) catechol group of the other to yield a dimeric structure. This was confirmed by the experiment involving the laccase catalyzed oxidation of sulfuretin yielding the same dimeric bisaurones. Compounds 1, 3 and 4, were isolated using semipreparative HPLC and characterized by the detailed analysis of the NMR, MS, IR, and UV-vis data. The structure of compound 2, isolated as a mixture containing ca. 25% of compound 1, was proposed by the comparison of 1H NMR data to compound 1 and by using LC-ESIMS analysis. The starting chalcone butein and the products of the biocatalytic transformation, aurone sulfuretin and sulfuretin dimers 1, 3 and 4, were evaluated for their cytotoxic and antioxidative properties in vitro using a healthy human fibroblast (MRC5) cell line. The biotransformation products showed lower cytotoxicity but higher antioxidative properties. The C. coggygria bark methanol extract rich in butein and sulfuretin was also biotransformed by laccase. The transformed extract exhibited significantly improved antioxidative activities.",
publisher = "Royal Society of Chemistry",
journal = "New Journal of Chemistry",
title = "Bisaurones – enzymatic production and biological evaluation",
volume = "44",
number = "23",
pages = "9647-9655",
doi = "10.1039/d0nj00758g"
}
Novaković, M. M., Ilić-Tomić, T., Tešević, V., Simić, K., Ivanović, S., Simić, S., Opsenica, I.,& Nikodinović-Runić, J. (2020). Bisaurones – enzymatic production and biological evaluation.
New Journal of ChemistryRoyal Society of Chemistry., 44(23), 9647-9655.
https://doi.org/10.1039/d0nj00758g
Novaković MM, Ilić-Tomić T, Tešević V, Simić K, Ivanović S, Simić S, Opsenica I, Nikodinović-Runić J. Bisaurones – enzymatic production and biological evaluation. New Journal of Chemistry. 2020;44(23):9647-9655
Novaković Miroslav M., Ilić-Tomić Tatjana, Tešević Vele, Simić Katarina, Ivanović Stefan, Simić Stefan, Opsenica Igor, Nikodinović-Runić Jasmina, "Bisaurones – enzymatic production and biological evaluation" 44, no. 23 (2020):9647-9655,
https://doi.org/10.1039/d0nj00758g .

Supplementary data for the article: Novakovic, M.; Ilic-Tomic, T.; Tesevic, V.; Simic, K.; Ivanovic, S.; Simic, S.; Opsenica, I.; Nikodinovic-Runic, J. Bisaurones – Enzymatic Production and Biological Evaluation. New J. Chem. 2020, 44 (23), 9647–9655. https://doi.org/10.1039/D0NJ00758G

Novaković, Miroslav M.; Ilić-Tomić, Tatjana; Tešević, Vele; Simić, Katarina; Ivanović, Stefan; Simić, Stefan; Opsenica, Igor; Nikodinović-Runić, Jasmina

(Royal Society of Chemistry, 2020)

TY  - BOOK
AU  - Novaković, Miroslav M.
AU  - Ilić-Tomić, Tatjana
AU  - Tešević, Vele
AU  - Simić, Katarina
AU  - Ivanović, Stefan
AU  - Simić, Stefan
AU  - Opsenica, Igor
AU  - Nikodinović-Runić, Jasmina
PY  - 2020
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/4078
PB  - Royal Society of Chemistry
T2  - New Journal of Chemistry
T1  - Supplementary data for the article: Novakovic, M.; Ilic-Tomic, T.; Tesevic, V.; Simic, K.; Ivanovic, S.; Simic, S.; Opsenica, I.; Nikodinovic-Runic, J. Bisaurones – Enzymatic Production and Biological Evaluation. New J. Chem. 2020, 44 (23), 9647–9655. https://doi.org/10.1039/D0NJ00758G
ER  - 
@book{
author = "Novaković, Miroslav M. and Ilić-Tomić, Tatjana and Tešević, Vele and Simić, Katarina and Ivanović, Stefan and Simić, Stefan and Opsenica, Igor and Nikodinović-Runić, Jasmina",
year = "2020",
url = "http://cherry.chem.bg.ac.rs/handle/123456789/4078",
publisher = "Royal Society of Chemistry",
journal = "New Journal of Chemistry",
title = "Supplementary data for the article: Novakovic, M.; Ilic-Tomic, T.; Tesevic, V.; Simic, K.; Ivanovic, S.; Simic, S.; Opsenica, I.; Nikodinovic-Runic, J. Bisaurones – Enzymatic Production and Biological Evaluation. New J. Chem. 2020, 44 (23), 9647–9655. https://doi.org/10.1039/D0NJ00758G"
}
Novaković, M. M., Ilić-Tomić, T., Tešević, V., Simić, K., Ivanović, S., Simić, S., Opsenica, I.,& Nikodinović-Runić, J. (2020). Supplementary data for the article: Novakovic, M.; Ilic-Tomic, T.; Tesevic, V.; Simic, K.; Ivanovic, S.; Simic, S.; Opsenica, I.; Nikodinovic-Runic, J. Bisaurones – Enzymatic Production and Biological Evaluation. New J. Chem. 2020, 44 (23), 9647–9655. https://doi.org/10.1039/D0NJ00758G.
New Journal of ChemistryRoyal Society of Chemistry..
Novaković MM, Ilić-Tomić T, Tešević V, Simić K, Ivanović S, Simić S, Opsenica I, Nikodinović-Runić J. Supplementary data for the article: Novakovic, M.; Ilic-Tomic, T.; Tesevic, V.; Simic, K.; Ivanovic, S.; Simic, S.; Opsenica, I.; Nikodinovic-Runic, J. Bisaurones – Enzymatic Production and Biological Evaluation. New J. Chem. 2020, 44 (23), 9647–9655. https://doi.org/10.1039/D0NJ00758G. New Journal of Chemistry. 2020;
Novaković Miroslav M., Ilić-Tomić Tatjana, Tešević Vele, Simić Katarina, Ivanović Stefan, Simić Stefan, Opsenica Igor, Nikodinović-Runić Jasmina, "Supplementary data for the article: Novakovic, M.; Ilic-Tomic, T.; Tesevic, V.; Simic, K.; Ivanovic, S.; Simic, S.; Opsenica, I.; Nikodinovic-Runic, J. Bisaurones – Enzymatic Production and Biological Evaluation. New J. Chem. 2020, 44 (23), 9647–9655. https://doi.org/10.1039/D0NJ00758G" (2020)

Development of an efficient biocatalytic system based on bacterial laccase for the oxidation of selected 1,4-dihydropyridines

Simić, Stefan; Jeremić, Sanja; Đokić, Lidija; Božić, Nataša; Vujčić, Zoran; Lončar, Nikola L.; Senthamaraikannan, Ramsankar; Babu, Ramesh P.; Opsenica, Igor; Nikodinović-Runić, Jasmina

(2020)

TY  - JOUR
AU  - Simić, Stefan
AU  - Jeremić, Sanja
AU  - Đokić, Lidija
AU  - Božić, Nataša
AU  - Vujčić, Zoran
AU  - Lončar, Nikola L.
AU  - Senthamaraikannan, Ramsankar
AU  - Babu, Ramesh P.
AU  - Opsenica, Igor
AU  - Nikodinović-Runić, Jasmina
PY  - 2020
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/3356
AB  - Biocatalytic oxidations mediated by laccases are gaining importance due to their versatility and beneficial environmental effects. In this study, the oxidation of 1,4-dihydropyridines has been performed using three different types of bacterial laccase-based catalysts: purified laccase from Bacillus licheniformis ATCC 9945a (BliLacc), Escherichia coli whole cells expressing this laccase, and bacterial nanocellulose (BNC) supported BliLacc catalysts. The catalysts based on bacterial laccase were compared to the commercially available Trametes versicolor laccase (TvLacc). The oxidation product of 2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate was obtained within 7–24 h with good yields (70–99%) with all three biocatalysts. The substrate scope was examined with five additional 1,4-dihydropyridines, one of which was oxidized in high yield. Whole-cell biocatalyst was stable when stored for up to 1-month at 4 °C. In addition, evidence has been provided that multicopper oxidase CueO from the E. coli expression host contributed to the oxidation efficiency of the whole-cell biocatalyst. The immobilized whole-cell biocatalyst showed satisfactory activity and retained 37% of its original activity after three biotransformation cycles.
T2  - Enzyme and Microbial Technology
T1  - Development of an efficient biocatalytic system based on bacterial laccase for the oxidation of selected 1,4-dihydropyridines
VL  - 132
DO  - 10.1016/j.enzmictec.2019.109411
ER  - 
@article{
author = "Simić, Stefan and Jeremić, Sanja and Đokić, Lidija and Božić, Nataša and Vujčić, Zoran and Lončar, Nikola L. and Senthamaraikannan, Ramsankar and Babu, Ramesh P. and Opsenica, Igor and Nikodinović-Runić, Jasmina",
year = "2020",
url = "http://cherry.chem.bg.ac.rs/handle/123456789/3356",
abstract = "Biocatalytic oxidations mediated by laccases are gaining importance due to their versatility and beneficial environmental effects. In this study, the oxidation of 1,4-dihydropyridines has been performed using three different types of bacterial laccase-based catalysts: purified laccase from Bacillus licheniformis ATCC 9945a (BliLacc), Escherichia coli whole cells expressing this laccase, and bacterial nanocellulose (BNC) supported BliLacc catalysts. The catalysts based on bacterial laccase were compared to the commercially available Trametes versicolor laccase (TvLacc). The oxidation product of 2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate was obtained within 7–24 h with good yields (70–99%) with all three biocatalysts. The substrate scope was examined with five additional 1,4-dihydropyridines, one of which was oxidized in high yield. Whole-cell biocatalyst was stable when stored for up to 1-month at 4 °C. In addition, evidence has been provided that multicopper oxidase CueO from the E. coli expression host contributed to the oxidation efficiency of the whole-cell biocatalyst. The immobilized whole-cell biocatalyst showed satisfactory activity and retained 37% of its original activity after three biotransformation cycles.",
journal = "Enzyme and Microbial Technology",
title = "Development of an efficient biocatalytic system based on bacterial laccase for the oxidation of selected 1,4-dihydropyridines",
volume = "132",
doi = "10.1016/j.enzmictec.2019.109411"
}
Simić, S., Jeremić, S., Đokić, L., Božić, N., Vujčić, Z., Lončar, N. L., Senthamaraikannan, R., Babu, R. P., Opsenica, I.,& Nikodinović-Runić, J. (2020). Development of an efficient biocatalytic system based on bacterial laccase for the oxidation of selected 1,4-dihydropyridines.
Enzyme and Microbial Technology, 132.
https://doi.org/10.1016/j.enzmictec.2019.109411
Simić S, Jeremić S, Đokić L, Božić N, Vujčić Z, Lončar NL, Senthamaraikannan R, Babu RP, Opsenica I, Nikodinović-Runić J. Development of an efficient biocatalytic system based on bacterial laccase for the oxidation of selected 1,4-dihydropyridines. Enzyme and Microbial Technology. 2020;132
Simić Stefan, Jeremić Sanja, Đokić Lidija, Božić Nataša, Vujčić Zoran, Lončar Nikola L., Senthamaraikannan Ramsankar, Babu Ramesh P., Opsenica Igor, Nikodinović-Runić Jasmina, "Development of an efficient biocatalytic system based on bacterial laccase for the oxidation of selected 1,4-dihydropyridines" 132 (2020),
https://doi.org/10.1016/j.enzmictec.2019.109411 .
2
2
2

4-Aminoquinoline-based compounds as antileishmanial agents that inhibit the energy metabolism of Leishmania

Manzano, Jose Ignacio; Konstantinović, Jelena; Scaccabarozzi, Diletta; Perea, Ana; Pavić, Aleksandar; Cavicchini, Loredana; Basilico, Nicoletta; Gamarro, Francisco; Šolaja, Bogdan A.

(Elsevier, 2019)

TY  - JOUR
AU  - Manzano, Jose Ignacio
AU  - Konstantinović, Jelena
AU  - Scaccabarozzi, Diletta
AU  - Perea, Ana
AU  - Pavić, Aleksandar
AU  - Cavicchini, Loredana
AU  - Basilico, Nicoletta
AU  - Gamarro, Francisco
AU  - Šolaja, Bogdan A.
PY  - 2019
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/3287
AB  - Among neglected tropical diseases, leishmaniasis is one of the most relevant with an estimated 30,000 deaths annually. Existing therapies have serious drawbacks in safety, drug resistance, field-adapted application and cost; therefore, new safer and shorter treatments are needed for this disease. Here we report on the synthesis of novel 4-amino-7-chloroquinoline-based compounds with leishmanicidal activity, together with deeper insight into the mechanism of action of our previously published hit compound 1. New derivatives showed comparable activity to 1 against both promastigote and intracellular amastigote forms of Leishmania infantum, with IC50 < 1 mM. Furthermore, we have determined that compound 1 induced a decrease of intracellular ATP levels, as well as a mitochondrial depolarization, together with an alteration of plasma membrane permeability and a significant ROS production. The inhibition of the energy metabolism of Leishmania plays an important role in the leishmanicidal mechanism of this compound. In all, these results support the consideration of compound 1 for the future development of new leishmanicidal drugs.
PB  - Elsevier
T2  - European Journal of Medicinal Chemistry
T1  - 4-Aminoquinoline-based compounds as antileishmanial agents that inhibit the energy metabolism of Leishmania
VL  - 180
SP  - 28
EP  - 40
DO  - 10.1016/j.ejmech.2019.07.010
ER  - 
@article{
author = "Manzano, Jose Ignacio and Konstantinović, Jelena and Scaccabarozzi, Diletta and Perea, Ana and Pavić, Aleksandar and Cavicchini, Loredana and Basilico, Nicoletta and Gamarro, Francisco and Šolaja, Bogdan A.",
year = "2019",
url = "http://cherry.chem.bg.ac.rs/handle/123456789/3287",
abstract = "Among neglected tropical diseases, leishmaniasis is one of the most relevant with an estimated 30,000 deaths annually. Existing therapies have serious drawbacks in safety, drug resistance, field-adapted application and cost; therefore, new safer and shorter treatments are needed for this disease. Here we report on the synthesis of novel 4-amino-7-chloroquinoline-based compounds with leishmanicidal activity, together with deeper insight into the mechanism of action of our previously published hit compound 1. New derivatives showed comparable activity to 1 against both promastigote and intracellular amastigote forms of Leishmania infantum, with IC50 < 1 mM. Furthermore, we have determined that compound 1 induced a decrease of intracellular ATP levels, as well as a mitochondrial depolarization, together with an alteration of plasma membrane permeability and a significant ROS production. The inhibition of the energy metabolism of Leishmania plays an important role in the leishmanicidal mechanism of this compound. In all, these results support the consideration of compound 1 for the future development of new leishmanicidal drugs.",
publisher = "Elsevier",
journal = "European Journal of Medicinal Chemistry",
title = "4-Aminoquinoline-based compounds as antileishmanial agents that inhibit the energy metabolism of Leishmania",
volume = "180",
pages = "28-40",
doi = "10.1016/j.ejmech.2019.07.010"
}
Manzano, J. I., Konstantinović, J., Scaccabarozzi, D., Perea, A., Pavić, A., Cavicchini, L., Basilico, N., Gamarro, F.,& Šolaja, B. A. (2019). 4-Aminoquinoline-based compounds as antileishmanial agents that inhibit the energy metabolism of Leishmania.
European Journal of Medicinal ChemistryElsevier., 180, 28-40.
https://doi.org/10.1016/j.ejmech.2019.07.010
Manzano JI, Konstantinović J, Scaccabarozzi D, Perea A, Pavić A, Cavicchini L, Basilico N, Gamarro F, Šolaja BA. 4-Aminoquinoline-based compounds as antileishmanial agents that inhibit the energy metabolism of Leishmania. European Journal of Medicinal Chemistry. 2019;180:28-40
Manzano Jose Ignacio, Konstantinović Jelena, Scaccabarozzi Diletta, Perea Ana, Pavić Aleksandar, Cavicchini Loredana, Basilico Nicoletta, Gamarro Francisco, Šolaja Bogdan A., "4-Aminoquinoline-based compounds as antileishmanial agents that inhibit the energy metabolism of Leishmania" 180 (2019):28-40,
https://doi.org/10.1016/j.ejmech.2019.07.010 .
1
3
4
4

Supplementary material for the article: Manzano, J. I.; Konstantinović, J.; Scaccabarozzi, D.; Perea, A.; Pavić, A.; Cavicchini, L.; Basilico, N.; Gamarro, F.; Šolaja, B. A. 4-Aminoquinoline-Based Compounds as Antileishmanial Agents That Inhibit the Energy Metabolism of Leishmania. European Journal of Medicinal Chemistry 2019, 180, 28–40. https://doi.org/10.1016/j.ejmech.2019.07.010

Manzano, Jose Ignacio; Konstantinović, Jelena; Scaccabarozzi, Diletta; Perea, Ana; Pavić, Aleksandar; Cavicchini, Loredana; Basilico, Nicoletta; Gamarro, Francisco; Šolaja, Bogdan A.

(Elsevier, 2019)

TY  - BOOK
AU  - Manzano, Jose Ignacio
AU  - Konstantinović, Jelena
AU  - Scaccabarozzi, Diletta
AU  - Perea, Ana
AU  - Pavić, Aleksandar
AU  - Cavicchini, Loredana
AU  - Basilico, Nicoletta
AU  - Gamarro, Francisco
AU  - Šolaja, Bogdan A.
PY  - 2019
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/3288
PB  - Elsevier
T2  - European Journal of Medicinal Chemistry
T1  - Supplementary material for the article: Manzano, J. I.; Konstantinović, J.; Scaccabarozzi, D.; Perea, A.; Pavić, A.; Cavicchini, L.; Basilico, N.; Gamarro, F.; Šolaja, B. A. 4-Aminoquinoline-Based Compounds as Antileishmanial Agents That Inhibit the Energy Metabolism of Leishmania. European Journal of Medicinal Chemistry 2019, 180, 28–40. https://doi.org/10.1016/j.ejmech.2019.07.010
ER  - 
@book{
author = "Manzano, Jose Ignacio and Konstantinović, Jelena and Scaccabarozzi, Diletta and Perea, Ana and Pavić, Aleksandar and Cavicchini, Loredana and Basilico, Nicoletta and Gamarro, Francisco and Šolaja, Bogdan A.",
year = "2019",
url = "http://cherry.chem.bg.ac.rs/handle/123456789/3288",
publisher = "Elsevier",
journal = "European Journal of Medicinal Chemistry",
title = "Supplementary material for the article: Manzano, J. I.; Konstantinović, J.; Scaccabarozzi, D.; Perea, A.; Pavić, A.; Cavicchini, L.; Basilico, N.; Gamarro, F.; Šolaja, B. A. 4-Aminoquinoline-Based Compounds as Antileishmanial Agents That Inhibit the Energy Metabolism of Leishmania. European Journal of Medicinal Chemistry 2019, 180, 28–40. https://doi.org/10.1016/j.ejmech.2019.07.010"
}
Manzano, J. I., Konstantinović, J., Scaccabarozzi, D., Perea, A., Pavić, A., Cavicchini, L., Basilico, N., Gamarro, F.,& Šolaja, B. A. (2019). Supplementary material for the article: Manzano, J. I.; Konstantinović, J.; Scaccabarozzi, D.; Perea, A.; Pavić, A.; Cavicchini, L.; Basilico, N.; Gamarro, F.; Šolaja, B. A. 4-Aminoquinoline-Based Compounds as Antileishmanial Agents That Inhibit the Energy Metabolism of Leishmania. European Journal of Medicinal Chemistry 2019, 180, 28–40. https://doi.org/10.1016/j.ejmech.2019.07.010.
European Journal of Medicinal ChemistryElsevier..
Manzano JI, Konstantinović J, Scaccabarozzi D, Perea A, Pavić A, Cavicchini L, Basilico N, Gamarro F, Šolaja BA. Supplementary material for the article: Manzano, J. I.; Konstantinović, J.; Scaccabarozzi, D.; Perea, A.; Pavić, A.; Cavicchini, L.; Basilico, N.; Gamarro, F.; Šolaja, B. A. 4-Aminoquinoline-Based Compounds as Antileishmanial Agents That Inhibit the Energy Metabolism of Leishmania. European Journal of Medicinal Chemistry 2019, 180, 28–40. https://doi.org/10.1016/j.ejmech.2019.07.010. European Journal of Medicinal Chemistry. 2019;
Manzano Jose Ignacio, Konstantinović Jelena, Scaccabarozzi Diletta, Perea Ana, Pavić Aleksandar, Cavicchini Loredana, Basilico Nicoletta, Gamarro Francisco, Šolaja Bogdan A., "Supplementary material for the article: Manzano, J. I.; Konstantinović, J.; Scaccabarozzi, D.; Perea, A.; Pavić, A.; Cavicchini, L.; Basilico, N.; Gamarro, F.; Šolaja, B. A. 4-Aminoquinoline-Based Compounds as Antileishmanial Agents That Inhibit the Energy Metabolism of Leishmania. European Journal of Medicinal Chemistry 2019, 180, 28–40. https://doi.org/10.1016/j.ejmech.2019.07.010" (2019)

N-benzyl derivatives of long-chained 4-Amino-7-chloro-quionolines as inhibitors of pyocyanin production in Pseudomonas aeruginosa

Aleksic, Ivana; Jeremic, Jelena; Milivojevic, Dusan; Ilic-Tomic, Tatjana; Šegan, Sandra B.; Zlatović, Mario; Opsenica, Dejan M.; Senerovic, Lidija

(American Chemical Society, 2019)

TY  - JOUR
AU  - Aleksic, Ivana
AU  - Jeremic, Jelena
AU  - Milivojevic, Dusan
AU  - Ilic-Tomic, Tatjana
AU  - Šegan, Sandra B.
AU  - Zlatović, Mario
AU  - Opsenica, Dejan M.
AU  - Senerovic, Lidija
PY  - 2019
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/3771
AB  - Pseudomonas aeruginosa is a leading cause of nosocomial infections that are becoming increasingly difficult to treat due to the occurrence of antibiotic resistant strains. Since P. aeruginosa virulence is controlled through quorum sensing, small molecule treatments inhibiting quorum sensing signaling pathways provide a promising therapeutic option. Consequently, we synthesized a series of N-octaneamino-4-aminoquinoline derivatives to optimize this chemotype’s antivirulence activity against P. aeruginosa via inhibition of pyocyanin production. The most potent derivative, which possesses a benzofuran substituent, provided effective inhibition of pyocyanin production (IC50 = 12 μM), biofilm formation (BFIC50 = 50 μM), and motility. Experimentally, the compound’s activity is achieved through competitive inhibition of PqsR, and structure–activity data were rationalized using molecular docking studies.
PB  - American Chemical Society
T2  - ACS Chemical Biology
T1  - N-benzyl derivatives of long-chained 4-Amino-7-chloro-quionolines as inhibitors of pyocyanin production in Pseudomonas aeruginosa
DO  - 10.1021/acschembio.9b00682
ER  - 
@article{
author = "Aleksic, Ivana and Jeremic, Jelena and Milivojevic, Dusan and Ilic-Tomic, Tatjana and Šegan, Sandra B. and Zlatović, Mario and Opsenica, Dejan M. and Senerovic, Lidija",
year = "2019",
url = "http://cherry.chem.bg.ac.rs/handle/123456789/3771",
abstract = "Pseudomonas aeruginosa is a leading cause of nosocomial infections that are becoming increasingly difficult to treat due to the occurrence of antibiotic resistant strains. Since P. aeruginosa virulence is controlled through quorum sensing, small molecule treatments inhibiting quorum sensing signaling pathways provide a promising therapeutic option. Consequently, we synthesized a series of N-octaneamino-4-aminoquinoline derivatives to optimize this chemotype’s antivirulence activity against P. aeruginosa via inhibition of pyocyanin production. The most potent derivative, which possesses a benzofuran substituent, provided effective inhibition of pyocyanin production (IC50 = 12 μM), biofilm formation (BFIC50 = 50 μM), and motility. Experimentally, the compound’s activity is achieved through competitive inhibition of PqsR, and structure–activity data were rationalized using molecular docking studies.",
publisher = "American Chemical Society",
journal = "ACS Chemical Biology",
title = "N-benzyl derivatives of long-chained 4-Amino-7-chloro-quionolines as inhibitors of pyocyanin production in Pseudomonas aeruginosa",
doi = "10.1021/acschembio.9b00682"
}
Aleksic, I., Jeremic, J., Milivojevic, D., Ilic-Tomic, T., Šegan, S. B., Zlatović, M., Opsenica, D. M.,& Senerovic, L. (2019). N-benzyl derivatives of long-chained 4-Amino-7-chloro-quionolines as inhibitors of pyocyanin production in Pseudomonas aeruginosa.
ACS Chemical BiologyAmerican Chemical Society..
https://doi.org/10.1021/acschembio.9b00682
Aleksic I, Jeremic J, Milivojevic D, Ilic-Tomic T, Šegan SB, Zlatović M, Opsenica DM, Senerovic L. N-benzyl derivatives of long-chained 4-Amino-7-chloro-quionolines as inhibitors of pyocyanin production in Pseudomonas aeruginosa. ACS Chemical Biology. 2019;
Aleksic Ivana, Jeremic Jelena, Milivojevic Dusan, Ilic-Tomic Tatjana, Šegan Sandra B., Zlatović Mario, Opsenica Dejan M., Senerovic Lidija, "N-benzyl derivatives of long-chained 4-Amino-7-chloro-quionolines as inhibitors of pyocyanin production in Pseudomonas aeruginosa" (2019),
https://doi.org/10.1021/acschembio.9b00682 .
1
3
2
2

N-benzyl derivatives of long-chained 4-Amino-7-chloro-quionolines as inhibitors of pyocyanin production in Pseudomonas aeruginosa

Aleksic, Ivana; Jeremic, Jelena; Milivojevic, Dusan; Ilic-Tomic, Tatjana; Šegan, Sandra B.; Zlatović, Mario; Opsenica, Dejan M.; Senerovic, Lidija

(American Chemical Society, 2019)

TY  - JOUR
AU  - Aleksic, Ivana
AU  - Jeremic, Jelena
AU  - Milivojevic, Dusan
AU  - Ilic-Tomic, Tatjana
AU  - Šegan, Sandra B.
AU  - Zlatović, Mario
AU  - Opsenica, Dejan M.
AU  - Senerovic, Lidija
PY  - 2019
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/3772
AB  - Pseudomonas aeruginosa is a leading cause of nosocomial infections that are becoming increasingly difficult to treat due to the occurrence of antibiotic resistant strains. Since P. aeruginosa virulence is controlled through quorum sensing, small molecule treatments inhibiting quorum sensing signaling pathways provide a promising therapeutic option. Consequently, we synthesized a series of N-octaneamino-4-aminoquinoline derivatives to optimize this chemotype’s antivirulence activity against P. aeruginosa via inhibition of pyocyanin production. The most potent derivative, which possesses a benzofuran substituent, provided effective inhibition of pyocyanin production (IC50 = 12 μM), biofilm formation (BFIC50 = 50 μM), and motility. Experimentally, the compound’s activity is achieved through competitive inhibition of PqsR, and structure–activity data were rationalized using molecular docking studies.
PB  - American Chemical Society
T2  - ACS Chemical Biology
T1  - N-benzyl derivatives of long-chained 4-Amino-7-chloro-quionolines as inhibitors of pyocyanin production in Pseudomonas aeruginosa
DO  - 10.1021/acschembio.9b00682
ER  - 
@article{
author = "Aleksic, Ivana and Jeremic, Jelena and Milivojevic, Dusan and Ilic-Tomic, Tatjana and Šegan, Sandra B. and Zlatović, Mario and Opsenica, Dejan M. and Senerovic, Lidija",
year = "2019",
url = "http://cherry.chem.bg.ac.rs/handle/123456789/3772",
abstract = "Pseudomonas aeruginosa is a leading cause of nosocomial infections that are becoming increasingly difficult to treat due to the occurrence of antibiotic resistant strains. Since P. aeruginosa virulence is controlled through quorum sensing, small molecule treatments inhibiting quorum sensing signaling pathways provide a promising therapeutic option. Consequently, we synthesized a series of N-octaneamino-4-aminoquinoline derivatives to optimize this chemotype’s antivirulence activity against P. aeruginosa via inhibition of pyocyanin production. The most potent derivative, which possesses a benzofuran substituent, provided effective inhibition of pyocyanin production (IC50 = 12 μM), biofilm formation (BFIC50 = 50 μM), and motility. Experimentally, the compound’s activity is achieved through competitive inhibition of PqsR, and structure–activity data were rationalized using molecular docking studies.",
publisher = "American Chemical Society",
journal = "ACS Chemical Biology",
title = "N-benzyl derivatives of long-chained 4-Amino-7-chloro-quionolines as inhibitors of pyocyanin production in Pseudomonas aeruginosa",
doi = "10.1021/acschembio.9b00682"
}
Aleksic, I., Jeremic, J., Milivojevic, D., Ilic-Tomic, T., Šegan, S. B., Zlatović, M., Opsenica, D. M.,& Senerovic, L. (2019). N-benzyl derivatives of long-chained 4-Amino-7-chloro-quionolines as inhibitors of pyocyanin production in Pseudomonas aeruginosa.
ACS Chemical BiologyAmerican Chemical Society..
https://doi.org/10.1021/acschembio.9b00682
Aleksic I, Jeremic J, Milivojevic D, Ilic-Tomic T, Šegan SB, Zlatović M, Opsenica DM, Senerovic L. N-benzyl derivatives of long-chained 4-Amino-7-chloro-quionolines as inhibitors of pyocyanin production in Pseudomonas aeruginosa. ACS Chemical Biology. 2019;
Aleksic Ivana, Jeremic Jelena, Milivojevic Dusan, Ilic-Tomic Tatjana, Šegan Sandra B., Zlatović Mario, Opsenica Dejan M., Senerovic Lidija, "N-benzyl derivatives of long-chained 4-Amino-7-chloro-quionolines as inhibitors of pyocyanin production in Pseudomonas aeruginosa" (2019),
https://doi.org/10.1021/acschembio.9b00682 .
1
3
2
2

Supplementary data for article: N-benzyl derivatives of long-chained 4-Amino-7-chloro-quionolines as inhibitors of pyocyanin production in Pseudomonas aeruginosa

Aleksic, Ivana; Jeremic, Jelena; Milivojevic, Dusan; Ilic-Tomic, Tatjana; Šegan, Sandra B.; Zlatović, Mario; Opsenica, Dejan M.; Senerovic, Lidija

(American Chemical Society, 2019)

TY  - BOOK
AU  - Aleksic, Ivana
AU  - Jeremic, Jelena
AU  - Milivojevic, Dusan
AU  - Ilic-Tomic, Tatjana
AU  - Šegan, Sandra B.
AU  - Zlatović, Mario
AU  - Opsenica, Dejan M.
AU  - Senerovic, Lidija
PY  - 2019
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/3773
PB  - American Chemical Society
T2  - ACS Chemical Biology
T1  - Supplementary data for article: N-benzyl derivatives of long-chained 4-Amino-7-chloro-quionolines as inhibitors of pyocyanin production in Pseudomonas aeruginosa
ER  - 
@book{
author = "Aleksic, Ivana and Jeremic, Jelena and Milivojevic, Dusan and Ilic-Tomic, Tatjana and Šegan, Sandra B. and Zlatović, Mario and Opsenica, Dejan M. and Senerovic, Lidija",
year = "2019",
url = "http://cherry.chem.bg.ac.rs/handle/123456789/3773",
publisher = "American Chemical Society",
journal = "ACS Chemical Biology",
title = "Supplementary data for article: N-benzyl derivatives of long-chained 4-Amino-7-chloro-quionolines as inhibitors of pyocyanin production in Pseudomonas aeruginosa"
}
Aleksic, I., Jeremic, J., Milivojevic, D., Ilic-Tomic, T., Šegan, S. B., Zlatović, M., Opsenica, D. M.,& Senerovic, L. (2019). Supplementary data for article: N-benzyl derivatives of long-chained 4-Amino-7-chloro-quionolines as inhibitors of pyocyanin production in Pseudomonas aeruginosa.
ACS Chemical BiologyAmerican Chemical Society..
Aleksic I, Jeremic J, Milivojevic D, Ilic-Tomic T, Šegan SB, Zlatović M, Opsenica DM, Senerovic L. Supplementary data for article: N-benzyl derivatives of long-chained 4-Amino-7-chloro-quionolines as inhibitors of pyocyanin production in Pseudomonas aeruginosa. ACS Chemical Biology. 2019;
Aleksic Ivana, Jeremic Jelena, Milivojevic Dusan, Ilic-Tomic Tatjana, Šegan Sandra B., Zlatović Mario, Opsenica Dejan M., Senerovic Lidija, "Supplementary data for article: N-benzyl derivatives of long-chained 4-Amino-7-chloro-quionolines as inhibitors of pyocyanin production in Pseudomonas aeruginosa" (2019)

Production of bacterial nanocellulose (BNC) and its application as a solid support in transition metal catalysed cross-coupling reactions

Jeremić, Sanja; Đokić, Lidija; Ajdačić, Vladimir; Božinović, Nina S.; Pavlović, Vladimir D.; Manojlović, Dragan D.; Babu, Ramesh P.; Senthamaraikannan, Ramsankar; Rojas, Orlando; Opsenica, Igor; Nikodinović-Runić, Jasmina

(Elsevier, 2019)

TY  - JOUR
AU  - Jeremić, Sanja
AU  - Đokić, Lidija
AU  - Ajdačić, Vladimir
AU  - Božinović, Nina S.
AU  - Pavlović, Vladimir D.
AU  - Manojlović, Dragan D.
AU  - Babu, Ramesh P.
AU  - Senthamaraikannan, Ramsankar
AU  - Rojas, Orlando
AU  - Opsenica, Igor
AU  - Nikodinović-Runić, Jasmina
PY  - 2019
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/2850
AB  - Bacterial nanocellulose (BNC) emerged as an attractive advanced biomaterial that provides desirable properties such as high strength, lightweight, tailorable surface chemistry, hydrophilicity, and biodegradability. BNC was successfully obtained from a wide range of carbon sources including sugars derived from grass biomass using Komagataeibacter medellinensis ID13488 strain with yields up to 6 g L −1 in static fermentation. Produced BNC was utilized in straightforward catalyst preparation as a solid support for two different transition metals, palladium and copper with metal loading of 20 and 3 wt%, respectively. Sustainable catalysts were applied in the synthesis of valuable fine chemicals, such as biphenyl-4-amine and 4′-fluorobiphenyl-4-amine, used in drug discovery, perfumes and dye industries with excellent product yields of up to 99%. Pd/BNC catalyst was reused 4 times and applied in two consecutive reactions, Suzuki-Miyaura cross-coupling reaction followed by hydrogenation of nitro to amino group while Cu/BNC catalyst was examined in Chan-Lam coupling reaction. Overall, the environmentally benign process of obtaining nanocellulose from biomass, followed by its utilisation as a solid support in metal-catalysed reactions and its recovery has been described. These findings reveal that BNC is a good support material, and it can be used as a support for different catalytic systems.
PB  - Elsevier
T2  - International Journal of Biological Macromolecules
T1  - Production of bacterial nanocellulose (BNC) and its application as a solid support in transition metal catalysed cross-coupling reactions
VL  - 129
SP  - 351
EP  - 360
DO  - 10.1016/j.ijbiomac.2019.01.154
ER  - 
@article{
author = "Jeremić, Sanja and Đokić, Lidija and Ajdačić, Vladimir and Božinović, Nina S. and Pavlović, Vladimir D. and Manojlović, Dragan D. and Babu, Ramesh P. and Senthamaraikannan, Ramsankar and Rojas, Orlando and Opsenica, Igor and Nikodinović-Runić, Jasmina",
year = "2019",
url = "http://cherry.chem.bg.ac.rs/handle/123456789/2850",
abstract = "Bacterial nanocellulose (BNC) emerged as an attractive advanced biomaterial that provides desirable properties such as high strength, lightweight, tailorable surface chemistry, hydrophilicity, and biodegradability. BNC was successfully obtained from a wide range of carbon sources including sugars derived from grass biomass using Komagataeibacter medellinensis ID13488 strain with yields up to 6 g L −1 in static fermentation. Produced BNC was utilized in straightforward catalyst preparation as a solid support for two different transition metals, palladium and copper with metal loading of 20 and 3 wt%, respectively. Sustainable catalysts were applied in the synthesis of valuable fine chemicals, such as biphenyl-4-amine and 4′-fluorobiphenyl-4-amine, used in drug discovery, perfumes and dye industries with excellent product yields of up to 99%. Pd/BNC catalyst was reused 4 times and applied in two consecutive reactions, Suzuki-Miyaura cross-coupling reaction followed by hydrogenation of nitro to amino group while Cu/BNC catalyst was examined in Chan-Lam coupling reaction. Overall, the environmentally benign process of obtaining nanocellulose from biomass, followed by its utilisation as a solid support in metal-catalysed reactions and its recovery has been described. These findings reveal that BNC is a good support material, and it can be used as a support for different catalytic systems.",
publisher = "Elsevier",
journal = "International Journal of Biological Macromolecules",
title = "Production of bacterial nanocellulose (BNC) and its application as a solid support in transition metal catalysed cross-coupling reactions",
volume = "129",
pages = "351-360",
doi = "10.1016/j.ijbiomac.2019.01.154"
}
Jeremić, S., Đokić, L., Ajdačić, V., Božinović, N. S., Pavlović, V. D., Manojlović, D. D., Babu, R. P., Senthamaraikannan, R., Rojas, O., Opsenica, I.,& Nikodinović-Runić, J. (2019). Production of bacterial nanocellulose (BNC) and its application as a solid support in transition metal catalysed cross-coupling reactions.
International Journal of Biological MacromoleculesElsevier., 129, 351-360.
https://doi.org/10.1016/j.ijbiomac.2019.01.154
Jeremić S, Đokić L, Ajdačić V, Božinović NS, Pavlović VD, Manojlović DD, Babu RP, Senthamaraikannan R, Rojas O, Opsenica I, Nikodinović-Runić J. Production of bacterial nanocellulose (BNC) and its application as a solid support in transition metal catalysed cross-coupling reactions. International Journal of Biological Macromolecules. 2019;129:351-360
Jeremić Sanja, Đokić Lidija, Ajdačić Vladimir, Božinović Nina S., Pavlović Vladimir D., Manojlović Dragan D., Babu Ramesh P., Senthamaraikannan Ramsankar, Rojas Orlando, Opsenica Igor, Nikodinović-Runić Jasmina, "Production of bacterial nanocellulose (BNC) and its application as a solid support in transition metal catalysed cross-coupling reactions" 129 (2019):351-360,
https://doi.org/10.1016/j.ijbiomac.2019.01.154 .
8
7
10

Production of bacterial nanocellulose (BNC) and its application as a solid support in transition metal catalysed cross-coupling reactions

Jeremić, Sanja; Đokić, Lidija; Ajdačić, Vladimir; Božinović, Nina S.; Pavlović, Vladimir D.; Manojlović, Dragan D.; Babu, Ramesh P.; Senthamaraikannan, Ramsankar; Rojas, Orlando; Opsenica, Igor; Nikodinović-Runić, Jasmina

(Elsevier, 2019)

TY  - JOUR
AU  - Jeremić, Sanja
AU  - Đokić, Lidija
AU  - Ajdačić, Vladimir
AU  - Božinović, Nina S.
AU  - Pavlović, Vladimir D.
AU  - Manojlović, Dragan D.
AU  - Babu, Ramesh P.
AU  - Senthamaraikannan, Ramsankar
AU  - Rojas, Orlando
AU  - Opsenica, Igor
AU  - Nikodinović-Runić, Jasmina
PY  - 2019
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/2866
AB  - Bacterial nanocellulose (BNC) emerged as an attractive advanced biomaterial that provides desirable properties such as high strength, lightweight, tailorable surface chemistry, hydrophilicity, and biodegradability. BNC was successfully obtained from a wide range of carbon sources including sugars derived from grass biomass using Komagataeibacter medellinensis ID13488 strain with yields up to 6 g L −1 in static fermentation. Produced BNC was utilized in straightforward catalyst preparation as a solid support for two different transition metals, palladium and copper with metal loading of 20 and 3 wt%, respectively. Sustainable catalysts were applied in the synthesis of valuable fine chemicals, such as biphenyl-4-amine and 4′-fluorobiphenyl-4-amine, used in drug discovery, perfumes and dye industries with excellent product yields of up to 99%. Pd/BNC catalyst was reused 4 times and applied in two consecutive reactions, Suzuki-Miyaura cross-coupling reaction followed by hydrogenation of nitro to amino group while Cu/BNC catalyst was examined in Chan-Lam coupling reaction. Overall, the environmentally benign process of obtaining nanocellulose from biomass, followed by its utilisation as a solid support in metal-catalysed reactions and its recovery has been described. These findings reveal that BNC is a good support material, and it can be used as a support for different catalytic systems.
PB  - Elsevier
T2  - International Journal of Biological Macromolecules
T1  - Production of bacterial nanocellulose (BNC) and its application as a solid support in transition metal catalysed cross-coupling reactions
VL  - 129
SP  - 351
EP  - 360
DO  - 10.1016/j.ijbiomac.2019.01.154
ER  - 
@article{
author = "Jeremić, Sanja and Đokić, Lidija and Ajdačić, Vladimir and Božinović, Nina S. and Pavlović, Vladimir D. and Manojlović, Dragan D. and Babu, Ramesh P. and Senthamaraikannan, Ramsankar and Rojas, Orlando and Opsenica, Igor and Nikodinović-Runić, Jasmina",
year = "2019",
url = "http://cherry.chem.bg.ac.rs/handle/123456789/2866",
abstract = "Bacterial nanocellulose (BNC) emerged as an attractive advanced biomaterial that provides desirable properties such as high strength, lightweight, tailorable surface chemistry, hydrophilicity, and biodegradability. BNC was successfully obtained from a wide range of carbon sources including sugars derived from grass biomass using Komagataeibacter medellinensis ID13488 strain with yields up to 6 g L −1 in static fermentation. Produced BNC was utilized in straightforward catalyst preparation as a solid support for two different transition metals, palladium and copper with metal loading of 20 and 3 wt%, respectively. Sustainable catalysts were applied in the synthesis of valuable fine chemicals, such as biphenyl-4-amine and 4′-fluorobiphenyl-4-amine, used in drug discovery, perfumes and dye industries with excellent product yields of up to 99%. Pd/BNC catalyst was reused 4 times and applied in two consecutive reactions, Suzuki-Miyaura cross-coupling reaction followed by hydrogenation of nitro to amino group while Cu/BNC catalyst was examined in Chan-Lam coupling reaction. Overall, the environmentally benign process of obtaining nanocellulose from biomass, followed by its utilisation as a solid support in metal-catalysed reactions and its recovery has been described. These findings reveal that BNC is a good support material, and it can be used as a support for different catalytic systems.",
publisher = "Elsevier",
journal = "International Journal of Biological Macromolecules",
title = "Production of bacterial nanocellulose (BNC) and its application as a solid support in transition metal catalysed cross-coupling reactions",
volume = "129",
pages = "351-360",
doi = "10.1016/j.ijbiomac.2019.01.154"
}
Jeremić, S., Đokić, L., Ajdačić, V., Božinović, N. S., Pavlović, V. D., Manojlović, D. D., Babu, R. P., Senthamaraikannan, R., Rojas, O., Opsenica, I.,& Nikodinović-Runić, J. (2019). Production of bacterial nanocellulose (BNC) and its application as a solid support in transition metal catalysed cross-coupling reactions.
International Journal of Biological MacromoleculesElsevier., 129, 351-360.
https://doi.org/10.1016/j.ijbiomac.2019.01.154
Jeremić S, Đokić L, Ajdačić V, Božinović NS, Pavlović VD, Manojlović DD, Babu RP, Senthamaraikannan R, Rojas O, Opsenica I, Nikodinović-Runić J. Production of bacterial nanocellulose (BNC) and its application as a solid support in transition metal catalysed cross-coupling reactions. International Journal of Biological Macromolecules. 2019;129:351-360
Jeremić Sanja, Đokić Lidija, Ajdačić Vladimir, Božinović Nina S., Pavlović Vladimir D., Manojlović Dragan D., Babu Ramesh P., Senthamaraikannan Ramsankar, Rojas Orlando, Opsenica Igor, Nikodinović-Runić Jasmina, "Production of bacterial nanocellulose (BNC) and its application as a solid support in transition metal catalysed cross-coupling reactions" 129 (2019):351-360,
https://doi.org/10.1016/j.ijbiomac.2019.01.154 .
8
7
10

Quinolines and Quinolones as Antibacterial, Antifungal, Antivirulence, Antiviral and Anti-parasitic Agents

Senerovic, Lidija; Opsenica, Dejan; Moric, Ivana; Aleksic, Ivana; Spasić, Marta; Vasiljevic, Branka

(Springer Nature, 2019)

TY  - CHAP
AU  - Senerovic, Lidija
AU  - Opsenica, Dejan
AU  - Moric, Ivana
AU  - Aleksic, Ivana
AU  - Spasić, Marta
AU  - Vasiljevic, Branka
PY  - 2019
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/4274
AB  - Infective diseases have become health threat ofa global proportion due to appearance andspread of microorganisms resistant to majorityof therapeutics currently used for their treatment.Therefore, there is a constant need fordevelopment of new antimicrobial agents, aswell as novel therapeutic strategies.Quinolines and quinolones, isolated fromplants, animals, and microorganisms, havedemonstrated numerous biological activitiessuch as antimicrobial, insecticidal, antiinflammatory,antiplatelet, and antitumor. Formore than two centuries quinoline/quinolonemoiety has been used as a scaffold for drugdevelopment and even today it represents aninexhaustible inspiration for design and developmentof novel semi-synthetic or syntheticagents exhibiting broad spectrum ofbioactivities. The structural diversity ofsynthetized compounds provides high andselective activity attained through differentmechanisms of action, as well as low toxicityon human cells. This review describes quinolineand quinolone derivatives withantibacterial, antifungal, anti-virulent,antiviral, and anti-parasitic activities with thefocus on the last 10 years literature.
PB  - Springer Nature
T2  - Advances in Experimental Medicine and Biology - Advances in Microbiology, Infectious Diseases and Public Health
T1  - Quinolines and Quinolones as Antibacterial, Antifungal, Antivirulence, Antiviral and Anti-parasitic Agents
DO  - 10.1007/5584_2019_428
ER  - 
@article{
author = "Senerovic, Lidija and Opsenica, Dejan and Moric, Ivana and Aleksic, Ivana and Spasić, Marta and Vasiljevic, Branka",
year = "2019",
url = "http://cherry.chem.bg.ac.rs/handle/123456789/4274",
abstract = "Infective diseases have become health threat ofa global proportion due to appearance andspread of microorganisms resistant to majorityof therapeutics currently used for their treatment.Therefore, there is a constant need fordevelopment of new antimicrobial agents, aswell as novel therapeutic strategies.Quinolines and quinolones, isolated fromplants, animals, and microorganisms, havedemonstrated numerous biological activitiessuch as antimicrobial, insecticidal, antiinflammatory,antiplatelet, and antitumor. Formore than two centuries quinoline/quinolonemoiety has been used as a scaffold for drugdevelopment and even today it represents aninexhaustible inspiration for design and developmentof novel semi-synthetic or syntheticagents exhibiting broad spectrum ofbioactivities. The structural diversity ofsynthetized compounds provides high andselective activity attained through differentmechanisms of action, as well as low toxicityon human cells. This review describes quinolineand quinolone derivatives withantibacterial, antifungal, anti-virulent,antiviral, and anti-parasitic activities with thefocus on the last 10 years literature.",
publisher = "Springer Nature",
journal = "Advances in Experimental Medicine and Biology - Advances in Microbiology, Infectious Diseases and Public Health",
title = "Quinolines and Quinolones as Antibacterial, Antifungal, Antivirulence, Antiviral and Anti-parasitic Agents",
doi = "10.1007/5584_2019_428"
}
Senerovic, L., Opsenica, D., Moric, I., Aleksic, I., Spasić, M.,& Vasiljevic, B. (2019). Quinolines and Quinolones as Antibacterial, Antifungal, Antivirulence, Antiviral and Anti-parasitic Agents.
Advances in Experimental Medicine and Biology - Advances in Microbiology, Infectious Diseases and Public HealthSpringer Nature..
https://doi.org/10.1007/5584_2019_428
Senerovic L, Opsenica D, Moric I, Aleksic I, Spasić M, Vasiljevic B. Quinolines and Quinolones as Antibacterial, Antifungal, Antivirulence, Antiviral and Anti-parasitic Agents. Advances in Experimental Medicine and Biology - Advances in Microbiology, Infectious Diseases and Public Health. 2019;
Senerovic Lidija, Opsenica Dejan, Moric Ivana, Aleksic Ivana, Spasić Marta, Vasiljevic Branka, "Quinolines and Quinolones as Antibacterial, Antifungal, Antivirulence, Antiviral and Anti-parasitic Agents" (2019),
https://doi.org/10.1007/5584_2019_428 .
5
2

Supplementary data for article: Novakovic, M.; Bukvicki, D.; Andjelkovic, B.; Ilic-Tomic, T.; Veljic, M.; Tesevic, V.; Asakawa, Y. Cytotoxic Activity of Riccardin and Perrottetin Derivatives from the Liverwort Lunularia Cruciata. Journal of Natural Products 2019, 82 (4), 694–701. https://doi.org/10.1021/acs.jnatprod.8b00390

Novaković, Miroslav M.; Bukvicki, Danka; Anđelković, Boban D.; Ilić-Tomić, Tatjana; Veljić, Milan; Tešević, Vele; Asakawa, Yoshinori

(American Chemical Society and American Society of Pharmacognosy, 2019)

TY  - BOOK
AU  - Novaković, Miroslav M.
AU  - Bukvicki, Danka
AU  - Anđelković, Boban D.
AU  - Ilić-Tomić, Tatjana
AU  - Veljić, Milan
AU  - Tešević, Vele
AU  - Asakawa, Yoshinori
PY  - 2019
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/3097
PB  - American Chemical Society and American Society of Pharmacognosy
T2  - Journal of Natural Products
T1  - Supplementary data for article:   	Novakovic, M.; Bukvicki, D.; Andjelkovic, B.; Ilic-Tomic, T.; Veljic, M.; Tesevic, V.; Asakawa, Y. Cytotoxic Activity of Riccardin and Perrottetin Derivatives from the Liverwort Lunularia Cruciata. Journal of Natural Products 2019, 82 (4), 694–701. https://doi.org/10.1021/acs.jnatprod.8b00390
ER  - 
@book{
author = "Novaković, Miroslav M. and Bukvicki, Danka and Anđelković, Boban D. and Ilić-Tomić, Tatjana and Veljić, Milan and Tešević, Vele and Asakawa, Yoshinori",
year = "2019",
url = "http://cherry.chem.bg.ac.rs/handle/123456789/3097",
publisher = "American Chemical Society and American Society of Pharmacognosy",
journal = "Journal of Natural Products",
title = "Supplementary data for article:   	Novakovic, M.; Bukvicki, D.; Andjelkovic, B.; Ilic-Tomic, T.; Veljic, M.; Tesevic, V.; Asakawa, Y. Cytotoxic Activity of Riccardin and Perrottetin Derivatives from the Liverwort Lunularia Cruciata. Journal of Natural Products 2019, 82 (4), 694–701. https://doi.org/10.1021/acs.jnatprod.8b00390"
}
Novaković, M. M., Bukvicki, D., Anđelković, B. D., Ilić-Tomić, T., Veljić, M., Tešević, V.,& Asakawa, Y. (2019). Supplementary data for article:   	Novakovic, M.; Bukvicki, D.; Andjelkovic, B.; Ilic-Tomic, T.; Veljic, M.; Tesevic, V.; Asakawa, Y. Cytotoxic Activity of Riccardin and Perrottetin Derivatives from the Liverwort Lunularia Cruciata. Journal of Natural Products 2019, 82 (4), 694–701. https://doi.org/10.1021/acs.jnatprod.8b00390.
Journal of Natural ProductsAmerican Chemical Society and American Society of Pharmacognosy..
Novaković MM, Bukvicki D, Anđelković BD, Ilić-Tomić T, Veljić M, Tešević V, Asakawa Y. Supplementary data for article:   	Novakovic, M.; Bukvicki, D.; Andjelkovic, B.; Ilic-Tomic, T.; Veljic, M.; Tesevic, V.; Asakawa, Y. Cytotoxic Activity of Riccardin and Perrottetin Derivatives from the Liverwort Lunularia Cruciata. Journal of Natural Products 2019, 82 (4), 694–701. https://doi.org/10.1021/acs.jnatprod.8b00390. Journal of Natural Products. 2019;
Novaković Miroslav M., Bukvicki Danka, Anđelković Boban D., Ilić-Tomić Tatjana, Veljić Milan, Tešević Vele, Asakawa Yoshinori, "Supplementary data for article:   	Novakovic, M.; Bukvicki, D.; Andjelkovic, B.; Ilic-Tomic, T.; Veljic, M.; Tesevic, V.; Asakawa, Y. Cytotoxic Activity of Riccardin and Perrottetin Derivatives from the Liverwort Lunularia Cruciata. Journal of Natural Products 2019, 82 (4), 694–701. https://doi.org/10.1021/acs.jnatprod.8b00390" (2019)

Cytotoxic Activity of Riccardin and Perrottetin Derivatives from the Liverwort Lunularia cruciata

Novaković, Miroslav M.; Bukvicki, Danka; Anđelković, Boban D.; Ilić-Tomić, Tatjana; Veljić, Milan; Tešević, Vele; Asakawa, Yoshinori

(American Chemical Society and American Society of Pharmacognosy, 2019)

TY  - JOUR
AU  - Novaković, Miroslav M.
AU  - Bukvicki, Danka
AU  - Anđelković, Boban D.
AU  - Ilić-Tomić, Tatjana
AU  - Veljić, Milan
AU  - Tešević, Vele
AU  - Asakawa, Yoshinori
PY  - 2019
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/3096
AB  - Seven new bisbibenzyls (1-7) were isolated from the methanol extract of the liverwort Lunularia cruciata along with one previously known bibenzyl and five known bisbibenzyls. The structures of compounds 1-7 were elucidated on the basis of the spectroscopic data. These newly isolated bisbibenzyls may be divided into two groups, the acyclic bisbibenzyls, perrottetins (1-3), and the cyclic analogues, riccardins (4-7). Besides standard perrottetin and riccardin structures (1 and 4, respectively), they contain phenanthrene (3 and 5), dihydrophenanthrene (2), and quinone moieties (6 and 7), rarely found in natural products. The new compounds 3 and 5, as well as the known riccardin G, exhibited cytotoxic activity against the A549 lung cancer cell line with IC 50 values of 5.0, 5.0, and 2.5 μM, respectively.
PB  - American Chemical Society and American Society of Pharmacognosy
T2  - Journal of Natural Products
T1  - Cytotoxic Activity of Riccardin and Perrottetin Derivatives from the Liverwort Lunularia cruciata
VL  - 82
IS  - 4
SP  - 694
EP  - 701
DO  - 10.1021/acs.jnatprod.8b00390
ER  - 
@article{
author = "Novaković, Miroslav M. and Bukvicki, Danka and Anđelković, Boban D. and Ilić-Tomić, Tatjana and Veljić, Milan and Tešević, Vele and Asakawa, Yoshinori",
year = "2019",
url = "http://cherry.chem.bg.ac.rs/handle/123456789/3096",
abstract = "Seven new bisbibenzyls (1-7) were isolated from the methanol extract of the liverwort Lunularia cruciata along with one previously known bibenzyl and five known bisbibenzyls. The structures of compounds 1-7 were elucidated on the basis of the spectroscopic data. These newly isolated bisbibenzyls may be divided into two groups, the acyclic bisbibenzyls, perrottetins (1-3), and the cyclic analogues, riccardins (4-7). Besides standard perrottetin and riccardin structures (1 and 4, respectively), they contain phenanthrene (3 and 5), dihydrophenanthrene (2), and quinone moieties (6 and 7), rarely found in natural products. The new compounds 3 and 5, as well as the known riccardin G, exhibited cytotoxic activity against the A549 lung cancer cell line with IC 50 values of 5.0, 5.0, and 2.5 μM, respectively.",
publisher = "American Chemical Society and American Society of Pharmacognosy",
journal = "Journal of Natural Products",
title = "Cytotoxic Activity of Riccardin and Perrottetin Derivatives from the Liverwort Lunularia cruciata",
volume = "82",
number = "4",
pages = "694-701",
doi = "10.1021/acs.jnatprod.8b00390"
}
Novaković, M. M., Bukvicki, D., Anđelković, B. D., Ilić-Tomić, T., Veljić, M., Tešević, V.,& Asakawa, Y. (2019). Cytotoxic Activity of Riccardin and Perrottetin Derivatives from the Liverwort Lunularia cruciata.
Journal of Natural ProductsAmerican Chemical Society and American Society of Pharmacognosy., 82(4), 694-701.
https://doi.org/10.1021/acs.jnatprod.8b00390
Novaković MM, Bukvicki D, Anđelković BD, Ilić-Tomić T, Veljić M, Tešević V, Asakawa Y. Cytotoxic Activity of Riccardin and Perrottetin Derivatives from the Liverwort Lunularia cruciata. Journal of Natural Products. 2019;82(4):694-701
Novaković Miroslav M., Bukvicki Danka, Anđelković Boban D., Ilić-Tomić Tatjana, Veljić Milan, Tešević Vele, Asakawa Yoshinori, "Cytotoxic Activity of Riccardin and Perrottetin Derivatives from the Liverwort Lunularia cruciata" 82, no. 4 (2019):694-701,
https://doi.org/10.1021/acs.jnatprod.8b00390 .
1
3
2
2

Supplementary data for the article: Živković, M. D.; Kljun, J.; Ilic-Tomic, T.; Pavic, A.; Veselinović, A.; Manojlović, D. D.; Nikodinovic-Runic, J.; Turel, I. A New Class of Platinum(II) Complexes with the Phosphine Ligand Pta Which Show Potent Anticancer Activity. Inorganic Chemistry Frontiers 2018, 5 (1), 39–53. https://doi.org/10.1039/c7qi00299h

Živković, Marija; Kljun, Jakob; Ilić-Tomić, Tatjana; Pavić, Aleksandar; Veselinovic, A.; Manojlović, Dragan D.; Nikodinović-Runić, Jasmina; Turel, Iztok

(Royal Soc Chemistry, Cambridge, 2018)

TY  - BOOK
AU  - Živković, Marija
AU  - Kljun, Jakob
AU  - Ilić-Tomić, Tatjana
AU  - Pavić, Aleksandar
AU  - Veselinovic, A.
AU  - Manojlović, Dragan D.
AU  - Nikodinović-Runić, Jasmina
AU  - Turel, Iztok
PY  - 2018
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/3144
PB  - Royal Soc Chemistry, Cambridge
T2  - INORGANIC CHEMISTRY FRONTIERS
T1  - Supplementary data for the article: Živković, M. D.; Kljun, J.; Ilic-Tomic, T.; Pavic, A.; Veselinović, A.; Manojlović, D. D.; Nikodinovic-Runic, J.; Turel, I. A New Class of Platinum(II) Complexes with the Phosphine Ligand Pta Which Show Potent Anticancer Activity. Inorganic Chemistry Frontiers 2018, 5 (1), 39–53. https://doi.org/10.1039/c7qi00299h
ER  - 
@book{
author = "Živković, Marija and Kljun, Jakob and Ilić-Tomić, Tatjana and Pavić, Aleksandar and Veselinovic, A. and Manojlović, Dragan D. and Nikodinović-Runić, Jasmina and Turel, Iztok",
year = "2018",
url = "http://cherry.chem.bg.ac.rs/handle/123456789/3144",
publisher = "Royal Soc Chemistry, Cambridge",
journal = "INORGANIC CHEMISTRY FRONTIERS",
title = "Supplementary data for the article: Živković, M. D.; Kljun, J.; Ilic-Tomic, T.; Pavic, A.; Veselinović, A.; Manojlović, D. D.; Nikodinovic-Runic, J.; Turel, I. A New Class of Platinum(II) Complexes with the Phosphine Ligand Pta Which Show Potent Anticancer Activity. Inorganic Chemistry Frontiers 2018, 5 (1), 39–53. https://doi.org/10.1039/c7qi00299h"
}
Živković, M., Kljun, J., Ilić-Tomić, T., Pavić, A., Veselinovic, A., Manojlović, D. D., Nikodinović-Runić, J.,& Turel, I. (2018). Supplementary data for the article: Živković, M. D.; Kljun, J.; Ilic-Tomic, T.; Pavic, A.; Veselinović, A.; Manojlović, D. D.; Nikodinovic-Runic, J.; Turel, I. A New Class of Platinum(II) Complexes with the Phosphine Ligand Pta Which Show Potent Anticancer Activity. Inorganic Chemistry Frontiers 2018, 5 (1), 39–53. https://doi.org/10.1039/c7qi00299h.
INORGANIC CHEMISTRY FRONTIERSRoyal Soc Chemistry, Cambridge..
Živković M, Kljun J, Ilić-Tomić T, Pavić A, Veselinovic A, Manojlović DD, Nikodinović-Runić J, Turel I. Supplementary data for the article: Živković, M. D.; Kljun, J.; Ilic-Tomic, T.; Pavic, A.; Veselinović, A.; Manojlović, D. D.; Nikodinovic-Runic, J.; Turel, I. A New Class of Platinum(II) Complexes with the Phosphine Ligand Pta Which Show Potent Anticancer Activity. Inorganic Chemistry Frontiers 2018, 5 (1), 39–53. https://doi.org/10.1039/c7qi00299h. INORGANIC CHEMISTRY FRONTIERS. 2018;
Živković Marija, Kljun Jakob, Ilić-Tomić Tatjana, Pavić Aleksandar, Veselinovic A., Manojlović Dragan D., Nikodinović-Runić Jasmina, Turel Iztok, "Supplementary data for the article: Živković, M. D.; Kljun, J.; Ilic-Tomic, T.; Pavic, A.; Veselinović, A.; Manojlović, D. D.; Nikodinovic-Runic, J.; Turel, I. A New Class of Platinum(II) Complexes with the Phosphine Ligand Pta Which Show Potent Anticancer Activity. Inorganic Chemistry Frontiers 2018, 5 (1), 39–53. https://doi.org/10.1039/c7qi00299h" (2018)

Synthesis, structural characterization and antimicrobial activity of silver(I) complexes with 1-benzyl-1H-tetrazoles

Andrejević, Tina P.; Nikolić, Andrea; Glišić, Biljana Đ.; Wadepohl, Hubert; Vojnović, Sandra; Zlatović, Mario; Petković, Miloš; Nikodinović-Runić, Jasmina; Opsenica, Igor; Đuran, Miloš I.

(Pergamon-Elsevier Science Ltd, Oxford, 2018)

TY  - JOUR
AU  - Andrejević, Tina P.
AU  - Nikolić, Andrea
AU  - Glišić, Biljana Đ.
AU  - Wadepohl, Hubert
AU  - Vojnović, Sandra
AU  - Zlatović, Mario
AU  - Petković, Miloš
AU  - Nikodinović-Runić, Jasmina
AU  - Opsenica, Igor
AU  - Đuran, Miloš I.
PY  - 2018
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/2991
AB  - Herein, we report the synthesis and structural characteristics of three tetrazole-containing compounds, 1-benzyl-1H-tetrazole (bntz), 1-benzyl-1H-tetrazol-5-amine (bntza) and 1-(4-methoxybenzyl)-1H-tetrazol-5-amine (mbntza) and the corresponding silver(I) complexes of the general formula [Ag(NO3-O)(L-N4)(2)](n), L = bntz (1), bntza (2) and mbntza (3). Silver(I) complexes 1-3 and 1-benzyl-1H-tetrazoles have been studied in detail by NMR, IR and UV-Vis spectroscopic methods and the structures of 1 and 2 have been determined by single-crystal X-ray diffraction analysis. The results of these analyses revealed a monodentate coordination of the ligands to Ag(I) ion via the N4 tetrazole nitrogen. The antimicrobial potential of silver(I) complexes 1-3 was evaluated against the broad panel of Gram-positive and Gram-negative bacteria and fungi, displaying their remarkable inhibiting activity with MIC (minimal inhibitory concentration) values in the range 2-8 and 0.16-1.25 mu g/mL (3.8-16.3 and 0.31-2.15 mu M), respectively. On the other hand, 1-benzyl-1H-tetrazoles used for the synthesis of the silver(I) complexes were not active against the investigated strains, suggesting that the activity of the complexes originates from the Ag(I) ion exclusively. Moreover, silver(I) complexes 1-3 have good therapeutic potential, which can be deduced from their moderate cytotoxicity on the human fibroblast cell line MRC5, with IC50 values falling in the range 30-60 mu g/mL (57.7-103.4 mu M). (C) 2018 Elsevier Ltd. All rights reserved.
PB  - Pergamon-Elsevier Science Ltd, Oxford
T2  - Polyhedron
T1  - Synthesis, structural characterization and antimicrobial activity of silver(I) complexes with 1-benzyl-1H-tetrazoles
VL  - 154
SP  - 325
EP  - 333
DO  - 10.1016/j.poly.2018.08.001
ER  - 
@article{
author = "Andrejević, Tina P. and Nikolić, Andrea and Glišić, Biljana Đ. and Wadepohl, Hubert and Vojnović, Sandra and Zlatović, Mario and Petković, Miloš and Nikodinović-Runić, Jasmina and Opsenica, Igor and Đuran, Miloš I.",
year = "2018",
url = "http://cherry.chem.bg.ac.rs/handle/123456789/2991",
abstract = "Herein, we report the synthesis and structural characteristics of three tetrazole-containing compounds, 1-benzyl-1H-tetrazole (bntz), 1-benzyl-1H-tetrazol-5-amine (bntza) and 1-(4-methoxybenzyl)-1H-tetrazol-5-amine (mbntza) and the corresponding silver(I) complexes of the general formula [Ag(NO3-O)(L-N4)(2)](n), L = bntz (1), bntza (2) and mbntza (3). Silver(I) complexes 1-3 and 1-benzyl-1H-tetrazoles have been studied in detail by NMR, IR and UV-Vis spectroscopic methods and the structures of 1 and 2 have been determined by single-crystal X-ray diffraction analysis. The results of these analyses revealed a monodentate coordination of the ligands to Ag(I) ion via the N4 tetrazole nitrogen. The antimicrobial potential of silver(I) complexes 1-3 was evaluated against the broad panel of Gram-positive and Gram-negative bacteria and fungi, displaying their remarkable inhibiting activity with MIC (minimal inhibitory concentration) values in the range 2-8 and 0.16-1.25 mu g/mL (3.8-16.3 and 0.31-2.15 mu M), respectively. On the other hand, 1-benzyl-1H-tetrazoles used for the synthesis of the silver(I) complexes were not active against the investigated strains, suggesting that the activity of the complexes originates from the Ag(I) ion exclusively. Moreover, silver(I) complexes 1-3 have good therapeutic potential, which can be deduced from their moderate cytotoxicity on the human fibroblast cell line MRC5, with IC50 values falling in the range 30-60 mu g/mL (57.7-103.4 mu M). (C) 2018 Elsevier Ltd. All rights reserved.",
publisher = "Pergamon-Elsevier Science Ltd, Oxford",
journal = "Polyhedron",
title = "Synthesis, structural characterization and antimicrobial activity of silver(I) complexes with 1-benzyl-1H-tetrazoles",
volume = "154",
pages = "325-333",
doi = "10.1016/j.poly.2018.08.001"
}
Andrejević, T. P., Nikolić, A., Glišić, B. Đ., Wadepohl, H., Vojnović, S., Zlatović, M., Petković, M., Nikodinović-Runić, J., Opsenica, I.,& Đuran, M. I. (2018). Synthesis, structural characterization and antimicrobial activity of silver(I) complexes with 1-benzyl-1H-tetrazoles.
PolyhedronPergamon-Elsevier Science Ltd, Oxford., 154, 325-333.
https://doi.org/10.1016/j.poly.2018.08.001
Andrejević TP, Nikolić A, Glišić BĐ, Wadepohl H, Vojnović S, Zlatović M, Petković M, Nikodinović-Runić J, Opsenica I, Đuran MI. Synthesis, structural characterization and antimicrobial activity of silver(I) complexes with 1-benzyl-1H-tetrazoles. Polyhedron. 2018;154:325-333
Andrejević Tina P., Nikolić Andrea, Glišić Biljana Đ., Wadepohl Hubert, Vojnović Sandra, Zlatović Mario, Petković Miloš, Nikodinović-Runić Jasmina, Opsenica Igor, Đuran Miloš I., "Synthesis, structural characterization and antimicrobial activity of silver(I) complexes with 1-benzyl-1H-tetrazoles" 154 (2018):325-333,
https://doi.org/10.1016/j.poly.2018.08.001 .
1
10
11
12

Supplementary data for the article: Andrejević, T. P.; Nikolić, A. M.; Glišić, B. Đ.; Wadepohl, H.; Vojnovic, S.; Zlatović, M.; Petković, M.; Nikodinovic-Runic, J.; Opsenica, I. M.; Djuran, M. I. Synthesis, Structural Characterization and Antimicrobial Activity of Silver(I) Complexes with 1-Benzyl-1H-Tetrazoles. Polyhedron 2018, 154, 325–333. https://doi.org/10.1016/j.poly.2018.08.001

Andrejević, Tina P.; Nikolić, Andrea; Glišić, Biljana Đ.; Wadepohl, Hubert; Vojnović, Sandra; Zlatović, Mario; Petković, Miloš; Nikodinović-Runić, Jasmina; Opsenica, Igor; Đuran, Miloš I.

(Pergamon-Elsevier Science Ltd, Oxford, 2018)

TY  - BOOK
AU  - Andrejević, Tina P.
AU  - Nikolić, Andrea
AU  - Glišić, Biljana Đ.
AU  - Wadepohl, Hubert
AU  - Vojnović, Sandra
AU  - Zlatović, Mario
AU  - Petković, Miloš
AU  - Nikodinović-Runić, Jasmina
AU  - Opsenica, Igor
AU  - Đuran, Miloš I.
PY  - 2018
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/2992
PB  - Pergamon-Elsevier Science Ltd, Oxford
T2  - Polyhedron
T1  - Supplementary data for the article: Andrejević, T. P.; Nikolić, A. M.; Glišić, B. Đ.; Wadepohl, H.; Vojnovic, S.; Zlatović, M.; Petković, M.; Nikodinovic-Runic, J.; Opsenica, I. M.; Djuran, M. I. Synthesis, Structural Characterization and Antimicrobial Activity of Silver(I) Complexes with 1-Benzyl-1H-Tetrazoles. Polyhedron 2018, 154, 325–333. https://doi.org/10.1016/j.poly.2018.08.001
ER  - 
@book{
author = "Andrejević, Tina P. and Nikolić, Andrea and Glišić, Biljana Đ. and Wadepohl, Hubert and Vojnović, Sandra and Zlatović, Mario and Petković, Miloš and Nikodinović-Runić, Jasmina and Opsenica, Igor and Đuran, Miloš I.",
year = "2018",
url = "http://cherry.chem.bg.ac.rs/handle/123456789/2992",
publisher = "Pergamon-Elsevier Science Ltd, Oxford",
journal = "Polyhedron",
title = "Supplementary data for the article: Andrejević, T. P.; Nikolić, A. M.; Glišić, B. Đ.; Wadepohl, H.; Vojnovic, S.; Zlatović, M.; Petković, M.; Nikodinovic-Runic, J.; Opsenica, I. M.; Djuran, M. I. Synthesis, Structural Characterization and Antimicrobial Activity of Silver(I) Complexes with 1-Benzyl-1H-Tetrazoles. Polyhedron 2018, 154, 325–333. https://doi.org/10.1016/j.poly.2018.08.001"
}
Andrejević, T. P., Nikolić, A., Glišić, B. Đ., Wadepohl, H., Vojnović, S., Zlatović, M., Petković, M., Nikodinović-Runić, J., Opsenica, I.,& Đuran, M. I. (2018). Supplementary data for the article: Andrejević, T. P.; Nikolić, A. M.; Glišić, B. Đ.; Wadepohl, H.; Vojnovic, S.; Zlatović, M.; Petković, M.; Nikodinovic-Runic, J.; Opsenica, I. M.; Djuran, M. I. Synthesis, Structural Characterization and Antimicrobial Activity of Silver(I) Complexes with 1-Benzyl-1H-Tetrazoles. Polyhedron 2018, 154, 325–333. https://doi.org/10.1016/j.poly.2018.08.001.
PolyhedronPergamon-Elsevier Science Ltd, Oxford..
Andrejević TP, Nikolić A, Glišić BĐ, Wadepohl H, Vojnović S, Zlatović M, Petković M, Nikodinović-Runić J, Opsenica I, Đuran MI. Supplementary data for the article: Andrejević, T. P.; Nikolić, A. M.; Glišić, B. Đ.; Wadepohl, H.; Vojnovic, S.; Zlatović, M.; Petković, M.; Nikodinovic-Runic, J.; Opsenica, I. M.; Djuran, M. I. Synthesis, Structural Characterization and Antimicrobial Activity of Silver(I) Complexes with 1-Benzyl-1H-Tetrazoles. Polyhedron 2018, 154, 325–333. https://doi.org/10.1016/j.poly.2018.08.001. Polyhedron. 2018;
Andrejević Tina P., Nikolić Andrea, Glišić Biljana Đ., Wadepohl Hubert, Vojnović Sandra, Zlatović Mario, Petković Miloš, Nikodinović-Runić Jasmina, Opsenica Igor, Đuran Miloš I., "Supplementary data for the article: Andrejević, T. P.; Nikolić, A. M.; Glišić, B. Đ.; Wadepohl, H.; Vojnovic, S.; Zlatović, M.; Petković, M.; Nikodinovic-Runic, J.; Opsenica, I. M.; Djuran, M. I. Synthesis, Structural Characterization and Antimicrobial Activity of Silver(I) Complexes with 1-Benzyl-1H-Tetrazoles. Polyhedron 2018, 154, 325–333. https://doi.org/10.1016/j.poly.2018.08.001" (2018)

Supplementary material for the article: Lazić, J.; Ajdačić, V.; Vojnovic, S.; Zlatović, M.; Pekmezovic, M.; Mogavero, S.; Opsenica, I.; Nikodinovic-Runic, J. Bis-Guanylhydrazones as Efficient Anti-Candida Compounds through DNA Interaction. Appl Microbiol Biotechnol 2018, 102 (4), 1889–1901. https://doi.org/10.1007/s00253-018-8749-3

Lazić, Jelena O.; Ajdačić, Vladimir; Vojnović, Sandra; Zlatović, Mario; Pekmezović, Marina; Mogavero, Selene; Opsenica, Igor; Nikodinović-Runić, Jasmina

(Springer, New York, 2018)

TY  - BOOK
AU  - Lazić, Jelena O.
AU  - Ajdačić, Vladimir
AU  - Vojnović, Sandra
AU  - Zlatović, Mario
AU  - Pekmezović, Marina
AU  - Mogavero, Selene
AU  - Opsenica, Igor
AU  - Nikodinović-Runić, Jasmina
PY  - 2018
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/3176
PB  - Springer, New York
T2  - Applied Microbiology and Biotechnology
T1  - Supplementary material for the article: Lazić, J.; Ajdačić, V.; Vojnovic, S.; Zlatović, M.; Pekmezovic, M.; Mogavero, S.; Opsenica,  I.; Nikodinovic-Runic, J. Bis-Guanylhydrazones as Efficient Anti-Candida Compounds  through DNA Interaction. Appl Microbiol Biotechnol 2018, 102 (4), 1889–1901.  https://doi.org/10.1007/s00253-018-8749-3
ER  - 
@book{
author = "Lazić, Jelena O. and Ajdačić, Vladimir and Vojnović, Sandra and Zlatović, Mario and Pekmezović, Marina and Mogavero, Selene and Opsenica, Igor and Nikodinović-Runić, Jasmina",
year = "2018",
url = "http://cherry.chem.bg.ac.rs/handle/123456789/3176",
publisher = "Springer, New York",
journal = "Applied Microbiology and Biotechnology",
title = "Supplementary material for the article: Lazić, J.; Ajdačić, V.; Vojnovic, S.; Zlatović, M.; Pekmezovic, M.; Mogavero, S.; Opsenica,  I.; Nikodinovic-Runic, J. Bis-Guanylhydrazones as Efficient Anti-Candida Compounds  through DNA Interaction. Appl Microbiol Biotechnol 2018, 102 (4), 1889–1901.  https://doi.org/10.1007/s00253-018-8749-3"
}
Lazić, J. O., Ajdačić, V., Vojnović, S., Zlatović, M., Pekmezović, M., Mogavero, S., Opsenica, I.,& Nikodinović-Runić, J. (2018). Supplementary material for the article: Lazić, J.; Ajdačić, V.; Vojnovic, S.; Zlatović, M.; Pekmezovic, M.; Mogavero, S.; Opsenica,  I.; Nikodinovic-Runic, J. Bis-Guanylhydrazones as Efficient Anti-Candida Compounds  through DNA Interaction. Appl Microbiol Biotechnol 2018, 102 (4), 1889–1901.  https://doi.org/10.1007/s00253-018-8749-3.
Applied Microbiology and BiotechnologySpringer, New York..
Lazić JO, Ajdačić V, Vojnović S, Zlatović M, Pekmezović M, Mogavero S, Opsenica I, Nikodinović-Runić J. Supplementary material for the article: Lazić, J.; Ajdačić, V.; Vojnovic, S.; Zlatović, M.; Pekmezovic, M.; Mogavero, S.; Opsenica,  I.; Nikodinovic-Runic, J. Bis-Guanylhydrazones as Efficient Anti-Candida Compounds  through DNA Interaction. Appl Microbiol Biotechnol 2018, 102 (4), 1889–1901.  https://doi.org/10.1007/s00253-018-8749-3. Applied Microbiology and Biotechnology. 2018;
Lazić Jelena O., Ajdačić Vladimir, Vojnović Sandra, Zlatović Mario, Pekmezović Marina, Mogavero Selene, Opsenica Igor, Nikodinović-Runić Jasmina, "Supplementary material for the article: Lazić, J.; Ajdačić, V.; Vojnovic, S.; Zlatović, M.; Pekmezovic, M.; Mogavero, S.; Opsenica,  I.; Nikodinovic-Runic, J. Bis-Guanylhydrazones as Efficient Anti-Candida Compounds  through DNA Interaction. Appl Microbiol Biotechnol 2018, 102 (4), 1889–1901.  https://doi.org/10.1007/s00253-018-8749-3" (2018)

Anti-quorum sensing activity, toxicity in zebrafish (Danio rerio) embryos and phytochemical characterization of Trapa natans leaf extracts

Aleksić, Ivana; Ristivojević, Petar; Pavić, Aleksandar; Radojević, Ivana; Čomić, Ljiljana R.; Vasiljević, Branka; Opsenica, Dejan M.; Milojković-Opsenica, Dušanka; Šenerović, Lidija

(Elsevier Ireland Ltd, Clare, 2018)

TY  - JOUR
AU  - Aleksić, Ivana
AU  - Ristivojević, Petar
AU  - Pavić, Aleksandar
AU  - Radojević, Ivana
AU  - Čomić, Ljiljana R.
AU  - Vasiljević, Branka
AU  - Opsenica, Dejan M.
AU  - Milojković-Opsenica, Dušanka
AU  - Šenerović, Lidija
PY  - 2018
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/2932
AB  - Ethnopharmacological relevance: Trapa natans L. (water chestnut or water caltrop) is a widespread aquatic plant, which has been cultivated for food and traditional medicine since ancient times. Pharmacological studies showed that water chestnut exhibits the wide range of biological activities, such as antimicrobial, antioxidative, analgesic, anti-inflammatory, as well as antiulcer. Aim of the study: Evaluation of anti-virulence potential and toxicity of T. natans methanol (TnM), acetone (TnA) and ethyl acetate (TnEA) leaf extracts. Materials and methods: The anti-quorum sensing activity of Tn extracts was addressed by measuring their effects on biofilm formation, swarming motility and pyocyanin and elastase production in Pseudomonas aeruginosa. Specific P. aeruginosa biosensors were used to identify which of the signaling pathways were affected. The lethal and developmental toxicity of extracts were addressed in vivo using the zebrafish (Danio rerio) model system. The phenolic composition of T. natans leafs extracts was analyzed by a linear ion trap-OrbiTrap hybrid mass spectrometer (LTQ OrbiTrapMS) and UHPLC system configured with a diode array detector (DAD) hyphenated with the triple quadrupole mass spectrometer. Results: Subinhibitory concentrations of Tn leaf extracts (0.2 MIC) inhibited pyocyanin and elastase production up to 50% and 60%, respectively, and reduced swarming zones, comparing to non-treated P. aeruginosa. TnA inhibited biofilm formation by 15%, TnM showed a stimulatory effect on biofilm formation up to 20%, while TnEA showed no effect. The bioactive concentrations of TnM and TnA were not toxic in the zebrafish model system. Twenty-two phenolic compounds were tentatively identified in TnM, where thirteen of them were identified in T. natans for the first time. Tn extracts, as well as their major components, ellagic and ferulic acids, demonstrated the ability to interfere with P. aeruginosa Las and PQS signaling pathways. Conclusions: This study demonstrates anti-virulence potential of Tn leaf extracts against medically important pathogen P. aeruginosa and confirms the ethnopharmacological application of this plant against microbial infections.
PB  - Elsevier Ireland Ltd, Clare
T2  - Journal of Ethnopharmacology
T1  - Anti-quorum sensing activity, toxicity in zebrafish (Danio rerio) embryos and phytochemical characterization of Trapa natans leaf extracts
VL  - 222
SP  - 148
EP  - 158
DO  - 10.1016/j.jep.2018.05.005
ER  - 
@article{
author = "Aleksić, Ivana and Ristivojević, Petar and Pavić, Aleksandar and Radojević, Ivana and Čomić, Ljiljana R. and Vasiljević, Branka and Opsenica, Dejan M. and Milojković-Opsenica, Dušanka and Šenerović, Lidija",
year = "2018",
url = "http://cherry.chem.bg.ac.rs/handle/123456789/2932",
abstract = "Ethnopharmacological relevance: Trapa natans L. (water chestnut or water caltrop) is a widespread aquatic plant, which has been cultivated for food and traditional medicine since ancient times. Pharmacological studies showed that water chestnut exhibits the wide range of biological activities, such as antimicrobial, antioxidative, analgesic, anti-inflammatory, as well as antiulcer. Aim of the study: Evaluation of anti-virulence potential and toxicity of T. natans methanol (TnM), acetone (TnA) and ethyl acetate (TnEA) leaf extracts. Materials and methods: The anti-quorum sensing activity of Tn extracts was addressed by measuring their effects on biofilm formation, swarming motility and pyocyanin and elastase production in Pseudomonas aeruginosa. Specific P. aeruginosa biosensors were used to identify which of the signaling pathways were affected. The lethal and developmental toxicity of extracts were addressed in vivo using the zebrafish (Danio rerio) model system. The phenolic composition of T. natans leafs extracts was analyzed by a linear ion trap-OrbiTrap hybrid mass spectrometer (LTQ OrbiTrapMS) and UHPLC system configured with a diode array detector (DAD) hyphenated with the triple quadrupole mass spectrometer. Results: Subinhibitory concentrations of Tn leaf extracts (0.2 MIC) inhibited pyocyanin and elastase production up to 50% and 60%, respectively, and reduced swarming zones, comparing to non-treated P. aeruginosa. TnA inhibited biofilm formation by 15%, TnM showed a stimulatory effect on biofilm formation up to 20%, while TnEA showed no effect. The bioactive concentrations of TnM and TnA were not toxic in the zebrafish model system. Twenty-two phenolic compounds were tentatively identified in TnM, where thirteen of them were identified in T. natans for the first time. Tn extracts, as well as their major components, ellagic and ferulic acids, demonstrated the ability to interfere with P. aeruginosa Las and PQS signaling pathways. Conclusions: This study demonstrates anti-virulence potential of Tn leaf extracts against medically important pathogen P. aeruginosa and confirms the ethnopharmacological application of this plant against microbial infections.",
publisher = "Elsevier Ireland Ltd, Clare",
journal = "Journal of Ethnopharmacology",
title = "Anti-quorum sensing activity, toxicity in zebrafish (Danio rerio) embryos and phytochemical characterization of Trapa natans leaf extracts",
volume = "222",
pages = "148-158",
doi = "10.1016/j.jep.2018.05.005"
}
Aleksić, I., Ristivojević, P., Pavić, A., Radojević, I., Čomić, L. R., Vasiljević, B., Opsenica, D. M., Milojković-Opsenica, D.,& Šenerović, L. (2018). Anti-quorum sensing activity, toxicity in zebrafish (Danio rerio) embryos and phytochemical characterization of Trapa natans leaf extracts.
Journal of EthnopharmacologyElsevier Ireland Ltd, Clare., 222, 148-158.
https://doi.org/10.1016/j.jep.2018.05.005
Aleksić I, Ristivojević P, Pavić A, Radojević I, Čomić LR, Vasiljević B, Opsenica DM, Milojković-Opsenica D, Šenerović L. Anti-quorum sensing activity, toxicity in zebrafish (Danio rerio) embryos and phytochemical characterization of Trapa natans leaf extracts. Journal of Ethnopharmacology. 2018;222:148-158
Aleksić Ivana, Ristivojević Petar, Pavić Aleksandar, Radojević Ivana, Čomić Ljiljana R., Vasiljević Branka, Opsenica Dejan M., Milojković-Opsenica Dušanka, Šenerović Lidija, "Anti-quorum sensing activity, toxicity in zebrafish (Danio rerio) embryos and phytochemical characterization of Trapa natans leaf extracts" 222 (2018):148-158,
https://doi.org/10.1016/j.jep.2018.05.005 .
1
7
7
5

Supplementary data for the article: Aleksic, I.; Ristivojevic, P.; Pavic, A.; Radojević, I.; Čomić, L. R.; Vasiljevic, B.; Opsenica, D.; Milojković-Opsenica, D.; Senerovic, L. Anti-Quorum Sensing Activity, Toxicity in Zebrafish (Danio Rerio) Embryos and Phytochemical Characterization of Trapa Natans Leaf Extracts. Journal of Ethnopharmacology 2018, 222, 148–158. https://doi.org/10.1016/j.jep.2018.05.005

Aleksić, Ivana; Ristivojević, Petar; Pavić, Aleksandar; Radojević, Ivana; Čomić, Ljiljana R.; Vasiljević, Branka; Opsenica, Dejan M.; Milojković-Opsenica, Dušanka; Šenerović, Lidija

(Elsevier Ireland Ltd, Clare, 2018)

TY  - BOOK
AU  - Aleksić, Ivana
AU  - Ristivojević, Petar
AU  - Pavić, Aleksandar
AU  - Radojević, Ivana
AU  - Čomić, Ljiljana R.
AU  - Vasiljević, Branka
AU  - Opsenica, Dejan M.
AU  - Milojković-Opsenica, Dušanka
AU  - Šenerović, Lidija
PY  - 2018
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/2933
PB  - Elsevier Ireland Ltd, Clare
T2  - Journal of Ethnopharmacology
T1  - Supplementary data for the article: Aleksic, I.; Ristivojevic, P.; Pavic, A.; Radojević, I.; Čomić, L. R.; Vasiljevic, B.; Opsenica, D.; Milojković-Opsenica, D.; Senerovic, L. Anti-Quorum Sensing Activity, Toxicity in Zebrafish (Danio Rerio) Embryos and Phytochemical Characterization of Trapa Natans Leaf Extracts. Journal of Ethnopharmacology 2018, 222, 148–158. https://doi.org/10.1016/j.jep.2018.05.005
DO  - 10.1016/j.jep.2018.05.005
ER  - 
@book{
author = "Aleksić, Ivana and Ristivojević, Petar and Pavić, Aleksandar and Radojević, Ivana and Čomić, Ljiljana R. and Vasiljević, Branka and Opsenica, Dejan M. and Milojković-Opsenica, Dušanka and Šenerović, Lidija",
year = "2018",
url = "http://cherry.chem.bg.ac.rs/handle/123456789/2933",
publisher = "Elsevier Ireland Ltd, Clare",
journal = "Journal of Ethnopharmacology",
title = "Supplementary data for the article: Aleksic, I.; Ristivojevic, P.; Pavic, A.; Radojević, I.; Čomić, L. R.; Vasiljevic, B.; Opsenica, D.; Milojković-Opsenica, D.; Senerovic, L. Anti-Quorum Sensing Activity, Toxicity in Zebrafish (Danio Rerio) Embryos and Phytochemical Characterization of Trapa Natans Leaf Extracts. Journal of Ethnopharmacology 2018, 222, 148–158. https://doi.org/10.1016/j.jep.2018.05.005",
doi = "10.1016/j.jep.2018.05.005"
}
Aleksić, I., Ristivojević, P., Pavić, A., Radojević, I., Čomić, L. R., Vasiljević, B., Opsenica, D. M., Milojković-Opsenica, D.,& Šenerović, L. (2018). Supplementary data for the article: Aleksic, I.; Ristivojevic, P.; Pavic, A.; Radojević, I.; Čomić, L. R.; Vasiljevic, B.; Opsenica, D.; Milojković-Opsenica, D.; Senerovic, L. Anti-Quorum Sensing Activity, Toxicity in Zebrafish (Danio Rerio) Embryos and Phytochemical Characterization of Trapa Natans Leaf Extracts. Journal of Ethnopharmacology 2018, 222, 148–158. https://doi.org/10.1016/j.jep.2018.05.005.
Journal of EthnopharmacologyElsevier Ireland Ltd, Clare..
https://doi.org/10.1016/j.jep.2018.05.005
Aleksić I, Ristivojević P, Pavić A, Radojević I, Čomić LR, Vasiljević B, Opsenica DM, Milojković-Opsenica D, Šenerović L. Supplementary data for the article: Aleksic, I.; Ristivojevic, P.; Pavic, A.; Radojević, I.; Čomić, L. R.; Vasiljevic, B.; Opsenica, D.; Milojković-Opsenica, D.; Senerovic, L. Anti-Quorum Sensing Activity, Toxicity in Zebrafish (Danio Rerio) Embryos and Phytochemical Characterization of Trapa Natans Leaf Extracts. Journal of Ethnopharmacology 2018, 222, 148–158. https://doi.org/10.1016/j.jep.2018.05.005. Journal of Ethnopharmacology. 2018;
Aleksić Ivana, Ristivojević Petar, Pavić Aleksandar, Radojević Ivana, Čomić Ljiljana R., Vasiljević Branka, Opsenica Dejan M., Milojković-Opsenica Dušanka, Šenerović Lidija, "Supplementary data for the article: Aleksic, I.; Ristivojevic, P.; Pavic, A.; Radojević, I.; Čomić, L. R.; Vasiljevic, B.; Opsenica, D.; Milojković-Opsenica, D.; Senerovic, L. Anti-Quorum Sensing Activity, Toxicity in Zebrafish (Danio Rerio) Embryos and Phytochemical Characterization of Trapa Natans Leaf Extracts. Journal of Ethnopharmacology 2018, 222, 148–158. https://doi.org/10.1016/j.jep.2018.05.005" (2018),
https://doi.org/10.1016/j.jep.2018.05.005 .
1
7
7
5

Supplementary data for the article: Glišić, B. Đ.; Nikodinovic-Runic, J.; Ilic-Tomic, T.; Wadepohl, H.; Veselinović, A.; Opsenica, I. M.; Djuran, M. I. Synthesis, Cytotoxic Activity and DNA-Binding Properties of Copper(II) Complexes with Terpyridine. Polyhedron 2018, 139, 313–322. https://doi.org/10.1016/j.poly.2017.11.008

Glišić, Biljana Đ.; Nikodinović-Runić, Jasmina; Ilić-Tomić, Tatjana; Wadepohl, Hubert; Veselinović, Aleksandar; Opsenica, Igor; Đuran, Miloš I.

(Pergamon-Elsevier Science Ltd, Oxford, 2018)

TY  - BOOK
AU  - Glišić, Biljana Đ.
AU  - Nikodinović-Runić, Jasmina
AU  - Ilić-Tomić, Tatjana
AU  - Wadepohl, Hubert
AU  - Veselinović, Aleksandar
AU  - Opsenica, Igor
AU  - Đuran, Miloš I.
PY  - 2018
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/3308
PB  - Pergamon-Elsevier Science Ltd, Oxford
T2  - Polyhedron
T1  - Supplementary data for the article: Glišić, B. Đ.; Nikodinovic-Runic, J.; Ilic-Tomic, T.; Wadepohl, H.; Veselinović, A.; Opsenica, I. M.; Djuran, M. I. Synthesis, Cytotoxic Activity and DNA-Binding Properties of Copper(II) Complexes with Terpyridine. Polyhedron 2018, 139, 313–322. https://doi.org/10.1016/j.poly.2017.11.008
ER  - 
@book{
author = "Glišić, Biljana Đ. and Nikodinović-Runić, Jasmina and Ilić-Tomić, Tatjana and Wadepohl, Hubert and Veselinović, Aleksandar and Opsenica, Igor and Đuran, Miloš I.",
year = "2018",
url = "http://cherry.chem.bg.ac.rs/handle/123456789/3308",
publisher = "Pergamon-Elsevier Science Ltd, Oxford",
journal = "Polyhedron",
title = "Supplementary data for the article: Glišić, B. Đ.; Nikodinovic-Runic, J.; Ilic-Tomic, T.; Wadepohl, H.; Veselinović, A.; Opsenica, I. M.; Djuran, M. I. Synthesis, Cytotoxic Activity and DNA-Binding Properties of Copper(II) Complexes with Terpyridine. Polyhedron 2018, 139, 313–322. https://doi.org/10.1016/j.poly.2017.11.008"
}
Glišić, B. Đ., Nikodinović-Runić, J., Ilić-Tomić, T., Wadepohl, H., Veselinović, A., Opsenica, I.,& Đuran, M. I. (2018). Supplementary data for the article: Glišić, B. Đ.; Nikodinovic-Runic, J.; Ilic-Tomic, T.; Wadepohl, H.; Veselinović, A.; Opsenica, I. M.; Djuran, M. I. Synthesis, Cytotoxic Activity and DNA-Binding Properties of Copper(II) Complexes with Terpyridine. Polyhedron 2018, 139, 313–322. https://doi.org/10.1016/j.poly.2017.11.008.
PolyhedronPergamon-Elsevier Science Ltd, Oxford..
Glišić BĐ, Nikodinović-Runić J, Ilić-Tomić T, Wadepohl H, Veselinović A, Opsenica I, Đuran MI. Supplementary data for the article: Glišić, B. Đ.; Nikodinovic-Runic, J.; Ilic-Tomic, T.; Wadepohl, H.; Veselinović, A.; Opsenica, I. M.; Djuran, M. I. Synthesis, Cytotoxic Activity and DNA-Binding Properties of Copper(II) Complexes with Terpyridine. Polyhedron 2018, 139, 313–322. https://doi.org/10.1016/j.poly.2017.11.008. Polyhedron. 2018;
Glišić Biljana Đ., Nikodinović-Runić Jasmina, Ilić-Tomić Tatjana, Wadepohl Hubert, Veselinović Aleksandar, Opsenica Igor, Đuran Miloš I., "Supplementary data for the article: Glišić, B. Đ.; Nikodinovic-Runic, J.; Ilic-Tomic, T.; Wadepohl, H.; Veselinović, A.; Opsenica, I. M.; Djuran, M. I. Synthesis, Cytotoxic Activity and DNA-Binding Properties of Copper(II) Complexes with Terpyridine. Polyhedron 2018, 139, 313–322. https://doi.org/10.1016/j.poly.2017.11.008" (2018)

Mononuclear silver(I) complexes with 1,7-phenanthroline as potent inhibitors of Candida growth

Savić, Nada D.; Vojnović, Sandra; Glišić, Biljana Đ.; Crochet, Aurelien; Pavić, Aleksandar; Janjić, Goran V.; Pekmezović, Marina; Opsenica, Igor; Fromm, Katharina M.; Nikodinović-Runić, Jasmina; Đuran, Miloš I.

(Elsevier France-Editions Scientifiques Medicales Elsevier, Issy-Les-Moulineaux, 2018)

TY  - JOUR
AU  - Savić, Nada D.
AU  - Vojnović, Sandra
AU  - Glišić, Biljana Đ.
AU  - Crochet, Aurelien
AU  - Pavić, Aleksandar
AU  - Janjić, Goran V.
AU  - Pekmezović, Marina
AU  - Opsenica, Igor
AU  - Fromm, Katharina M.
AU  - Nikodinović-Runić, Jasmina
AU  - Đuran, Miloš I.
PY  - 2018
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/2213
AB  - Mononuclear silver(I) complexes with 1,7-phenanthroline (1,7-phen), [Ag(NO3-O,O') (1,7-phen-N7)(2)] (1) and [Ag(1,7-phen-N7)(2)]X, X = ClO4- (2), CF3SO3- (3), BF4- (4) and SbF6- (5) were synthesized and structurally characterized by NMR (H-1 and C-13), IR and UV-Vis spectroscopy and ESI mass spectrometry. The crystal structures of 1, 3 and 4 were determined by single-crystal X-ray diffraction analysis. In all these complexes, 1,7-phen coordinates to the Ag(I) ion in a monodentate fashion via the less sterically hindered N7 nitrogen atom. The investigation of the solution stability of 1-5 in DMSO revealed that they are sufficiently stable in this solvent at room temperature. Complexes 1-5 showed selectivity towards Candida spp. in comparison to bacteria, effectively inhibiting the growth of four different Candida species with minimal inhibitory concentrations (MIC) between 1.2 and 11.3 mu M. Based on the lowest MIC values and the lowest cytotoxicity against healthy human fibroblasts with selectivity index of more than 30, the antifungal potential was examined in detail for the complex 1. It had the ability to attenuate C. albicans virulence and to reduce epithelial cell damage in the cell infection model. Induction of reactive oxygen species (ROS) response has been detected in C. albicans, with fungal DNA being one of the possible target biomolecules. The toxicity profile of 1 in the zebrafish model (Danio rerio) revealed improved safety and activity in comparison to that of clinically utilized silver(I) sulfadiazine. (C) 2018 Elsevier Masson SAS. All rights reserved.
PB  - Elsevier France-Editions Scientifiques Medicales Elsevier, Issy-Les-Moulineaux
T2  - European Journal of Medicinal Chemistry
T1  - Mononuclear silver(I) complexes with 1,7-phenanthroline as potent inhibitors of Candida growth
VL  - 156
SP  - 760
EP  - 773
DO  - 10.1016/j.ejmech.2018.07.049
ER  - 
@article{
author = "Savić, Nada D. and Vojnović, Sandra and Glišić, Biljana Đ. and Crochet, Aurelien and Pavić, Aleksandar and Janjić, Goran V. and Pekmezović, Marina and Opsenica, Igor and Fromm, Katharina M. and Nikodinović-Runić, Jasmina and Đuran, Miloš I.",
year = "2018",
url = "http://cherry.chem.bg.ac.rs/handle/123456789/2213",
abstract = "Mononuclear silver(I) complexes with 1,7-phenanthroline (1,7-phen), [Ag(NO3-O,O') (1,7-phen-N7)(2)] (1) and [Ag(1,7-phen-N7)(2)]X, X = ClO4- (2), CF3SO3- (3), BF4- (4) and SbF6- (5) were synthesized and structurally characterized by NMR (H-1 and C-13), IR and UV-Vis spectroscopy and ESI mass spectrometry. The crystal structures of 1, 3 and 4 were determined by single-crystal X-ray diffraction analysis. In all these complexes, 1,7-phen coordinates to the Ag(I) ion in a monodentate fashion via the less sterically hindered N7 nitrogen atom. The investigation of the solution stability of 1-5 in DMSO revealed that they are sufficiently stable in this solvent at room temperature. Complexes 1-5 showed selectivity towards Candida spp. in comparison to bacteria, effectively inhibiting the growth of four different Candida species with minimal inhibitory concentrations (MIC) between 1.2 and 11.3 mu M. Based on the lowest MIC values and the lowest cytotoxicity against healthy human fibroblasts with selectivity index of more than 30, the antifungal potential was examined in detail for the complex 1. It had the ability to attenuate C. albicans virulence and to reduce epithelial cell damage in the cell infection model. Induction of reactive oxygen species (ROS) response has been detected in C. albicans, with fungal DNA being one of the possible target biomolecules. The toxicity profile of 1 in the zebrafish model (Danio rerio) revealed improved safety and activity in comparison to that of clinically utilized silver(I) sulfadiazine. (C) 2018 Elsevier Masson SAS. All rights reserved.",
publisher = "Elsevier France-Editions Scientifiques Medicales Elsevier, Issy-Les-Moulineaux",
journal = "European Journal of Medicinal Chemistry",
title = "Mononuclear silver(I) complexes with 1,7-phenanthroline as potent inhibitors of Candida growth",
volume = "156",
pages = "760-773",
doi = "10.1016/j.ejmech.2018.07.049"
}
Savić, N. D., Vojnović, S., Glišić, B. Đ., Crochet, A., Pavić, A., Janjić, G. V., Pekmezović, M., Opsenica, I., Fromm, K. M., Nikodinović-Runić, J.,& Đuran, M. I. (2018). Mononuclear silver(I) complexes with 1,7-phenanthroline as potent inhibitors of Candida growth.
European Journal of Medicinal ChemistryElsevier France-Editions Scientifiques Medicales Elsevier, Issy-Les-Moulineaux., 156, 760-773.
https://doi.org/10.1016/j.ejmech.2018.07.049
Savić ND, Vojnović S, Glišić BĐ, Crochet A, Pavić A, Janjić GV, Pekmezović M, Opsenica I, Fromm KM, Nikodinović-Runić J, Đuran MI. Mononuclear silver(I) complexes with 1,7-phenanthroline as potent inhibitors of Candida growth. European Journal of Medicinal Chemistry. 2018;156:760-773
Savić Nada D., Vojnović Sandra, Glišić Biljana Đ., Crochet Aurelien, Pavić Aleksandar, Janjić Goran V., Pekmezović Marina, Opsenica Igor, Fromm Katharina M., Nikodinović-Runić Jasmina, Đuran Miloš I., "Mononuclear silver(I) complexes with 1,7-phenanthroline as potent inhibitors of Candida growth" 156 (2018):760-773,
https://doi.org/10.1016/j.ejmech.2018.07.049 .
22
20
21