info:eu-repo/grantAgreement/MESTD/inst-2020/200168/RS/

Link to this page

info:eu-repo/grantAgreement/MESTD/inst-2020/200168/RS/

Authors

Publications

Optimization of microbial fuel cell operation using Danube River sediment

Joksimović, Kristina; Žerađanin, Aleksandra; Ranđelović, Danijela; Avdalović, Jelena; Miletić, Srđan B.; Gojgić-Cvijović, Gordana D.; Beškoski, Vladimir

(Elsevier, 2020)

TY  - JOUR
AU  - Joksimović, Kristina
AU  - Žerađanin, Aleksandra
AU  - Ranđelović, Danijela
AU  - Avdalović, Jelena
AU  - Miletić, Srđan B.
AU  - Gojgić-Cvijović, Gordana D.
AU  - Beškoski, Vladimir
PY  - 2020
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/4019
AB  - One of the main global focuses of mankind today is the required switch to new energy sources. Generating energy from waste is one of the potential solutions that can be achieved using microbial fuel cells (MFCs). Microorganisms, thanks to their ability to degrade organic substrates in contaminated environments, could contribute to solving our pollution challenge. The aim of this study was to investigate the potential of sediment with its natural microbiota from the River Danube to optimize electricity generation using MFCs. 16S rRNA gene analysis identified the main bacterial genera in the river sediment, Clostridium, Bacillus and Tepidibacter, which were isolated and cultured in the laboratory. Addition of these cultured microorganisms to the MFC resulted in current density of 192 mA/m3, while the power density was about 8.80 mW/m3. Our study confirms proper selection and enrichment of the microbial community can optimize the amount of current obtainable from river sediment by MFCs.
PB  - Elsevier
T2  - Journal of Power Sources
T2  - Journal of Power SourcesJournal of Power Sources
T1  - Optimization of microbial fuel cell operation using Danube River sediment
VL  - 476
SP  - 228739
DO  - 10.1016/j.jpowsour.2020.228739
ER  - 
@article{
author = "Joksimović, Kristina and Žerađanin, Aleksandra and Ranđelović, Danijela and Avdalović, Jelena and Miletić, Srđan B. and Gojgić-Cvijović, Gordana D. and Beškoski, Vladimir",
year = "2020",
url = "http://cherry.chem.bg.ac.rs/handle/123456789/4019",
abstract = "One of the main global focuses of mankind today is the required switch to new energy sources. Generating energy from waste is one of the potential solutions that can be achieved using microbial fuel cells (MFCs). Microorganisms, thanks to their ability to degrade organic substrates in contaminated environments, could contribute to solving our pollution challenge. The aim of this study was to investigate the potential of sediment with its natural microbiota from the River Danube to optimize electricity generation using MFCs. 16S rRNA gene analysis identified the main bacterial genera in the river sediment, Clostridium, Bacillus and Tepidibacter, which were isolated and cultured in the laboratory. Addition of these cultured microorganisms to the MFC resulted in current density of 192 mA/m3, while the power density was about 8.80 mW/m3. Our study confirms proper selection and enrichment of the microbial community can optimize the amount of current obtainable from river sediment by MFCs.",
publisher = "Elsevier",
journal = "Journal of Power Sources, Journal of Power SourcesJournal of Power Sources",
title = "Optimization of microbial fuel cell operation using Danube River sediment",
volume = "476",
pages = "228739",
doi = "10.1016/j.jpowsour.2020.228739"
}
Joksimović, K., Žerađanin, A., Ranđelović, D., Avdalović, J., Miletić, S. B., Gojgić-Cvijović, G. D.,& Beškoski, V. (2020). Optimization of microbial fuel cell operation using Danube River sediment.
Journal of Power SourcesJournal of Power Sources
Elsevier., 476, 228739.
https://doi.org/10.1016/j.jpowsour.2020.228739
Joksimović K, Žerađanin A, Ranđelović D, Avdalović J, Miletić SB, Gojgić-Cvijović GD, Beškoski V. Optimization of microbial fuel cell operation using Danube River sediment. Journal of Power SourcesJournal of Power Sources. 2020;476:228739
Joksimović Kristina, Žerađanin Aleksandra, Ranđelović Danijela, Avdalović Jelena, Miletić Srđan B., Gojgić-Cvijović Gordana D., Beškoski Vladimir, "Optimization of microbial fuel cell operation using Danube River sediment" Journal of Power SourcesJournal of Power Sources, 476 (2020):228739,
https://doi.org/10.1016/j.jpowsour.2020.228739 .

Optimization of microbial fuel cell operation using Danube River sediment

Joksimović, Kristina; Žerađanin, Aleksandra; Ranđelović, Danijela; Avdalović, Jelena; Miletić, Srđan B.; Gojgić-Cvijović, Gordana D.; Beškoski, Vladimir

(Elsevier, 2020)

TY  - JOUR
AU  - Joksimović, Kristina
AU  - Žerađanin, Aleksandra
AU  - Ranđelović, Danijela
AU  - Avdalović, Jelena
AU  - Miletić, Srđan B.
AU  - Gojgić-Cvijović, Gordana D.
AU  - Beškoski, Vladimir
PY  - 2020
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/4020
AB  - One of the main global focuses of mankind today is the required switch to new energy sources. Generating energy from waste is one of the potential solutions that can be achieved using microbial fuel cells (MFCs). Microorganisms, thanks to their ability to degrade organic substrates in contaminated environments, could contribute to solving our pollution challenge. The aim of this study was to investigate the potential of sediment with its natural microbiota from the River Danube to optimize electricity generation using MFCs. 16S rRNA gene analysis identified the main bacterial genera in the river sediment, Clostridium, Bacillus and Tepidibacter, which were isolated and cultured in the laboratory. Addition of these cultured microorganisms to the MFC resulted in current density of 192 mA/m3, while the power density was about 8.80 mW/m3. Our study confirms proper selection and enrichment of the microbial community can optimize the amount of current obtainable from river sediment by MFCs.
PB  - Elsevier
T2  - Journal of Power Sources
T2  - Journal of Power SourcesJournal of Power Sources
T1  - Optimization of microbial fuel cell operation using Danube River sediment
VL  - 476
SP  - 228739
DO  - 10.1016/j.jpowsour.2020.228739
ER  - 
@article{
author = "Joksimović, Kristina and Žerađanin, Aleksandra and Ranđelović, Danijela and Avdalović, Jelena and Miletić, Srđan B. and Gojgić-Cvijović, Gordana D. and Beškoski, Vladimir",
year = "2020",
url = "http://cherry.chem.bg.ac.rs/handle/123456789/4020",
abstract = "One of the main global focuses of mankind today is the required switch to new energy sources. Generating energy from waste is one of the potential solutions that can be achieved using microbial fuel cells (MFCs). Microorganisms, thanks to their ability to degrade organic substrates in contaminated environments, could contribute to solving our pollution challenge. The aim of this study was to investigate the potential of sediment with its natural microbiota from the River Danube to optimize electricity generation using MFCs. 16S rRNA gene analysis identified the main bacterial genera in the river sediment, Clostridium, Bacillus and Tepidibacter, which were isolated and cultured in the laboratory. Addition of these cultured microorganisms to the MFC resulted in current density of 192 mA/m3, while the power density was about 8.80 mW/m3. Our study confirms proper selection and enrichment of the microbial community can optimize the amount of current obtainable from river sediment by MFCs.",
publisher = "Elsevier",
journal = "Journal of Power Sources, Journal of Power SourcesJournal of Power Sources",
title = "Optimization of microbial fuel cell operation using Danube River sediment",
volume = "476",
pages = "228739",
doi = "10.1016/j.jpowsour.2020.228739"
}
Joksimović, K., Žerađanin, A., Ranđelović, D., Avdalović, J., Miletić, S. B., Gojgić-Cvijović, G. D.,& Beškoski, V. (2020). Optimization of microbial fuel cell operation using Danube River sediment.
Journal of Power SourcesJournal of Power Sources
Elsevier., 476, 228739.
https://doi.org/10.1016/j.jpowsour.2020.228739
Joksimović K, Žerađanin A, Ranđelović D, Avdalović J, Miletić SB, Gojgić-Cvijović GD, Beškoski V. Optimization of microbial fuel cell operation using Danube River sediment. Journal of Power SourcesJournal of Power Sources. 2020;476:228739
Joksimović Kristina, Žerađanin Aleksandra, Ranđelović Danijela, Avdalović Jelena, Miletić Srđan B., Gojgić-Cvijović Gordana D., Beškoski Vladimir, "Optimization of microbial fuel cell operation using Danube River sediment" Journal of Power SourcesJournal of Power Sources, 476 (2020):228739,
https://doi.org/10.1016/j.jpowsour.2020.228739 .