NPRP grant from the Qatar National Research Fund (a member of the Qatar Foundation) [NPRP8-425-1-087]

Link to this page

NPRP grant from the Qatar National Research Fund (a member of the Qatar Foundation) [NPRP8-425-1-087]

Authors

Publications

Noncovalent bonding: Stacking interactions of chelate rings of transition metal complexes

Malenov, Dušan P.; Janjić, Goran V.; Medaković, Vesna; Hall, Michael B.; Zarić, Snežana D.

(Elsevier Science Sa, Lausanne, 2017)

TY  - JOUR
AU  - Malenov, Dušan P.
AU  - Janjić, Goran V.
AU  - Medaković, Vesna
AU  - Hall, Michael B.
AU  - Zarić, Snežana D.
PY  - 2017
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/2470
AB  - Analysis of crystal structure data deposited in the Cambridge Structural Database (CSD) has shown that aromatic rings tend to stack with square planar transition metal complexes when they contain chelate rings. In these interactions, the orientation between chelate and aryl ring is a parallel-displaced orientation, like stacking interactions between aromatic molecules. In fused systems containing chelate and aryl rings, the aryl rings prefer to stack with the chelate rather than with other aryl rings. Quantum chemical calculations show that chelate-aryl stacking is stronger than aryl-aryl stacking. Interaction energies of six-membered chelates of the acetylacetonato type with benzene exceed -6 kcal/mol (CCSD(T)/CBS), more that twice as strong as that for two benzene molecules. Further analysis of the CSD has shown that chelate rings, both isolated and fused stack with other chelate rings. These chelate-chelate stacking interactions can have both face-to-face and parallel-displaced geometries, unlike the stacking interactions between aromatic molecules, for which face-to-face geometry is not typical. Chelate-chelate stacking is stronger than aryl-aryl stacking and stronger even than chelate-aryl stacking. Stacking energies between six-membered chelates of acetylacetonato type exceed -9 kcal/mol, while those between five-membered dithiolene chelates are even stronger. Calculated interaction energies and analysis of supramolecular structures have shown that chelate-chelate and chelate-aryl stacking must be considered in understanding the packing and organization of supramolecular systems and crystal engineering. (C) 2017 Elsevier B.V. All rights reserved.
PB  - Elsevier Science Sa, Lausanne
T2  - Coordination Chemistry Reviews
T1  - Noncovalent bonding: Stacking interactions of chelate rings of transition metal complexes
VL  - 345
SP  - 318
EP  - 341
DO  - 10.1016/j.ccr.2016.12.020
ER  - 
@article{
author = "Malenov, Dušan P. and Janjić, Goran V. and Medaković, Vesna and Hall, Michael B. and Zarić, Snežana D.",
year = "2017",
abstract = "Analysis of crystal structure data deposited in the Cambridge Structural Database (CSD) has shown that aromatic rings tend to stack with square planar transition metal complexes when they contain chelate rings. In these interactions, the orientation between chelate and aryl ring is a parallel-displaced orientation, like stacking interactions between aromatic molecules. In fused systems containing chelate and aryl rings, the aryl rings prefer to stack with the chelate rather than with other aryl rings. Quantum chemical calculations show that chelate-aryl stacking is stronger than aryl-aryl stacking. Interaction energies of six-membered chelates of the acetylacetonato type with benzene exceed -6 kcal/mol (CCSD(T)/CBS), more that twice as strong as that for two benzene molecules. Further analysis of the CSD has shown that chelate rings, both isolated and fused stack with other chelate rings. These chelate-chelate stacking interactions can have both face-to-face and parallel-displaced geometries, unlike the stacking interactions between aromatic molecules, for which face-to-face geometry is not typical. Chelate-chelate stacking is stronger than aryl-aryl stacking and stronger even than chelate-aryl stacking. Stacking energies between six-membered chelates of acetylacetonato type exceed -9 kcal/mol, while those between five-membered dithiolene chelates are even stronger. Calculated interaction energies and analysis of supramolecular structures have shown that chelate-chelate and chelate-aryl stacking must be considered in understanding the packing and organization of supramolecular systems and crystal engineering. (C) 2017 Elsevier B.V. All rights reserved.",
publisher = "Elsevier Science Sa, Lausanne",
journal = "Coordination Chemistry Reviews",
title = "Noncovalent bonding: Stacking interactions of chelate rings of transition metal complexes",
volume = "345",
pages = "318-341",
doi = "10.1016/j.ccr.2016.12.020"
}
Malenov, D. P., Janjić, G. V., Medaković, V., Hall, M. B.,& Zarić, S. D.. (2017). Noncovalent bonding: Stacking interactions of chelate rings of transition metal complexes. in Coordination Chemistry Reviews
Elsevier Science Sa, Lausanne., 345, 318-341.
https://doi.org/10.1016/j.ccr.2016.12.020
Malenov DP, Janjić GV, Medaković V, Hall MB, Zarić SD. Noncovalent bonding: Stacking interactions of chelate rings of transition metal complexes. in Coordination Chemistry Reviews. 2017;345:318-341.
doi:10.1016/j.ccr.2016.12.020 .
Malenov, Dušan P., Janjić, Goran V., Medaković, Vesna, Hall, Michael B., Zarić, Snežana D., "Noncovalent bonding: Stacking interactions of chelate rings of transition metal complexes" in Coordination Chemistry Reviews, 345 (2017):318-341,
https://doi.org/10.1016/j.ccr.2016.12.020 . .
1
85
72
80
75

Unexpected Importance of Aromatic-Aliphatic and Aliphatic Side Chain-Backbone Interactions in the Stability of Amyloids

Ninković, Dragan; Malenov, Dušan P.; Petrović, Predrag; Brothers, Edward N.; Niu, Shuqiang; Hall, Michael B.; Belić, Milivoj R.; Zarić, Snežana D.

(Wiley-V C H Verlag Gmbh, Weinheim, 2017)

TY  - JOUR
AU  - Ninković, Dragan
AU  - Malenov, Dušan P.
AU  - Petrović, Predrag
AU  - Brothers, Edward N.
AU  - Niu, Shuqiang
AU  - Hall, Michael B.
AU  - Belić, Milivoj R.
AU  - Zarić, Snežana D.
PY  - 2017
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3118
AB  - The role of aromatic and nonaromatic amino acids in amyloid formation has been elucidated by calculating interaction energies between -sheets in amyloid model systems using density functional theory (B3LYP-D3/6-31G*). The model systems were based on experimental crystal structures of two types of amyloids: (1)with aromatic amino acids, and (2)without aromatic amino acids. Data show that these two types of amyloids have similar interaction energies, supporting experimental findings that aromatic amino acids are not essential for amyloid formation. However, different factors contribute to the stability of these two types of amyloids. In the former, the presence of aromatic amino acids significantly contributes to the strength of interactions between side chains; interactions between aromatic and aliphatic side chains are the strongest, followed by aromatic-aromatic interactions, while aliphatic-aliphatic interactions are the weakest. In the latter, that is, the amyloids without aromatic residues, stability is provided by interactions of aliphatic side chains with the backbone and, in some cases, by hydrogen bonds.
PB  - Wiley-V C H Verlag Gmbh, Weinheim
T2  - Chemistry - A European Journal
T1  - Unexpected Importance of Aromatic-Aliphatic and Aliphatic Side Chain-Backbone Interactions in the Stability of Amyloids
VL  - 23
IS  - 46
SP  - 11046
EP  - 11053
DO  - 10.1002/chem.201701351
ER  - 
@article{
author = "Ninković, Dragan and Malenov, Dušan P. and Petrović, Predrag and Brothers, Edward N. and Niu, Shuqiang and Hall, Michael B. and Belić, Milivoj R. and Zarić, Snežana D.",
year = "2017",
abstract = "The role of aromatic and nonaromatic amino acids in amyloid formation has been elucidated by calculating interaction energies between -sheets in amyloid model systems using density functional theory (B3LYP-D3/6-31G*). The model systems were based on experimental crystal structures of two types of amyloids: (1)with aromatic amino acids, and (2)without aromatic amino acids. Data show that these two types of amyloids have similar interaction energies, supporting experimental findings that aromatic amino acids are not essential for amyloid formation. However, different factors contribute to the stability of these two types of amyloids. In the former, the presence of aromatic amino acids significantly contributes to the strength of interactions between side chains; interactions between aromatic and aliphatic side chains are the strongest, followed by aromatic-aromatic interactions, while aliphatic-aliphatic interactions are the weakest. In the latter, that is, the amyloids without aromatic residues, stability is provided by interactions of aliphatic side chains with the backbone and, in some cases, by hydrogen bonds.",
publisher = "Wiley-V C H Verlag Gmbh, Weinheim",
journal = "Chemistry - A European Journal",
title = "Unexpected Importance of Aromatic-Aliphatic and Aliphatic Side Chain-Backbone Interactions in the Stability of Amyloids",
volume = "23",
number = "46",
pages = "11046-11053",
doi = "10.1002/chem.201701351"
}
Ninković, D., Malenov, D. P., Petrović, P., Brothers, E. N., Niu, S., Hall, M. B., Belić, M. R.,& Zarić, S. D.. (2017). Unexpected Importance of Aromatic-Aliphatic and Aliphatic Side Chain-Backbone Interactions in the Stability of Amyloids. in Chemistry - A European Journal
Wiley-V C H Verlag Gmbh, Weinheim., 23(46), 11046-11053.
https://doi.org/10.1002/chem.201701351
Ninković D, Malenov DP, Petrović P, Brothers EN, Niu S, Hall MB, Belić MR, Zarić SD. Unexpected Importance of Aromatic-Aliphatic and Aliphatic Side Chain-Backbone Interactions in the Stability of Amyloids. in Chemistry - A European Journal. 2017;23(46):11046-11053.
doi:10.1002/chem.201701351 .
Ninković, Dragan, Malenov, Dušan P., Petrović, Predrag, Brothers, Edward N., Niu, Shuqiang, Hall, Michael B., Belić, Milivoj R., Zarić, Snežana D., "Unexpected Importance of Aromatic-Aliphatic and Aliphatic Side Chain-Backbone Interactions in the Stability of Amyloids" in Chemistry - A European Journal, 23, no. 46 (2017):11046-11053,
https://doi.org/10.1002/chem.201701351 . .
1
11
10
9
11

Supplementary data for article: Ninković, D. B.; Malenov, D. P.; Petrović, P. V.; Brothers, E. N.; Niu, S.; Hall, M. B.; Belić, M. R.; Zarić, S. D. Unexpected Importance of Aromatic–Aliphatic and Aliphatic Side Chain–Backbone Interactions in the Stability of Amyloids. Chemistry - A European Journal 2017, 23 (46), 11046–11053. https://doi.org/10.1002/chem.201701351

Ninković, Dragan; Malenov, Dušan P.; Petrović, Predrag; Brothers, Edward N.; Niu, Shuqiang; Hall, Michael B.; Belić, Milivoj R.; Zarić, Snežana D.

(Wiley-V C H Verlag Gmbh, Weinheim, 2017)

TY  - DATA
AU  - Ninković, Dragan
AU  - Malenov, Dušan P.
AU  - Petrović, Predrag
AU  - Brothers, Edward N.
AU  - Niu, Shuqiang
AU  - Hall, Michael B.
AU  - Belić, Milivoj R.
AU  - Zarić, Snežana D.
PY  - 2017
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3119
PB  - Wiley-V C H Verlag Gmbh, Weinheim
T2  - Chemistry - A European Journal
T1  - Supplementary data for article:   Ninković, D. B.; Malenov, D. P.; Petrović, P. V.; Brothers, E. N.; Niu, S.; Hall, M. B.; Belić, M. R.; Zarić, S. D. Unexpected Importance of Aromatic–Aliphatic and Aliphatic Side Chain–Backbone Interactions in the Stability of Amyloids. Chemistry - A European Journal 2017, 23 (46), 11046–11053. https://doi.org/10.1002/chem.201701351
UR  - https://hdl.handle.net/21.15107/rcub_cherry_3119
ER  - 
@misc{
author = "Ninković, Dragan and Malenov, Dušan P. and Petrović, Predrag and Brothers, Edward N. and Niu, Shuqiang and Hall, Michael B. and Belić, Milivoj R. and Zarić, Snežana D.",
year = "2017",
publisher = "Wiley-V C H Verlag Gmbh, Weinheim",
journal = "Chemistry - A European Journal",
title = "Supplementary data for article:   Ninković, D. B.; Malenov, D. P.; Petrović, P. V.; Brothers, E. N.; Niu, S.; Hall, M. B.; Belić, M. R.; Zarić, S. D. Unexpected Importance of Aromatic–Aliphatic and Aliphatic Side Chain–Backbone Interactions in the Stability of Amyloids. Chemistry - A European Journal 2017, 23 (46), 11046–11053. https://doi.org/10.1002/chem.201701351",
url = "https://hdl.handle.net/21.15107/rcub_cherry_3119"
}
Ninković, D., Malenov, D. P., Petrović, P., Brothers, E. N., Niu, S., Hall, M. B., Belić, M. R.,& Zarić, S. D.. (2017). Supplementary data for article:   Ninković, D. B.; Malenov, D. P.; Petrović, P. V.; Brothers, E. N.; Niu, S.; Hall, M. B.; Belić, M. R.; Zarić, S. D. Unexpected Importance of Aromatic–Aliphatic and Aliphatic Side Chain–Backbone Interactions in the Stability of Amyloids. Chemistry - A European Journal 2017, 23 (46), 11046–11053. https://doi.org/10.1002/chem.201701351. in Chemistry - A European Journal
Wiley-V C H Verlag Gmbh, Weinheim..
https://hdl.handle.net/21.15107/rcub_cherry_3119
Ninković D, Malenov DP, Petrović P, Brothers EN, Niu S, Hall MB, Belić MR, Zarić SD. Supplementary data for article:   Ninković, D. B.; Malenov, D. P.; Petrović, P. V.; Brothers, E. N.; Niu, S.; Hall, M. B.; Belić, M. R.; Zarić, S. D. Unexpected Importance of Aromatic–Aliphatic and Aliphatic Side Chain–Backbone Interactions in the Stability of Amyloids. Chemistry - A European Journal 2017, 23 (46), 11046–11053. https://doi.org/10.1002/chem.201701351. in Chemistry - A European Journal. 2017;.
https://hdl.handle.net/21.15107/rcub_cherry_3119 .
Ninković, Dragan, Malenov, Dušan P., Petrović, Predrag, Brothers, Edward N., Niu, Shuqiang, Hall, Michael B., Belić, Milivoj R., Zarić, Snežana D., "Supplementary data for article:   Ninković, D. B.; Malenov, D. P.; Petrović, P. V.; Brothers, E. N.; Niu, S.; Hall, M. B.; Belić, M. R.; Zarić, S. D. Unexpected Importance of Aromatic–Aliphatic and Aliphatic Side Chain–Backbone Interactions in the Stability of Amyloids. Chemistry - A European Journal 2017, 23 (46), 11046–11053. https://doi.org/10.1002/chem.201701351" in Chemistry - A European Journal (2017),
https://hdl.handle.net/21.15107/rcub_cherry_3119 .

Unexpected Importance of Aromatic-Aliphatic and Aliphatic Side Chain-Backbone Interactions in the Stability of Amyloids

Ninković, Dragan; Malenov, Dušan P.; Petrović, Predrag; Brothers, Edward N.; Niu, Shuqiang; Hall, Michael B.; Belić, Milivoj R.; Zarić, Snežana D.

(Wiley-V C H Verlag Gmbh, Weinheim, 2017)

TY  - JOUR
AU  - Ninković, Dragan
AU  - Malenov, Dušan P.
AU  - Petrović, Predrag
AU  - Brothers, Edward N.
AU  - Niu, Shuqiang
AU  - Hall, Michael B.
AU  - Belić, Milivoj R.
AU  - Zarić, Snežana D.
PY  - 2017
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/2506
AB  - The role of aromatic and nonaromatic amino acids in amyloid formation has been elucidated by calculating interaction energies between -sheets in amyloid model systems using density functional theory (B3LYP-D3/6-31G*). The model systems were based on experimental crystal structures of two types of amyloids: (1)with aromatic amino acids, and (2)without aromatic amino acids. Data show that these two types of amyloids have similar interaction energies, supporting experimental findings that aromatic amino acids are not essential for amyloid formation. However, different factors contribute to the stability of these two types of amyloids. In the former, the presence of aromatic amino acids significantly contributes to the strength of interactions between side chains; interactions between aromatic and aliphatic side chains are the strongest, followed by aromatic-aromatic interactions, while aliphatic-aliphatic interactions are the weakest. In the latter, that is, the amyloids without aromatic residues, stability is provided by interactions of aliphatic side chains with the backbone and, in some cases, by hydrogen bonds.
PB  - Wiley-V C H Verlag Gmbh, Weinheim
T2  - Chemistry. A European Journal
T1  - Unexpected Importance of Aromatic-Aliphatic and Aliphatic Side Chain-Backbone Interactions in the Stability of Amyloids
VL  - 23
IS  - 46
SP  - 11046
EP  - 11053
DO  - 10.1002/chem.201701351
ER  - 
@article{
author = "Ninković, Dragan and Malenov, Dušan P. and Petrović, Predrag and Brothers, Edward N. and Niu, Shuqiang and Hall, Michael B. and Belić, Milivoj R. and Zarić, Snežana D.",
year = "2017",
abstract = "The role of aromatic and nonaromatic amino acids in amyloid formation has been elucidated by calculating interaction energies between -sheets in amyloid model systems using density functional theory (B3LYP-D3/6-31G*). The model systems were based on experimental crystal structures of two types of amyloids: (1)with aromatic amino acids, and (2)without aromatic amino acids. Data show that these two types of amyloids have similar interaction energies, supporting experimental findings that aromatic amino acids are not essential for amyloid formation. However, different factors contribute to the stability of these two types of amyloids. In the former, the presence of aromatic amino acids significantly contributes to the strength of interactions between side chains; interactions between aromatic and aliphatic side chains are the strongest, followed by aromatic-aromatic interactions, while aliphatic-aliphatic interactions are the weakest. In the latter, that is, the amyloids without aromatic residues, stability is provided by interactions of aliphatic side chains with the backbone and, in some cases, by hydrogen bonds.",
publisher = "Wiley-V C H Verlag Gmbh, Weinheim",
journal = "Chemistry. A European Journal",
title = "Unexpected Importance of Aromatic-Aliphatic and Aliphatic Side Chain-Backbone Interactions in the Stability of Amyloids",
volume = "23",
number = "46",
pages = "11046-11053",
doi = "10.1002/chem.201701351"
}
Ninković, D., Malenov, D. P., Petrović, P., Brothers, E. N., Niu, S., Hall, M. B., Belić, M. R.,& Zarić, S. D.. (2017). Unexpected Importance of Aromatic-Aliphatic and Aliphatic Side Chain-Backbone Interactions in the Stability of Amyloids. in Chemistry. A European Journal
Wiley-V C H Verlag Gmbh, Weinheim., 23(46), 11046-11053.
https://doi.org/10.1002/chem.201701351
Ninković D, Malenov DP, Petrović P, Brothers EN, Niu S, Hall MB, Belić MR, Zarić SD. Unexpected Importance of Aromatic-Aliphatic and Aliphatic Side Chain-Backbone Interactions in the Stability of Amyloids. in Chemistry. A European Journal. 2017;23(46):11046-11053.
doi:10.1002/chem.201701351 .
Ninković, Dragan, Malenov, Dušan P., Petrović, Predrag, Brothers, Edward N., Niu, Shuqiang, Hall, Michael B., Belić, Milivoj R., Zarić, Snežana D., "Unexpected Importance of Aromatic-Aliphatic and Aliphatic Side Chain-Backbone Interactions in the Stability of Amyloids" in Chemistry. A European Journal, 23, no. 46 (2017):11046-11053,
https://doi.org/10.1002/chem.201701351 . .
1
11
10
9
11