The part of the bilateral project between Serbia and Montenegro titled “Synthesis of Schiff bases and investigation of their antimicrobial and antioxidant activity.”

Link to this page

The part of the bilateral project between Serbia and Montenegro titled “Synthesis of Schiff bases and investigation of their antimicrobial and antioxidant activity.”

Authors

Publications

Water-induced isomerism of salicylaldehyde and 2-acetylpyridine mono- and bis-(thiocarbohydrazones) improves the antioxidant activity: spectroscopic and DFT study

Assaleh, Mohamed H.; Božić, Aleksandra R.; Bjelogrlić, Snežana K.; Milošević, Milena D.; Simić, Milena R.; Marinković, Aleksandar; Cvijetić, Ilija

(2019)

TY  - JOUR
AU  - Assaleh, Mohamed H.
AU  - Božić, Aleksandra R.
AU  - Bjelogrlić, Snežana K.
AU  - Milošević, Milena D.
AU  - Simić, Milena R.
AU  - Marinković, Aleksandar
AU  - Cvijetić, Ilija
PY  - 2019
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3846
AB  - Thiocarbohydrazones (TCHs) and structurally related molecules are versatile organic compounds which exert antioxidant, anticancer, and other beneficial health effects. The combination of UV/Vis, NMR spectroscopy, and quantum chemical calculations was used to rationalize the experimentally observed increase in the radical scavenging activity upon the addition of water in DMSO solution of TCHs. Mono- and bis(salicylaldehyde) TCHs (compounds 1 and 2) undergo water-induced E-to-Z isomerization which is followed by disruption of intramolecular hydrogen bond, ground state destabilization, and 11 kcal/mol decrease in the bond dissociation enthalpy (BDE). Electron spin delocalization is more pronounced in Z-isomers of 1 and 2. On the other hand, 2-acetylpyridine TCHs (compounds 3 and 4) undergo thione-to-thiol tautomerism which also decreases the BDE and facilitates the hydrogen atom transfer to 2,2-diphenyl-1-picrylhydrazyl radical (DPPH∙). The appearance of thiolic –SH group as another reactive site toward free radicals improves the antioxidant activity of 3 and 4. The spin density of 3- and 4-thiol radicals is delocalized over the entire thiocarbohydrazide moiety compared to more localized spin of thione radicals. Additional stabilization of thiol radicals corroborates with the increased antioxidant activity. This study provides the new insights on the solution structure of TCHs, and also highlights the importance of solution structure determination when studying the structure-antioxidant relationships of isomerizable compounds.
T2  - Structural Chemistry
T1  - Water-induced isomerism of salicylaldehyde and 2-acetylpyridine mono- and bis-(thiocarbohydrazones) improves the antioxidant activity: spectroscopic and DFT study
VL  - 30
IS  - 6
SP  - 2447
EP  - 2457
DO  - 10.1007/s11224-019-01371-4
ER  - 
@article{
author = "Assaleh, Mohamed H. and Božić, Aleksandra R. and Bjelogrlić, Snežana K. and Milošević, Milena D. and Simić, Milena R. and Marinković, Aleksandar and Cvijetić, Ilija",
year = "2019",
abstract = "Thiocarbohydrazones (TCHs) and structurally related molecules are versatile organic compounds which exert antioxidant, anticancer, and other beneficial health effects. The combination of UV/Vis, NMR spectroscopy, and quantum chemical calculations was used to rationalize the experimentally observed increase in the radical scavenging activity upon the addition of water in DMSO solution of TCHs. Mono- and bis(salicylaldehyde) TCHs (compounds 1 and 2) undergo water-induced E-to-Z isomerization which is followed by disruption of intramolecular hydrogen bond, ground state destabilization, and 11 kcal/mol decrease in the bond dissociation enthalpy (BDE). Electron spin delocalization is more pronounced in Z-isomers of 1 and 2. On the other hand, 2-acetylpyridine TCHs (compounds 3 and 4) undergo thione-to-thiol tautomerism which also decreases the BDE and facilitates the hydrogen atom transfer to 2,2-diphenyl-1-picrylhydrazyl radical (DPPH∙). The appearance of thiolic –SH group as another reactive site toward free radicals improves the antioxidant activity of 3 and 4. The spin density of 3- and 4-thiol radicals is delocalized over the entire thiocarbohydrazide moiety compared to more localized spin of thione radicals. Additional stabilization of thiol radicals corroborates with the increased antioxidant activity. This study provides the new insights on the solution structure of TCHs, and also highlights the importance of solution structure determination when studying the structure-antioxidant relationships of isomerizable compounds.",
journal = "Structural Chemistry",
title = "Water-induced isomerism of salicylaldehyde and 2-acetylpyridine mono- and bis-(thiocarbohydrazones) improves the antioxidant activity: spectroscopic and DFT study",
volume = "30",
number = "6",
pages = "2447-2457",
doi = "10.1007/s11224-019-01371-4"
}
Assaleh, M. H., Božić, A. R., Bjelogrlić, S. K., Milošević, M. D., Simić, M. R., Marinković, A.,& Cvijetić, I.. (2019). Water-induced isomerism of salicylaldehyde and 2-acetylpyridine mono- and bis-(thiocarbohydrazones) improves the antioxidant activity: spectroscopic and DFT study. in Structural Chemistry, 30(6), 2447-2457.
https://doi.org/10.1007/s11224-019-01371-4
Assaleh MH, Božić AR, Bjelogrlić SK, Milošević MD, Simić MR, Marinković A, Cvijetić I. Water-induced isomerism of salicylaldehyde and 2-acetylpyridine mono- and bis-(thiocarbohydrazones) improves the antioxidant activity: spectroscopic and DFT study. in Structural Chemistry. 2019;30(6):2447-2457.
doi:10.1007/s11224-019-01371-4 .
Assaleh, Mohamed H., Božić, Aleksandra R., Bjelogrlić, Snežana K., Milošević, Milena D., Simić, Milena R., Marinković, Aleksandar, Cvijetić, Ilija, "Water-induced isomerism of salicylaldehyde and 2-acetylpyridine mono- and bis-(thiocarbohydrazones) improves the antioxidant activity: spectroscopic and DFT study" in Structural Chemistry, 30, no. 6 (2019):2447-2457,
https://doi.org/10.1007/s11224-019-01371-4 . .
10
3
10
8

Supplementary data for the article: Assaleh, M. H.; Božić, A. R.; Bjelogrlić, S.; Milošević, M.; Simić, M.; Marinković, A. D.; Cvijetić, I. N. Water-Induced Isomerism of Salicylaldehyde and 2-Acetylpyridine Mono- and Bis-(Thiocarbohydrazones) Improves the Antioxidant Activity: Spectroscopic and DFT Study. Struct Chem 2019, 30 (6), 2447–2457. https://doi.org/10.1007/s11224-019-01371-4

Assaleh, Mohamed H.; Božić, Aleksandra R.; Bjelogrlić, Snežana K.; Milošević, Milena D.; Simić, Milena R.; Marinković, Aleksandar; Cvijetić, Ilija

(2019)

TY  - DATA
AU  - Assaleh, Mohamed H.
AU  - Božić, Aleksandra R.
AU  - Bjelogrlić, Snežana K.
AU  - Milošević, Milena D.
AU  - Simić, Milena R.
AU  - Marinković, Aleksandar
AU  - Cvijetić, Ilija
PY  - 2019
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3848
T2  - Structural Chemistry
T1  - Supplementary data for the article: Assaleh, M. H.; Božić, A. R.; Bjelogrlić, S.; Milošević, M.; Simić, M.; Marinković, A. D.; Cvijetić, I. N. Water-Induced Isomerism of Salicylaldehyde and 2-Acetylpyridine Mono- and Bis-(Thiocarbohydrazones) Improves the Antioxidant Activity: Spectroscopic and DFT Study. Struct Chem 2019, 30 (6), 2447–2457. https://doi.org/10.1007/s11224-019-01371-4
UR  - https://hdl.handle.net/21.15107/rcub_cherry_3848
ER  - 
@misc{
author = "Assaleh, Mohamed H. and Božić, Aleksandra R. and Bjelogrlić, Snežana K. and Milošević, Milena D. and Simić, Milena R. and Marinković, Aleksandar and Cvijetić, Ilija",
year = "2019",
journal = "Structural Chemistry",
title = "Supplementary data for the article: Assaleh, M. H.; Božić, A. R.; Bjelogrlić, S.; Milošević, M.; Simić, M.; Marinković, A. D.; Cvijetić, I. N. Water-Induced Isomerism of Salicylaldehyde and 2-Acetylpyridine Mono- and Bis-(Thiocarbohydrazones) Improves the Antioxidant Activity: Spectroscopic and DFT Study. Struct Chem 2019, 30 (6), 2447–2457. https://doi.org/10.1007/s11224-019-01371-4",
url = "https://hdl.handle.net/21.15107/rcub_cherry_3848"
}
Assaleh, M. H., Božić, A. R., Bjelogrlić, S. K., Milošević, M. D., Simić, M. R., Marinković, A.,& Cvijetić, I.. (2019). Supplementary data for the article: Assaleh, M. H.; Božić, A. R.; Bjelogrlić, S.; Milošević, M.; Simić, M.; Marinković, A. D.; Cvijetić, I. N. Water-Induced Isomerism of Salicylaldehyde and 2-Acetylpyridine Mono- and Bis-(Thiocarbohydrazones) Improves the Antioxidant Activity: Spectroscopic and DFT Study. Struct Chem 2019, 30 (6), 2447–2457. https://doi.org/10.1007/s11224-019-01371-4. in Structural Chemistry.
https://hdl.handle.net/21.15107/rcub_cherry_3848
Assaleh MH, Božić AR, Bjelogrlić SK, Milošević MD, Simić MR, Marinković A, Cvijetić I. Supplementary data for the article: Assaleh, M. H.; Božić, A. R.; Bjelogrlić, S.; Milošević, M.; Simić, M.; Marinković, A. D.; Cvijetić, I. N. Water-Induced Isomerism of Salicylaldehyde and 2-Acetylpyridine Mono- and Bis-(Thiocarbohydrazones) Improves the Antioxidant Activity: Spectroscopic and DFT Study. Struct Chem 2019, 30 (6), 2447–2457. https://doi.org/10.1007/s11224-019-01371-4. in Structural Chemistry. 2019;.
https://hdl.handle.net/21.15107/rcub_cherry_3848 .
Assaleh, Mohamed H., Božić, Aleksandra R., Bjelogrlić, Snežana K., Milošević, Milena D., Simić, Milena R., Marinković, Aleksandar, Cvijetić, Ilija, "Supplementary data for the article: Assaleh, M. H.; Božić, A. R.; Bjelogrlić, S.; Milošević, M.; Simić, M.; Marinković, A. D.; Cvijetić, I. N. Water-Induced Isomerism of Salicylaldehyde and 2-Acetylpyridine Mono- and Bis-(Thiocarbohydrazones) Improves the Antioxidant Activity: Spectroscopic and DFT Study. Struct Chem 2019, 30 (6), 2447–2457. https://doi.org/10.1007/s11224-019-01371-4" in Structural Chemistry (2019),
https://hdl.handle.net/21.15107/rcub_cherry_3848 .