Eksperimentalna i kliničko-farmakološka istraživanja mehanizma dejstva i interakcija lekova u nervnom i kardiovaskularnom sistemu

Link to this page

info:eu-repo/grantAgreement/MESTD/MPN2006-2010/145001/RS//

Eksperimentalna i kliničko-farmakološka istraživanja mehanizma dejstva i interakcija lekova u nervnom i kardiovaskularnom sistemu (en)
Експериментална и клиничко-фармаколошка истраживања механизма дејства и интеракција лекова у нервном и кардиоваскуларном систему (sr)
Eksperimentalna i kliničko-farmakološka istraživanja mehanizma dejstva i interakcija lekova u nervnom i kardiovaskularnom sistemu (sr_RS)
Authors

Publications

Oxidative degradation of aromatic N-compounds using cobalt containing montmorillonite-based catalysts

Ilić, Ilija; Milutinović-Nikolić, Aleksandra D.; Mojović, Zorica D.; Vuković, Zoran; Vulić, Predrag J.; Gržetić, Ivan; Banković, Predrag; Jović-Jovičić, Nataša

(Elsevier, 2020)

TY  - JOUR
AU  - Ilić, Ilija
AU  - Milutinović-Nikolić, Aleksandra D.
AU  - Mojović, Zorica D.
AU  - Vuković, Zoran
AU  - Vulić, Predrag J.
AU  - Gržetić, Ivan
AU  - Banković, Predrag
AU  - Jović-Jovičić, Nataša
PY  - 2020
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4045
AB  - The goal of this work was the synthesis of a montmorillonite based catalyst for advanced oxidative degradation of organic water pollutants. Montmorillonite (Mt) –rich bentonite was acid-activated (MtA), and impregnated with cobalt (II) solution using the incipient wetness impregnation method. The impregnation was followed by heat treatment. Cobalt(II) ions were added in the quantities corresponding to 0.5 and 1.0 of the cation exchange capacity value. All samples were characterized by using chemical analysis, X-ray powder diffraction (XRPD), Electron paramagnetic resonance (EPR), X-ray photoelectron spectroscopy (XPS), Scanning electron microscopy (SEM) coupled with Energy-dispersive X-ray spectroscopy (EDS), Transmission electron microscopy (TEM) and low temperature N2 physisorption. The incorporation of the cobalt in the impregnated samples and the development of porous structure in the acid-activated ones were confirmed. The montmorillonite (Mt) was used as a catalyst support, while the cobalt in its oxide form was responsible for the generation of sulfo-radicals from Oxone®. Two aromatic N-compounds were tested as model pollutants: diazo dye - Acid Orange 10 (AO10) and nicotine. It was found that the synthesized catalysts could be used for the degradation of both pollutants, although more efficiently in AO10 degradation. The acid activation, higher cobalt loading, and temperature were found to be beneficial for the degradation of AO10.
PB  - Elsevier
T2  - Applied Clay Science
T1  - Oxidative degradation of aromatic N-compounds using cobalt containing montmorillonite-based catalysts
VL  - 193
SP  - 105668
DO  - 10.1016/j.clay.2020.105668
ER  - 
@article{
author = "Ilić, Ilija and Milutinović-Nikolić, Aleksandra D. and Mojović, Zorica D. and Vuković, Zoran and Vulić, Predrag J. and Gržetić, Ivan and Banković, Predrag and Jović-Jovičić, Nataša",
year = "2020",
abstract = "The goal of this work was the synthesis of a montmorillonite based catalyst for advanced oxidative degradation of organic water pollutants. Montmorillonite (Mt) –rich bentonite was acid-activated (MtA), and impregnated with cobalt (II) solution using the incipient wetness impregnation method. The impregnation was followed by heat treatment. Cobalt(II) ions were added in the quantities corresponding to 0.5 and 1.0 of the cation exchange capacity value. All samples were characterized by using chemical analysis, X-ray powder diffraction (XRPD), Electron paramagnetic resonance (EPR), X-ray photoelectron spectroscopy (XPS), Scanning electron microscopy (SEM) coupled with Energy-dispersive X-ray spectroscopy (EDS), Transmission electron microscopy (TEM) and low temperature N2 physisorption. The incorporation of the cobalt in the impregnated samples and the development of porous structure in the acid-activated ones were confirmed. The montmorillonite (Mt) was used as a catalyst support, while the cobalt in its oxide form was responsible for the generation of sulfo-radicals from Oxone®. Two aromatic N-compounds were tested as model pollutants: diazo dye - Acid Orange 10 (AO10) and nicotine. It was found that the synthesized catalysts could be used for the degradation of both pollutants, although more efficiently in AO10 degradation. The acid activation, higher cobalt loading, and temperature were found to be beneficial for the degradation of AO10.",
publisher = "Elsevier",
journal = "Applied Clay Science",
title = "Oxidative degradation of aromatic N-compounds using cobalt containing montmorillonite-based catalysts",
volume = "193",
pages = "105668",
doi = "10.1016/j.clay.2020.105668"
}
Ilić, I., Milutinović-Nikolić, A. D., Mojović, Z. D., Vuković, Z., Vulić, P. J., Gržetić, I., Banković, P.,& Jović-Jovičić, N.. (2020). Oxidative degradation of aromatic N-compounds using cobalt containing montmorillonite-based catalysts. in Applied Clay Science
Elsevier., 193, 105668.
https://doi.org/10.1016/j.clay.2020.105668
Ilić I, Milutinović-Nikolić AD, Mojović ZD, Vuković Z, Vulić PJ, Gržetić I, Banković P, Jović-Jovičić N. Oxidative degradation of aromatic N-compounds using cobalt containing montmorillonite-based catalysts. in Applied Clay Science. 2020;193:105668.
doi:10.1016/j.clay.2020.105668 .
Ilić, Ilija, Milutinović-Nikolić, Aleksandra D., Mojović, Zorica D., Vuković, Zoran, Vulić, Predrag J., Gržetić, Ivan, Banković, Predrag, Jović-Jovičić, Nataša, "Oxidative degradation of aromatic N-compounds using cobalt containing montmorillonite-based catalysts" in Applied Clay Science, 193 (2020):105668,
https://doi.org/10.1016/j.clay.2020.105668 . .
6
2
6
5

Supplementary data for the article: Ilić, I.; Milutinović-Nikolić, A.; Mojović, Z.; Vuković, Z.; Vulić, P.; Gržetić, I.; Banković, P.; Jović-Jovičić, N. Oxidative Degradation of Aromatic N-Compounds Using Cobalt Containing Montmorillonite-Based Catalysts. Applied Clay Science 2020, 193, 105668. https://doi.org/10.1016/j.clay.2020.105668

Ilić, Ilija; Milutinović-Nikolić, Aleksandra D.; Mojović, Zorica D.; Vuković, Zoran; Vulić, Predrag J.; Gržetić, Ivan; Banković, Predrag; Jović-Jovičić, Nataša

(Elsevier, 2020)

TY  - DATA
AU  - Ilić, Ilija
AU  - Milutinović-Nikolić, Aleksandra D.
AU  - Mojović, Zorica D.
AU  - Vuković, Zoran
AU  - Vulić, Predrag J.
AU  - Gržetić, Ivan
AU  - Banković, Predrag
AU  - Jović-Jovičić, Nataša
PY  - 2020
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4046
PB  - Elsevier
T2  - Applied Clay Science
T1  - Supplementary data for the article: Ilić, I.; Milutinović-Nikolić, A.; Mojović, Z.; Vuković, Z.; Vulić, P.; Gržetić, I.; Banković, P.; Jović-Jovičić, N. Oxidative Degradation of Aromatic N-Compounds Using Cobalt Containing Montmorillonite-Based Catalysts. Applied Clay Science 2020, 193, 105668. https://doi.org/10.1016/j.clay.2020.105668
UR  - https://hdl.handle.net/21.15107/rcub_cherry_4046
ER  - 
@misc{
author = "Ilić, Ilija and Milutinović-Nikolić, Aleksandra D. and Mojović, Zorica D. and Vuković, Zoran and Vulić, Predrag J. and Gržetić, Ivan and Banković, Predrag and Jović-Jovičić, Nataša",
year = "2020",
publisher = "Elsevier",
journal = "Applied Clay Science",
title = "Supplementary data for the article: Ilić, I.; Milutinović-Nikolić, A.; Mojović, Z.; Vuković, Z.; Vulić, P.; Gržetić, I.; Banković, P.; Jović-Jovičić, N. Oxidative Degradation of Aromatic N-Compounds Using Cobalt Containing Montmorillonite-Based Catalysts. Applied Clay Science 2020, 193, 105668. https://doi.org/10.1016/j.clay.2020.105668",
url = "https://hdl.handle.net/21.15107/rcub_cherry_4046"
}
Ilić, I., Milutinović-Nikolić, A. D., Mojović, Z. D., Vuković, Z., Vulić, P. J., Gržetić, I., Banković, P.,& Jović-Jovičić, N.. (2020). Supplementary data for the article: Ilić, I.; Milutinović-Nikolić, A.; Mojović, Z.; Vuković, Z.; Vulić, P.; Gržetić, I.; Banković, P.; Jović-Jovičić, N. Oxidative Degradation of Aromatic N-Compounds Using Cobalt Containing Montmorillonite-Based Catalysts. Applied Clay Science 2020, 193, 105668. https://doi.org/10.1016/j.clay.2020.105668. in Applied Clay Science
Elsevier..
https://hdl.handle.net/21.15107/rcub_cherry_4046
Ilić I, Milutinović-Nikolić AD, Mojović ZD, Vuković Z, Vulić PJ, Gržetić I, Banković P, Jović-Jovičić N. Supplementary data for the article: Ilić, I.; Milutinović-Nikolić, A.; Mojović, Z.; Vuković, Z.; Vulić, P.; Gržetić, I.; Banković, P.; Jović-Jovičić, N. Oxidative Degradation of Aromatic N-Compounds Using Cobalt Containing Montmorillonite-Based Catalysts. Applied Clay Science 2020, 193, 105668. https://doi.org/10.1016/j.clay.2020.105668. in Applied Clay Science. 2020;.
https://hdl.handle.net/21.15107/rcub_cherry_4046 .
Ilić, Ilija, Milutinović-Nikolić, Aleksandra D., Mojović, Zorica D., Vuković, Zoran, Vulić, Predrag J., Gržetić, Ivan, Banković, Predrag, Jović-Jovičić, Nataša, "Supplementary data for the article: Ilić, I.; Milutinović-Nikolić, A.; Mojović, Z.; Vuković, Z.; Vulić, P.; Gržetić, I.; Banković, P.; Jović-Jovičić, N. Oxidative Degradation of Aromatic N-Compounds Using Cobalt Containing Montmorillonite-Based Catalysts. Applied Clay Science 2020, 193, 105668. https://doi.org/10.1016/j.clay.2020.105668" in Applied Clay Science (2020),
https://hdl.handle.net/21.15107/rcub_cherry_4046 .

Fentanyl Analogs: Structure-Activity-Relationship Study

Vuckovic, S.; Prostran, M.; Ivanović, Milovan; Došen-Mićović, Ljiljana; Todorović, Zoran B.; Nesic, Z.; Stojanović, R.; Divac, N.; Mikovic, Z.

(Bentham Science Publ Ltd, Sharjah, 2009)

TY  - JOUR
AU  - Vuckovic, S.
AU  - Prostran, M.
AU  - Ivanović, Milovan
AU  - Došen-Mićović, Ljiljana
AU  - Todorović, Zoran B.
AU  - Nesic, Z.
AU  - Stojanović, R.
AU  - Divac, N.
AU  - Mikovic, Z.
PY  - 2009
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/999
AB  - Fentanyl is the prototype of the 4-anilidopiperidine class of synthetic opioid analgesics. This study was aimed to review the structure-activity-relationship (SAR) of fentanyl analogs substituted in the position 3, or 4 of the piperidine ring. Pharmacological results show that the groups in position 3 of the piperidine ring, which are larger than methyl, severely reduce the analgesic potency compared to fentanyl. It is likely that the steric factor alone (i.e. voluminosity of the group and cis/trans isomerism), rather than the polarity and/or chemical reactivity, plays a crucial role in the analgesic potency of this series. Although the duration of action, in general, does not depend on the stereochemistry, longer action of the most potent 3-alkyl fentanyl analogs such as cis-3-methyl- and cis-3-ethyl fentanyl, is more likely influenced by pharmacodynamic, rather than pharmacokinetic variables. Also, it is possible that the introduction of a functional group such as 3-carbomethoxy reduces the duration of action by altering pharmacokinetic properties. SAR findings obtained by evaluating the neurotoxic effects of fentanyl analogs substituted in the position 3 of the piperidine ring parallel the SAR findings on analgesia in regard to potency and duration of action. This might suggest that similar receptors are involved in producing both antinociceptive and neurotoxic effects of these drugs. It appears that both the potency and the duration of action in the series of fentanyl analogs substituted in position 4 of the piperidine ring is influenced only by the steric requirement and not by the chemical nature of the substituent.
PB  - Bentham Science Publ Ltd, Sharjah
T2  - Current Medicinal Chemistry
T1  - Fentanyl Analogs: Structure-Activity-Relationship Study
VL  - 16
IS  - 19
SP  - 2468
EP  - 2474
DO  - 10.2174/092986709788682074
ER  - 
@article{
author = "Vuckovic, S. and Prostran, M. and Ivanović, Milovan and Došen-Mićović, Ljiljana and Todorović, Zoran B. and Nesic, Z. and Stojanović, R. and Divac, N. and Mikovic, Z.",
year = "2009",
abstract = "Fentanyl is the prototype of the 4-anilidopiperidine class of synthetic opioid analgesics. This study was aimed to review the structure-activity-relationship (SAR) of fentanyl analogs substituted in the position 3, or 4 of the piperidine ring. Pharmacological results show that the groups in position 3 of the piperidine ring, which are larger than methyl, severely reduce the analgesic potency compared to fentanyl. It is likely that the steric factor alone (i.e. voluminosity of the group and cis/trans isomerism), rather than the polarity and/or chemical reactivity, plays a crucial role in the analgesic potency of this series. Although the duration of action, in general, does not depend on the stereochemistry, longer action of the most potent 3-alkyl fentanyl analogs such as cis-3-methyl- and cis-3-ethyl fentanyl, is more likely influenced by pharmacodynamic, rather than pharmacokinetic variables. Also, it is possible that the introduction of a functional group such as 3-carbomethoxy reduces the duration of action by altering pharmacokinetic properties. SAR findings obtained by evaluating the neurotoxic effects of fentanyl analogs substituted in the position 3 of the piperidine ring parallel the SAR findings on analgesia in regard to potency and duration of action. This might suggest that similar receptors are involved in producing both antinociceptive and neurotoxic effects of these drugs. It appears that both the potency and the duration of action in the series of fentanyl analogs substituted in position 4 of the piperidine ring is influenced only by the steric requirement and not by the chemical nature of the substituent.",
publisher = "Bentham Science Publ Ltd, Sharjah",
journal = "Current Medicinal Chemistry",
title = "Fentanyl Analogs: Structure-Activity-Relationship Study",
volume = "16",
number = "19",
pages = "2468-2474",
doi = "10.2174/092986709788682074"
}
Vuckovic, S., Prostran, M., Ivanović, M., Došen-Mićović, L., Todorović, Z. B., Nesic, Z., Stojanović, R., Divac, N.,& Mikovic, Z.. (2009). Fentanyl Analogs: Structure-Activity-Relationship Study. in Current Medicinal Chemistry
Bentham Science Publ Ltd, Sharjah., 16(19), 2468-2474.
https://doi.org/10.2174/092986709788682074
Vuckovic S, Prostran M, Ivanović M, Došen-Mićović L, Todorović ZB, Nesic Z, Stojanović R, Divac N, Mikovic Z. Fentanyl Analogs: Structure-Activity-Relationship Study. in Current Medicinal Chemistry. 2009;16(19):2468-2474.
doi:10.2174/092986709788682074 .
Vuckovic, S., Prostran, M., Ivanović, Milovan, Došen-Mićović, Ljiljana, Todorović, Zoran B., Nesic, Z., Stojanović, R., Divac, N., Mikovic, Z., "Fentanyl Analogs: Structure-Activity-Relationship Study" in Current Medicinal Chemistry, 16, no. 19 (2009):2468-2474,
https://doi.org/10.2174/092986709788682074 . .
3
57
45
63
47