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 29 

Abstract 30 

Drought is an environmental stress that impacts plant productivity. Projections show both an increase in 31 

intense rain events and a reduction in the number of rain days, conditions that leads to increased risk of 32 

drought. Consequently, the identification of molecular biomarkers suitable for evaluating the impact of 33 

water deprivation conditions on forest plant seedlings is of significant value for monitoring purposes and 34 

forest management. In this study we evaluated a biochemical methodology for the assessment of drought 35 

stress coupled to variable soil temperature in European beech (Fagus sylvatica L.) seedlings by analyzing 36 

a set of metabolites and enzymes involved in free radical scavenging and cell wall synthesis. The results 37 

indicate that the specific activities and isoform profile of superoxide dismutases and glutathione 38 

peroxidases together with the variation of phenolic compounds enable discrimination between seedlings 39 

with different degree of photosynthetic activity. This approach represents a promising platform for the 40 

assessment of drought stress in forest trees and could serve for enhancing selection and breeding practices 41 

allowing for plants more tolerant of abiotic stress. 42 

 43 

 44 

 45 

 46 
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 48 
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1. Introduction 56 

Plants are exposed to different environmental stress factors that affect their growth and development. 57 

Drought is considered the single most critical environmental stress, which decreases plant productivity 58 

more than any other environmental stress (Reichstein et al. 2013; Running et al. 2004). From the plant 59 

perspective, drought is the deficit of moisture required for normal plant growth, development and 60 

completion of the life cycle (Manivannan et al. 2008a). Water deficit arises from insufficient available soil 61 

water because of reduced rainfall and elevated evaporation during the growing season . Climate 62 

projections show a reduction in the number of rainy days and an increase in evaporation in temperate areas 63 

due to elevated temperatures, a process that will cause increased risk of drought (Heyder et al. 2011; 64 

Trenberth 2011; Williams et al. 2013). The effects of drought are expected to be more intense in disturbed 65 

forest ecosystems (e.g. due to logging, forest fires, and bark beetle outbreaks) with reduced vegetation 66 

cover as deforestation increases ground surface temperature (Lewis 1998) in addition to general increase 67 

in temperature due to global change. As tree seedlings have shallow roots systems, the reforestation in 68 

such sites might be particularly hampered. 69 

 70 

Drought increases the amplitude of oxidative stress in plant tissues, in which reactive oxygen species 71 

(ROS), such as superoxide radical, hydroxy radical, hydrogen peroxide and alkoxy radical are produced 72 

(Cruz de Carvalho 2008; Lewis 1998; Moran et al. 1994; Sharma and Dubey 2005). Superoxide radicals 73 

are rapidly dismutated by superoxide dismutase to hydrogen peroxide that can be eliminated by different 74 

enzymes such as peroxidases and catalases. These metalloenzymes constitute an important primary 75 

defense of cells against ROS and their activity is usually augmented during stress conditions (Manivannan 76 

et al. 2008b; Sharma and Dubey 2005).  77 

 78 

European beech (Fagus sylvatica) is one of the most important deciduous trees in central European forests 79 

where it covers about 12 million hectares of land (Teissier du Cros et al. 1981). Changes in quantity and 80 
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quality of beech wood could have a substantial ecological and economic impact. The identification of both 81 

qualitative and quantitative stress-related biomarkers suitable for validating drought stress models adapted 82 

to beech will be of outmost importance for forest industry and farming, as it has been in plant and human 83 

diagnostics (Carvajal-Hausdorf et al. 2015; Weber-Lotfi et al. 2005; Yin et al. 2016). Apart from industrial 84 

importance, sheer abundance of beech in temperate central European forest ecosystems makes this species 85 

critical to the overall forest health and ecosystem functioning.   86 

 87 

In a previous work we explored the opportunity to use biochemical markers for monitoring temperature 88 

stress in European beech. The promising results prompted us to improve the methodologies for the 89 

identification of appropriate biomarkers for beech seedlings related to drought stress and drought stress in 90 

combination with increased soil temperatures. To achieve this, several biochemical parameters were 91 

compared to physical and physiological parameters. 92 

 93 

2. Material and methods 94 

2.1 Plant material 95 

 96 

One-year old beech seedlings of provenance Osankarica 2.0119 (1240 m a.s.l., 46°27' N, 15°23' E) grown 97 

from seeds were obtained from the tree nursery Omorika d.o.o., Muta, N Slovenia, and planted in 98 

rhizotrons (one seedling per rhizotron) at Slovenian Forestry Institute in Ljubljana, central Slovenia on 99 

22.3.2011. The external size of the rhizotrons measured 30x50x3 cm, while the internal size was 28x49x2 100 

cm. The bottom third of the rhizotrons was filled with sand to allow for water draining, while the upper 101 

two thirds were filled with dystric cambisol originating from sandstone and slate ground rock collected 102 

from the upper soil horizon (0 to 30 cm) in a mixed forest in the vicinity of the Slovenian Forestry 103 

Institute. The soil was sieved through a 5x5 mm sieve, autoclaved and mixed with quartz sand, vermiculite 104 

and perlite in ratio 5:5:1:1. No fertilizer was used during the experiment.  105 

 106 
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The rhizotrons were transferred into a climatized room (IMP Klima, Godovič, Slovenia) set to 16 °C. 107 

Twelve seedlings were planted per rhizotron with the belowground portion protected from light, while 14 108 

seedlings were placed in a cooled rhizoston the belowground part. Rhizothrons were arranged one by 109 

another in a way that between two consecutive seedlings there was one rhizotron filled only with soil to 110 

prevent intertwining of seedlings. Rhizothrons were placed vertically with slight inclination. The 111 

temperature of refrigerator was set to four degrees below the air temperature. The treatment with cooling 112 

of belowground part was used to reproduce the natural temperature gradient from aboveground to 113 

belowground in intact forests, while treatment without cooling of roots represented disturbed forest sites 114 

without protective vegetation cover and therefore increased soil temperatures. Soil temperatures for the 115 

treatment with cooled belowground were comparable with the maximum summer soil temperatures at a 116 

depth of 30 cm at the origin of the provenance of the seedlings used in this study. 117 

 118 

Soil temperature in all treatments was monitored at -20 cm depth using factory calibrated digital 119 

temperature sensors DS18B20 connected to a datalogger developed at SFI, while air temperature and 120 

humidity were logged by USB dataloggers Voltcraft DL-120TH (Conrad Electronic, UK). A summary of 121 

the physical parameters during the seedling growth is reported in Table 1. Seedling were irrigated with 122 

automatic watering system with frequency domain soil moisture sensors EC-5 (Decagon Devices Inc., 123 

Pullman,USA). At 18.6.2014, the watering of half of the non-cooled seedlings and half of the cooled 124 

seedlings was stopped (the onset of drought experiment), resulting in four treatments: seedlings with 125 

cooled roots + water (CCRW+, 7 seedlings), seedlings with cooled roots – water (CCRW-, 7 seedlings), 126 

seedlings with non-cooled roots + water (NCRW+, 6 seedlings) and seedlings with non-cooled roots – 127 

water (NCRW-, 6 seedlings). Each treatment was replicated once. Just before drought treatment height of 128 

the seedlings was measured with tape meter and stem diameter two centimeters above the root neck 129 

recorded.  130 

 131 
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With the onset of drought experiment, soil moisture was monitored additionaly with the frequency domain 132 

sensor in every rhizothron twice per week and soil moisture in CCRW+ and NCRW+ treatments corrected 133 

by hand watering, when recording of soil moisture of watered seedlings on frequency domain sensor fell 134 

below 1000 mV (corresponding to soil matrix potential of approximately -0.15 MPa). For the soil used to 135 

fill the rhizotrons in our experiment, gravimetrical calibration of the EC-5 sensor in a cylinder of 0.8 dm3 136 

was done. At the same time, the soil matrix potential used in our experiment was measured with a MPS-1 137 

sensor (Decagon Devices Inc.). Recalculation of the automatic irrigation system threshold provided true 138 

values of SWC and soil matrix potential used in our experiment. Intensity of photosynthetically active 139 

radiation just above the seedlings was around 300 µmol m-2s-1. Measurements of gas exchange, stomatal 140 

conductance, transpiration and photochemical efficiency of s-PSII were performed with Li-COR 6200 on 141 

16.6. (2 days before onset of drought treatment), 8.7. (21 days after the onset of drought treatment), 23.7. 142 

(36 days after drought treatment) and 20.8.2014 (64 days after the onset of drought treatment), between 9-143 

11 am. Measurements were performed on one fully developed leaf per plant from the middle of the crown 144 

at 400 µmol CO2 mol-1, photosynthetic photon flux density of 300 µmol m-2 s-1. Leaf temperature varied 145 

according ambient temperature but was kept constant during measurement. Water vapour pressure deficit 146 

ranged from 0.70 to 1.30 kPa. Leaves were subsequently harvested and chlorophyll content measured with 147 

SPAD meter. Relative water content of leaves was measured on leaves used for chlorophyll 148 

measurements. Leaves were weighed, put onto moist filter paper and incubated for 24 hours at 5°C in the 149 

refrigerator. Turgid leaves were weighed again, dried and their dry weight recorded. From this data, leaf 150 

relative water content was calculated according to the following formula: RWC(l) (%) = (fresh – dry 151 

weight) / (turgid – dry weight) x 100. On 23.7. and 20.8.2014, additional three leaves per plant were 152 

randomly collected and frozen at -80ºC until further analysis. However, leaves collected on 20.8.2014 153 

from drought-treated plants were too dry to recover material sufficient for a complete biochemical 154 

analysis. Since the major scope of the work was to identify early-stage biomarkers of drought stress, 155 

comparative biochemical measurements were performed only with the samples recovered in July .  156 

 157 
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2.2  Homogenization and extraction of plant material 158 

 159 

Plant material used in the experiment was obtained by sampling the seedling in the 21st day after the onset 160 

of drought treatmen. Plant material used in the experiment was obtained by sampling the seedling in the 161 

21st day after the onset of drought treatmen. Working temperature throughout the experiments was kept at 162 

4ºC. Homogenization was performed on ice using mortar and pestle. Solvents used for homogenization 163 

were precooled overnight at 4°C . Prior to freezing, each individual leaf was weighed. Individual leaves 164 

were homogenized using 1 mL of appropriate solvent per 0.1 g of weighed material (Table 2). Frozen 165 

material was thawed during homogenization in a cooled extraction buffer. For analysis of enzymatic 166 

activity and protein content, plant material was extracted in 50 mM Tris-HCl buffer, pH 7.4, while 80% 167 

methanol in water was used for the analysis of phenolic compounds. Plant homogenate was rocked at 4oC 168 

for 2 hours after which it was centrifuged 10 min at 14,000xg at 4°C. The supernatant was used for the 169 

experiments after determination of total protein concentration by using Quant-ITTM protein assay (Life 170 

Technologies, USA) according to the manufacturer’s instructions.  171 

 172 

2.3 Determination of total phenolic content 173 

 174 

Total phenolic content was determined using Folin-Ciocalteu reagent (Singleton and Rossi. 1965). Ten 175 

microliters of extract were mixed with 75 µL of 10-fold diluted Folin-Ciocalteu reagent and incubated 5 176 

min at 22°C before the addition of 75 µL of sodium bicarbonate (0.72 M) solution. Absorbance was 177 

measured at 620 nm using a HTS7000 Bioassay reader (Perkin Elemer, USA) after 90 min of incubation 178 

at 22°C. Results are expressed as galic acid equivalents per mL of solution. Triplicate measurements were 179 

performed for each sample. 180 

 181 

2.4 Measurement of peroxidase enzyme activities 182 

 183 
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Peroxidase activity (POX) was detected using o-dianisidine (Sigma-Aldrich, Germany) as a substrate 184 

(Pine, Hoffman. 1984). The reaction mixture was prepared by mixing 20 mL of 50 mM phosphate buffer, 185 

pH 7.0 with 9.79 mM hydrogen-peroxide and 0.2 mL o-dianisidine solution in methanol 11.1 mM. The 186 

reaction was initiated by adding plant extract (50 µL) to the reaction mixture (900 µL) in the measuring 187 

cuvette. After accurate stirring, the change in absorbance at 430 nm was read for 5 min at RT using a 188 

Perkin Elmer lambda 35 UV/Vis spectrophotometer (Perkin Elmer, USA). One unit of peroxidase activity 189 

was defined as the amount of the enzyme that oxidizes o-dianisidine into 1 µM of bis-(3,3´-dimethoxy-4-190 

amino) azodiphenyl per min at 25ºC with the extinction coefficient 30 mM-1 cm-1. Triplicate 191 

measurements were performed for each sample. 192 

 193 

2.5 Measurement of superoxide dismutase enzyme activities 194 

 195 

Total superoxide dismutase (SOD) activity was assayed by its ability to inhibit photochemical reduction of 196 

nitrobluetetrazolium (NBT, Serva, Germany) to blue formazan (Winterbourn et al. 1975). The reaction 197 

mixture contained 50 mM phosphate buffer, pH 7.8, 0.66 mM EDTA, 10 mM L-methionine, 33 µM NBT, 198 

and 3.3 µM riboflavin. The reaction was initiated by adding plant extract (50 µL) to the reaction mixture 199 

(200 µL). After mixing, samples were illuminated with sunlight for 10 min and absorbance at 492 nm was 200 

recorded using HTS7000 Bioassay reader (Perkin Elemer, USA). The blank was prepared by mixing 201 

extraction buffer with reaction mixture and kept in the dark while positive control was prepared in the 202 

identical manner and exposed to sun light same as the samples.  One unit was defined as the amount of 203 

protein causing a 50% inhibition of NBT photoreduction. To determine the contribution of the single 204 

enzyme isoforms, 0.4% Н2О2 was used for simultaneous inhibition of both forms Cu/ZnSOD and FeSOD, 205 

while 5 mМ KCN was applied for specific Cu/ZnSOD inhibition (Sandalio et al. 1987). MnSOD activity 206 

was calculated as the residual activity after Н2О2 inhibition. The Н2О2- and KCN-sensitive activity was 207 

attributed to Cu/ZnSOD while FeSOD activity was inferred by subtracting Cu/ZnSOD activities from 208 

Н2О2 -inhibited SOD activity. Triplicate measurements were performed for each sample. 209 

Page 8 of 30
C

an
. J

. F
or

. R
es

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.n

rc
re

se
ar

ch
pr

es
s.

co
m

 b
y 

U
ni

ve
rs

ity
 o

f 
T

as
m

an
ia

 L
ib

ra
ry

 o
n 

09
/0

4/
17

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.
 T

hi
s 

Ju
st

-I
N

 m
an

us
cr

ip
t i

s 
th

e 
ac

ce
pt

ed
 m

an
us

cr
ip

t p
ri

or
 to

 c
op

y 
ed

iti
ng

 a
nd

 p
ag

e 
co

m
po

si
tio

n.
 I

t m
ay

 d
if

fe
r 

fr
om

 th
e 

fi
na

l o
ff

ic
ia

l v
er

si
on

 o
f 

re
co

rd
. 



 

9 

 

 210 

2.6 Measurement of glutathione peroxidase enzyme activities 211 

 212 

Glutathione peroxidase (GPX) activity was assessed by measuring the H2O2-dependent oxidation of 213 

glutathione GSH into GSSG (Wendel 1980). GSSG content was then determined in a coupled reaction in 214 

which glutathione reductase reduced the substrate into GSH oxidizing NADPH into NADP. The reaction 215 

mixture contained 48 mM sodium phosphate, pH 7.8, 0.38 mM EDTA, 0.12 mM NADPH, 3.2 U of 216 

glutathione reductase, 1 mM GSH, 0.02 mM DL-dithiotritol, and 2.28 mM H2O2. The rate of NADPH 217 

oxidation measured at 340 nm for 3 min was recorded using a HTS7000 Bioassay reader (Perkin Elemer, 218 

USA). One unit is defined as the amount of protein able to catalyze the oxidation of 1 µM of GSH per min 219 

at pH 7.0 and RT. Triplicate measurements were performed for each sample. 220 

 221 

2.7 Native PAGE  222 

 223 

For in-gel analysis of enzymatic activity, aqueous plant extracts were resolved under non-reducing 224 

conditions in a discontinuous buffer system using a vertical electrophoresis slab system (Hoefer, 225 

Holliston, USA) with a 4 % (w/v) stacking and a 10 % (w/v) resolving gel (Table 2). Each gel lane was 226 

loaded with 12.5 µg of total protein. POX activity was identified according to a modified Quesada 227 

protocol (Quesadaet.al. 1990). After electrophoresis, the gel was washed twice with 50 mM acetate, pH 228 

6.0, after which it was incubated 1 hour in 50 mM acetate, pH 6.0, 28 mM o-dianisidine, and 36.4 mM 229 

H2O2.  230 

 231 

2.8 Statistical analyses 232 

 233 

Statistical analysis was performed using GraphPad Prism v5.03 for Windows (San Diego, California, 234 

USA). A significance level of p ≤ 0.05 was used for analysis of variance, implemented using the Kruskal-235 
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Wallis test followed by the Tukey’s post-hoc test (p ≤ 0.05).  Correlation between different parameters 236 

was performed at significance level of p ≤ 0.1. Unsupervised hierarchical clustering and heatmap 237 

generation was accomplished using ClustalVis (Metsalu and Vilo 2015) with the Manhattan method and 238 

Pearson correlation for the distance measure. For heatmap generation, measured values were standardized 239 

across the two cohorts by conversion to Z-scores (peak height-mean/standard deviation). 240 

 241 

3 Results 242 

 243 

3.1 Effect of growth parameters on physiological parameters  244 

 245 

The experimental growth conditions were chosen to reproduce the natural temperature gradient from 246 

aboveground to belowground in intact (cooling of belowground part: CCRW) and disturbed forest sites 247 

without protective vegetation cover and consequently increased soil temperatures (NCRW).  248 

 249 

Height of seedlings grown at control growth conditions (CCRW) was 37.0 ± 1.91 cm, and 27.7 ± 2.16 for 250 

seedlings grown at increased soil temperatures (NCRW). Stem diameter was 6.25 ±0.30 mm for CCRW 251 

seedlings and 5.58 ± 0.14 mm for NCRW seedlings. Similarly, reduced stem diameter, as well as reduced 252 

root and shoot biomass, was detected in beech seedlings grown at increased soil temperature in 253 

experiment with the same beech provenance and growth conditions conducted by Štraus et al. (2014), 254 

indicating the limiting effect of increased soil temperatures on growth.    255 

 256 

In present experiment, the combined effects of drought and soil temperatures were tested. Soil matrix 257 

potential of non-watered seedlings decreased rapidly after the onset of drought treatments, regardless of 258 

soil temperature. Visually, drought symptoms were observed as yellowing and drying of smaller leaves, 259 

first symptoms were noticed at around -0.5 MPa in both groups 17 days after the onset of drought. 260 

However, for fully developed leaves relative leaf water contents between treatments were, similarly to 261 
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pre-treatment measurement, not significantly different between each other 21 days after the onset of 262 

experiment (Kruskal-Wallis test, H=5.5881, p=0.1335), although there was a decreasing tendency for 263 

NCRW- already observed (Fig. 1). Thirty-six days after the onset of the experiment, relative water content 264 

of NCRW- treatment (less than 20 %) was significantly different from both watered treatments, CCRW+ 265 

and NCRW+ (Kruskal-Wallis test, H=15.6931, p=0.0013). Slightly reduced values of relative water 266 

content (around 60%) were observed also for CCRW- treatment. Relative water contents of leaves for 267 

both drought treatments have further decreased in the last sampling, 64 days after the onset of drought 268 

treatment. 269 

 270 

One month after the onset of drought, soil matrix potential decreased below -0.6 MPa and stayed at around 271 

-0.7 MPa until the end of the experiment (Fig. 2a). Zang et al. (2014), regarded  soil matrix potential of -272 

0.4 MPa as moderate drought for beech seedlings in rhizotrons, while less than -1.0 MPa was assigned as 273 

severe drought stress where irreversible damage occurs. Both, net photosynthesis and stomatal 274 

conductance correlated well with soil matrix potential (Fig. 2b, c). 275 

 276 

Net photosynthesis levels were very low in all treatments (Fig. 2b), with the maximum of 5.25 µmol 277 

CO2m
-2s-1 achieved in the watered seedlings with non-cooled roots (NCRW+). Seedlings with non-cooled 278 

roots exposed to drought stress (NCRW-) exhibited levels of net photosynthesis below zero already at day 279 

21 after the onset of drought treatment (soil matrix potential – 0.70 MPa, Figs. 3b), while positive net 280 

photosynthesis was still observed after 36 days in seedlings with cooled roots exposed to drought (CCRW, 281 

soil matrix potential -0.65MPa, Figs. 3b). At day 64 we were unable to measure gas exchange in both 282 

drought treatments (Fig. 3a-c), with soil matrix potential < -0.75MPa (Fig. 2a). Altogether, our results 283 

show that under the designed experimental conditions the variations of soil matrix potential were well 284 

mirrored in net photosynthesis (Fig. 2b) and stomatal conductance (Fig. 2c). Negative net photosynthesis 285 

in non-cooled seedlings exposed to drought was accompanied by very low stomatal conductance (Fig. 3b), 286 

but high intercellular CO2 concentration (Fig. 3c), indicating severely reduced ability of photosynthetic 287 
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apparatus to assimilate CO2, although chlorophyll levels were still relatively high (Fig. 3d). In this 288 

condition respiration significantly exceeded photosynthesis (Fig. 3a). Thirty-six days after the onset of 289 

drought, seedlings with cooled roots still maintained internal CO2 concentrations comparable with watered 290 

treatments (Fig. 3c), although stomatal conductance was significantly lower than in both watered 291 

treatments (Fig. 3b). Assuming the approximation that net photosynthesis inversely correlates with plant 292 

stress, the data confirm that higher soil temperatures can be relatively well tolerated in the presence of 293 

water availability (NCRW+), but substantially increase the stress conditions when water becomes limiting 294 

(NCRW-).  295 

 296 

3.2 Effects of drought on total phenolic content and enzyme activity 297 

 298 

The minimal total phenolic content was determined in the fittest sample (NCRW+) whereas it was three 299 

times lower than in all the others (Fig. 4, Fig 8.). This result indicates that total phenolic content is a 300 

valuable biomarker for assessing photosynthetic stress, as recently demonstrated for salt-induced plant 301 

stress (Aloisi et al. 2016), although it does not discriminate between drought and conditions characterized 302 

by low soil temperature.  303 

 304 

Next we measured the activity of some key enzymes involved in the scavenging of active oxygen forms. 305 

Peroxidase (POX) activity (Fig. 5a, Fig 8.) did not seem to be influenced by drought stress. Only the total 306 

activity of the CCRW+ sample significantly increased. The analysis of the different isoforms in the 307 

zymograms revealed an extremely complex pattern (Fig. 5b, Fig 8.). Since POXs are also involved in 308 

other metabolic activities, conclusions could be inferred only after a precise and time consuming 309 

characterization of each isoform. Therefore, despite their high stability and the simple measurement of 310 

their activity, in the case of drought-effect evaluation POXs do not fulfil the requisites of clarity and 311 

measurement simplicity that a biomarker should possess.  312 

 313 
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In this context, SOD appeared as an extremely more attractive candidate for discriminating among stress 314 

conditions characterized by different level of photosynthetic capacity. Total SOD activity of NCRW+ was 315 

the lowest of the four samples (Fig. 6a, Fig 8.) and other interesting discriminating parameters are offered 316 

by the specific activities of the single SOD isoforms. MnSOD and FeSOD specific activities of NCRW+ 317 

were half of that measured in the other samples, whereas the same seedlings showed negligible differences 318 

in Cu/ZnSOD activity in comparison to the other samples (Fig. 6b, Fig 8.). 319 

 320 

Similarly to FeSOD, also glutathione peroxidase activity seems a very useful biomarker of drought stress. 321 

It directly correlated with the seedling photosynthetic activity, being maximal in NCRW+ and 322 

significantly higher also in CCRW+ in comparison to drought-stressed samples (Fig. 7, Fig 8.). 323 

 324 

4 Discussion  325 

 326 

Plants, as sedentary organisms, have to adapt their physiology to environmental changes in order to 327 

survive and thrive. Out of all environmental stressors, drought has the most detrimental impact on plant 328 

growth, productivity and survival (Pompelli et al. 2010). Under drought stress, photosynthesis decreases 329 

due to stomatal limitation when light energy absorption exceeds its capacity for utilization (Cornic 2000). 330 

The excess light energy, which is neither consumed in photosynthesis nor dissipated as fluorescence or 331 

heat, is transferred to oxygen or neighboring molecules, creating ROS, including superoxide anion, 332 

hydrogen peroxide, singlet oxygen, and hydroxyl free radical (Silva et al. 2010). This causes oxidative 333 

damage to cellular components and structures and disrupts metabolism, which finally leads to cell death 334 

(Silva et al. 2010). Alleviation of oxidative stress relies on combination of both enzymatic and non-335 

enzymatic systems and there are numerous reports dealing with changes in antioxidative factors in 336 

response to drought stress (Liu et al. 2014; Marabottini et al. 2001; Uzilday et al. 2012).   337 

 338 
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In this study we aimed at using a set of simple biochemical tests to evaluate the possibility of their 339 

application as early markers of drought in the industrially important and highly abundant European beech. 340 

The most important quality of a biomarker is its ability to clearly discriminate between stressed and 341 

control samples. Furthermore, its recovery, processing, and analysis should be simple, reliable, and allow 342 

for large-scale data comparison among samples collected under variable field conditions. Enzymes of 343 

antioxidative defense are logical choice since their activity changes during many physiological and 344 

pathological processes (Cruz de Carvalho 2008; De Marco and Roubelakis-Angelakis 1996; Jenks and 345 

Hasegawa 2005; Lipiec et al. 2013) in plants. Peroxidases fit the desired biomarker criteria as they are 346 

easy to detect, process and analyze (Running et al. 2004) but are not suitable for describing the specific 347 

stress conditions tested in the present experiments. Probably a further effort would be necessary to identify 348 

the isoforms specifically involved in drought stress to distinguish them from those playing complementary 349 

physiological roles. In our case, we cannot rule out that the experimentally imposed growth conditions 350 

induced additional stresses to the drought. For instance, seedlings with cooled roots could be subjected to 351 

nutrient shortage as they were grown for several years without addition of nitrogen and it is well known 352 

that nitrogen has lower availability at lower soil temperatures due to lower nitrogen mineralization (Zhou 353 

et al. 2011). This could explain the experimental deviation of some measured parameters between 354 

NCRW+ and CCRW+ samples. In any case, we identified some biochemical markers able to discriminate 355 

between seedlings with elevated and scarce photosynthetic activity. The most selective changes induced 356 

by drought and temperature affected the activity of FeSOD and GPX, whereas other biomarkers monitored 357 

broader stress conditions. MnSOD could be potentially a very useful marker in conditions where drought 358 

stress is combined with higher soil temperature. 359 

 360 

Similarly to what recently observed in salt- and cadmium-stressed plants , phenolic content significantly 361 

increased in drought-treated samples and in seedlings with sufficient water supply but constantly cooled 362 

roots. As phenolics in trees increase due to drought stress ((Grulke and Tausz 2014)) and decrease due to 363 

elevated temperatures (Zvereva and Kozlov 2006)  this is a logical outcome. In contrast, glutathione 364 
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peroxidase activity was strongly and selectively decreased only in drought-stressed seedlings with respect 365 

to those in which photosynthesis was active due to water availability. The high glutathione peroxidase 366 

activity in these plants would suggest the necessity to cope with ROS in photosynthetically active cells. 367 

SOD isoforms present in the seedlings represent another group of highly informative biomarkers. Their 368 

expression and activity is regulated by different stress factors (Grulke and Tausz 2014) and in the case of 369 

beech seedlings it seems that stress conditions strongly activated the mitochondrion-specific MnSODs as 370 

well as the (putative) chloroplast-specific FeSODs, whereas the Cu/ZnSOD activity was not significantly 371 

challenged. The physiological explanation of these changes is beyond the aim of this work, but the 372 

hypothesis of oxidative stress in chloroplasts subject to conditions of limiting water supply and in 373 

mitochondria over-activated due to the lack of other suitable cellular energy sources seems plausible. It 374 

has been already reported that active oxygen unbalance caused by methyl viologen activated the 375 

expression of new FeSOD isoforms in the chloroplasts (Zvereva and Kozlov 2006) and that effective 376 

MnSOD activity in the mitochondria protected rice from drought-induced stress (Prakash et al. 2016). The 377 

constant Cu/ZnSOD activity in all the samples would rather correspond to housekeeping activities such as 378 

cell-wall synthesis (Kim et al. 2008). It will be meaningful to confirm the apparent high inverse 379 

correlation between FeSOD and photosynthetic activity by measuring the expression variation of other 380 

proteins involved in FeSOD activity, as for instance chaperonin 20 (Kuo et al. 2013). 381 

 382 

The statistical analysis indicates that both enzyme biomarkers and phenolic compounds can be effectively 383 

exploited to discriminate between seedlings grown under different conditions. The dendrogram and 384 

accompanying heat map further depict the relative incidence of such biomarkers in the analyzed samples 385 

and graphically indicate that the observation of biomarker combinations is more informative than the 386 

quantification of single biomarkers (Fig 8).  387 

 388 

The collected results clearly indicate the feasibility of using a set of biomarkers as a tool for evaluating the 389 

physiological condition of sampled plants thus enabling insight into the overall health conditions of a 390 
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forest region and the impact of environmental stressors on it. Furthermore, coupling the variation of more 391 

biochemical parameters could represent a simple and reproducible monitoring method for detection of 392 

early signs of water deprivation. This approach developed for seedlings could be a promising platform for 393 

the evaluation of drought stress in adult forest plants in combination with orthogonal techniques such as 394 

genomic and proteomic analyses. We consider the analyses of other biomarkers for sensing milder stress 395 

conditions, as contained temperature variations. For their nature, heat shock proteins seem appropriate 396 

candidates for this application, as already proved for crops and proposed for studying heat acclimation 397 

(Driedonks et al. 2015; Jacob et al. 2016).  Establishment of this type of monitoring could contribute in 398 

improving the selection and breeding practices as they would simplify the identification of more resilient 399 

and adaptable clones.  400 

 401 
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Figure 1: Leaf relative water content (%) of beech seedlings for treatments: NCRW+- Samples grown at 
16oC with watering; CCRW-- Samples grown at 16oC with roots cooled to 12oC withouth watering;  NCRW-- 
Samples grown at 16oC without watering. Sampling on 16.6.2014 was performed two days before the onset 
of drought experiment. Samplings on 8.7., 23.7. and 20.8.2014 were performed 21, 36 and 64 days after 

the onset of drought experiment, respectively.  
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Figure 2. Time series of soil matrix potential in beech seedlings subjected to different soil temperatures and 
drought (A). Correlation between neto photosynthesis and soil matrix potential in beech seedlings subjected 
to different soil temperatures and drought, p=0.0000 (B). Correlation between stomatal conductance and 

soil matrix potential in beech seedlings subjected to different soil temperatures and drought, p=0.0000. (C) 
NCRW+- Samples grown at 16oC with watering; CCRW-- Samples grown at 16oC with roots cooled to 12oC 

without watering;  NCRW-- Samples grown at 16oC without watering  
 
 

199x205mm (300 x 300 DPI)  

 

 

Page 22 of 30
C

an
. J

. F
or

. R
es

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.n

rc
re

se
ar

ch
pr

es
s.

co
m

 b
y 

U
ni

ve
rs

ity
 o

f 
T

as
m

an
ia

 L
ib

ra
ry

 o
n 

09
/0

4/
17

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.
 T

hi
s 

Ju
st

-I
N

 m
an

us
cr

ip
t i

s 
th

e 
ac

ce
pt

ed
 m

an
us

cr
ip

t p
ri

or
 to

 c
op

y 
ed

iti
ng

 a
nd

 p
ag

e 
co

m
po

si
tio

n.
 I

t m
ay

 d
if

fe
r 

fr
om

 th
e 

fi
na

l o
ff

ic
ia

l v
er

si
on

 o
f 

re
co

rd
. 



  

 

 

Figure 3. Time series of physiological parameters in beech seedlings subjected to different soil temperatures 
and drought: CCRW+- Samples grown at 16oC with roots cooled to 12oC with watering; NCRW+- Samples 

grown at 16oC with watering; CCRW-- Samples grown at 16oC with roots cooled to 12oC withouth 

watering;  NCRW-- Samples grown at 16oC without watering.  
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Figure. 4.  Determination of total phenolic content of plant methanol extracts: Total phenolic concentration 
in plant methanol extracts expressed as galic acid equivalents: CCRW+- Samples grown at 16oC with roots 
cooled to 12oC with watering; NCRW+- Samples grown at 16oC with watering; CCRW-- Samples grown at 

16oC with roots cooled to 12oC without watering;  NCRW-- Samples grown at 16oC without watering. The 
errors bars indicate standard deviations for triplicate measurements. Means with different letters are 

significantly different (Turkeys HSD, p ≤ 0.05)  
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Figure. 5. Specific enzymatic activities of peroxidase  in plant extracts (A); Electrophoretic separation of 
peroxidase isoforms (B): CCRW+- Samples grown at 16oC with roots cooled to 12oC with watering; 

NCRW+- Samples grown at 16oC with watering; CCRW-- Samples grown at 16oC with roots cooled to 12oC 

without watering;  NCRW-- Samples grown at 16oC without watering.  The errors bars indicate standard 
deviations for triplicate measurements. Means with different letters are significantly different (Turkeys HSD, 

p ≤ 0.05)  
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Figure. 6.  Total specific enzymatic activities of  superoxide dismutase (A) and  specific activity of different 
SOD isoforms (B) in plant extracts: CCRW+- Samples grown at 16oC with roots cooled to 12oC with 

watering; NCRW+- Samples grown at 16oC with watering; CCRW-- Samples grown at 16oC with roots cooled 
to 12oC without watering;  NCRW-- Samples grown at 16oC without watering. The errors bars indicate 
standard deviations for triplicate measurements. Means with different letters are significantly different 

(Turkeys HSD, p ≤ 0.05)  
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Figure 7.  Specific enzymatic activities of glutathion peroxidase  in plant extracts: CCRW+- Samples grown 
at 16oC with roots cooled to 12oC with watering; NCRW+- Samples grown at 16oC with watering; CCRW-- 

Samples grown at 16oC with roots cooled to 12oC without watering;  NCRW-- Samples grown at 16oC 

without watering. The errors bars indicate standard deviations for triplicate measurements. Means with 
different letters are significantly different (Turkeys HSD, p ≤ 0.05)  
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Figure 8.  Heat map showing unsupervised hierarchical clustering of different biomarker values according to 
the seedling growth conditions: Measured biomarkers for beech  seedlings are arranged in colums while 

growth coditions are in rows. Shades of red represent elevation of a metabolite while shades of blue 

represent decrease of a biomarker value, relative to the median levels (see color scale). In the 
dendrograms, the clustering clearly differentiates the stressed and control samples. Total phenolic 

concentration in plant methanol extracts is expressed in galic acid equivavelnts mg/ml (phenolics, mg/ml);. 
Specific enzymatic activities of peroxidase  (POX, U/mg), superoxide dismutase (SOD, U/mg), glutathione 

peroxidase (GPX, U/mg) are represented in U/mg of total protein.  
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Table 1: Seedling growth experimental conditions  

CCRW
+
- Samples grown at 16

o
C with roots cooled to 12

o
C with watering; NCRW

+
- Samples grown at 16

o
C with watering; CCRW

-
- Samples 

grown at 16
o
C with roots cooled to 12

o
C withouth watering;  NCRW

-
- Samples grown at 16

o
C withouth watering.  Means are based on values 

recorded daily and every half an hour  

 

  

  Air temperature (°C) Air RH (%) CO2 concentration (ppm) Soil temperature at -20 cm depth (°C) 

 

Water  

 

  Mean ± SD Min. Max. Mean ± SD Min. Max. 

Mean ± 

SD 

Min. Max. Mean ± SD Min. Max. 

 

 

NCRW
+
 

16.0 ± 2.3 13.4 30.1 77.3 ± 5.6 0.5 90.9 671 ± 214 445 1548 15.1 ± 2.5 10.4 25.8 

 

+ 

NCRW
-
 

- 

 

CCRW
+
 

16.0 ± 2.3 13.4 30.1 77.3 ± 5.6 0.5 90.9 671 ± 214 445 1548 12.0 ± 2.9 9.1 25.9 

+ 

CCRW
-
 - 
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Table 2: Experimental set-up 

POX: peroxidase, SOD: superoxide dismutase, GPX: glutathione peroxidase, 

Tree Species European beech (Fagus sylvatica L.) 

Extraction procedure 
50 mM Tris-HCl 

buffer, pH 7.4 
80% methanol 

Biomarker assessment 

Enzyme specific 

activity (U/mg): POX, 

SOD, GPX 

Phenolic concentration 

(µg/mL) 

 

Enzyme isoform 

distribution (Native 

PAGE): POX 
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