Supplementary data for article:

Novakovic, M.; Nikodinovic-Runic, J.; Veselinovic, J.; Ilic-Tomic, T.; Vidakovic, V.; Tesevic, V.; Milosavljevic, S. Bioactive Pentacyclic Triterpene Ester Derivatives from Alnus Viridis Ssp. Viridis Bark. *Journal of Natural Products* **2017**, *80* (5), 1255–1263. https://doi.org/10.1021/acs.jnatprod.6b00805

Supporting Information

Bioactive Pentacyclic Triterpene Ester Derivatives from Alnus viridis ssp. viridis Bark

Miroslav Novakovic,^{*,†} Jasmina Nikodinovic-Runic,[‡] Jovana Veselinovic,[‡] Tatjana Ilic-Tomic,[‡] Vera Vidakovic,[§] Vele Tesevic,[⊥] Slobodan Milosavljevic[⊥]

[†] Institute of Chemistry, Technology and Metallurgy, [‡] Institute of Molecular Genetics and Genetic Engineering, [§] Institute for Biological Research "Sinisa Stankovic", [⊥] Faculty of Chemistry, University of Belgrade, 11000 Belgrade, Serbia

Figure S1. The 1st part of the ¹H NMR spectrum of **1** (CD₃OD, 500 MHz). **Figure S2.** The 2nd part of the ¹H NMR spectrum of **1** (CD₃OD, 500 MHz). **Figure S3.** The 1st part of the ¹³C NMR spectrum of **1** (CD₃OD, 125 MHz). Figure S5. The 1^{nd} part of the ¹³C NMR spectrum of 1 (CD₃OD, 125 MHz). Figure S5. The 1^{st} part of the ¹H NMR spectrum of 2 (CD₃OD, 500 MHz). Figure S6. The 2^{nd} part of the ¹H NMR spectrum of **2** (CD₃OD, 500 MHz). Figure S6. The 2^{nd} part of the ¹H NMR spectrum of **2** (CD₃OD, 500 MHz). Figure S7. The 1^{st} part of the ¹³C NMR spectrum of **2** (CD₃OD, 125 MHz). Figure S8. The 2^{nd} part of the ¹³C NMR spectrum of **2** (CD₃OD, 125 MHz). Figure S10. The 2^{nd} part of the ¹H NMR spectrum of **3** (CD₃OD, 500 MHz). Figure S10. The 2st part of the ¹³C NMR spectrum of **3** (CD₃OD, 125 MHz). Figure S12. The 2nd part of the ¹³C NMR spectrum of **3** (CD₃OD, 125 MHz). Figure S13. The 1^{st} part of the ¹H NMR spectrum of 4 (CD₃OD, 500 MHz). Figure S14. The 2^{nd} part of the ¹H NMR spectrum of 4 (CD₃OD, 500 MHz). Figure S15. The 1st part of the 13 C NMR spectrum of 4 (CD₃OD, 125 MHz). Figure S16. The 2^{nd} part of the ¹³C NMR spectrum of 4 (CD₃OD, 125 MHz). Figure S17. The 1st part of the ¹H NMR spectrum of 5 (CD₃OD, 500 MHz). **Figure S18.** The 2nd part of the ¹H NMR spectrum of **5** (CD₃OD, 500 MHz). **Figure S19.** The 1st part of the ¹³C NMR spectrum of **5** (CD₃OD, 125 MHz). **Figure S20.** The 2^{nd} part of the ¹³C NMR spectrum of **5** (CD₃OD, 125 MHz). **Figure S21.** The 1^{st} part of the ¹H NMR spectrum of **6** (CD₃OD, 500 MHz). Figure S22. The 2^{nd} part of the ¹H NMR spectrum of 6 (CD₃OD, 500 MHz). Figure S23. The 1^{st} part of the ¹³C NMR spectrum of 6 (CD₃OD, 125 MHz). Figure S24. The 2^{nd} part of the ¹³C NMR spectrum of 6 (CD₃OD, 125 MHz). Figure S25. The 1^{st} part of the ¹H NMR spectrum of 7 (CD₃OD, 500 MHz). Figure S26. The 2^{nd} part of the ¹H NMR spectrum of 7 (CD₃OD, 500 MHz). Figure S27. The 1^{st} part of the ¹³C NMR spectrum of 7 (CD₃OD, 125 MHz). Figure S28. The 2nd part of the ¹³C NMR spectrum of 7 (CD₃OD, 125MHz). Figure S29. Two-dimensional representation of the best docking pose for compound 1 inside the topoisomerase I binding pocket. Figure S30. Two-dimensional representation of the best docking pose for compound 2 inside the topoisomerase I binding pocket. Figure S31. Two-dimensional representation of the best docking pose for compound 3 inside the topoisomerase I binding pocket.

Figure S32. Two-dimensional representation of the best docking pose for compound 4 inside the topoisomerase I binding pocket.

Figure S33. Two-dimensional representation of the best docking pose for compound **6** inside the topoisomerase I binding pocket.

Figure S34. Two-dimensional representation of the best docking pose for compound 7 inside the topoisomerase I binding pocket.

Figure S35. Two-dimensional representation of the best docking pose for betulinic acid inside the topoisomerase I binding pocket.

Figure S36. Two-dimensional representation of the best docking pose for compound 1 inside the topoisomerase II α binding pocket.

Figure S37. Two-dimensional representation of the best docking pose for compound 2 inside the topoisomerase II α binding pocket.

Figure S38. Two-dimensional representation of the best docking pose for compound 3 inside the topoisomerase II α binding pocket

Figure S39. Two-dimensional representation of the best docking pose for compound 4 inside the topoisomerase II α binding pocket.

Figure S40. Two-dimensional representation of the best docking pose for compound 6 inside the topoisomerase II α binding pocket.

Figure S41. Two-dimensional representation of the best docking pose for compound 7 inside the topoisomerase II α binding pocket.

Figure S42. Two-dimensional representation of the best docking pose for betulinic acid inside the topoisomerase II α binding pocket.

Table S1. ¹H and ¹³C NMR data of compounds 4 and 5 recorded in CD₃OD (500 MHz for ¹H and 125 MHz for ¹³C).

Table S2. Score values (kcal/mol) for all studied compounds 1-4, 6, 7 for topoisomerase I activity.

Table S3. Identified hydrogen bonds between studied ligands and amino acids from topoisomerase I active site.

Table S4. Score values (kcal/mol) for all studied compounds 1-4, 6, and 7 for the topoisomerase II α activity.

Table S5. Identified hydrogen bonds between studied ligands and amino acids from the topoisomerase II α active site.

Table S6. Gradient elution program used for silica gel CC separation of *A. viridis* ssp. *viridis* extract.

Figure S1. The 1st part of the ¹H NMR spectrum of 1 (CD₃OD, 500 MHz).

Figure S2. The 2nd part of the ¹H NMR spectrum of 1 (CD₃OD, 500 MHz).

Figure S3. The 1st part of the ¹³C NMR spectrum of 1 (CD₃OD, 125 MHz).

Figure S4. The 2nd part of the ¹³C NMR spectrum of 1 (CD₃OD, 125 MHz).

Figure S5. The 1st part of the ¹H NMR spectrum of 2 (CD₃OD, 500 MHz).

Figure S6. The 2nd part of the ¹H NMR spectrum of 2 (CD₃OD, 500 MHz).

Figure S7. The 1st part of the ¹³C NMR spectrum of 2 (CD₃OD, 125 MHz).

Figure S8. The 2nd part of the ¹³C NMR spectrum of 2 (CD₃OD, 125 MHz).

Figure S9. The 1st part of the ¹H NMR spectrum of **3** (CD₃OD, 500 MHz).

Figure S10. The 2nd part of the ¹H NMR spectrum of **3** (CD₃OD, 500 MHz).

Figure S11. The 1st part of the ¹³C NMR spectrum of **3** (CD₃OD, 125 MHz).

Figure S12. The 2nd part of the ¹³C NMR spectrum of 3 (CD₃OD, 125 MHz).

Figure S13. The 1st part of the ¹H NMR spectrum of 4 (CD₃OD, 500 MHz).

Figure S14. The 2nd part of the ¹H NMR spectrum of 4 (CD₃OD, 500 MHz).

Figure S15. The 1st part of the ¹³C NMR spectrum of 4 (CD₃OD, 125 MHz).

Figure S16. The 2nd part of the ¹³C NMR spectrum of 4 (CD₃OD, 125 MHz).

Figure S17. The 1st part of the ¹H NMR spectrum of **5** (CD₃OD, 500 MHz).

Figure S18. The 2nd part of the ¹H NMR spectrum of 5 (CD₃OD, 500 MHz).

Figure S19. The 1st part of the ¹³C NMR spectrum of 5 (CD₃OD, 125 MHz).

Figure S20. The 2nd part of the ¹³C NMR spectrum of 5 (CD₃OD, 125 MHz).

Figure S21. The 1st part of the ¹H NMR spectrum of 6 (CD₃OD, 500 MHz).

Figure S22. The 2nd part of the ¹H NMR spectrum of 6 (CD₃OD, 500 MHz).

Figure S23. The 1st part of the ¹³C NMR spectrum of 6 (CD₃OD, 125 MHz).

Figure S24. The 2nd part of the ¹³C NMR spectrum of 6 (CD₃OD, 125 MHz).

Figure S25. The 1st part of the ¹H NMR spectrum of 7 (CD₃OD, 500 MHz).

Figure S26. The 2nd part of the ¹H NMR spectrum of **7** (CD₃OD, 500 MHz).

Figure S27. The 1st part of the ¹³C NMR spectrum of 7 (CD₃OD, 125 MHz).

Figure S28. The 2nd part of the ¹³C NMR spectrum of 7 (CD₃OD, 125 MHz).

Figure S29. Two-dimensional representation of the best docking pose for compound **1** inside the topoisomerase I binding pocket.

Figure S30. Two-dimensional representation of the best docking pose for compound **2** inside the topoisomerase I binding pocket.

Figure S31. Two-dimensional representation of the best docking pose for compound **3** inside the topoisomerase I binding pocket.

Figure S32. Two-dimensional representation of the best docking pose for compound **4** inside the topoisomerase I binding pocket.

Figure S33. Two-dimensional representation of the best docking pose for compound **6** inside the topoisomerase I binding pocket.

Figure S34. Two-dimensional representation of the best docking pose for compound 7 inside the topoisomerase I binding pocket.

Figure S35. Two-dimensional representation of the best docking pose for betulinic acid inside the topoisomerase I binding pocket.

Figure S36. Two-dimensional representation of the best docking pose for compound 1 inside the topoisomerase IIα binding pocket.

Figure S37. Two-dimensional representation of the best docking pose for compound **2** inside the topoisomerase IIα binding pocket.

Figure S38. Two-dimensional representation of the best docking pose for compound 3 inside the topoisomerase II α binding pocket.

Figure S39. Two-dimensional representation of the best docking pose for compound **4** inside the topoisomerase IIα binding pocket.

Figure S40. Two-dimensional representation of the best docking pose for compound 6 inside the topoisomerase II α binding pocket.

Figure S41. Two-dimensional representation of the best docking pose for compound 7 inside the topoisomerase IIα binding pocket.

Figure S42. Two-dimensional representation of the best docking pose for betulinic acid inside the topoisomerase IIα binding pocket.

Table S1. ¹H and ¹³C NMR Data of Compounds 4 and 5 Recorded in CD₃OD (500 MHz for ¹H and 125 MHz for ¹³C)

position		4	5			
	δC	δН	δC	δН		
1	45.6	0.95 m, 2.10 dd (12.5;4.5) ^a	40.3	0.98 m, 1.72 m		
2	74.2	5.05 ddd (11.0;10.0;4.5)	28.2	1.58 m, 1.62 m		
3	81.3	3.22 d (10.0)	79.6	3.14 dd (11.0;5.0)		
4	41.2	-	40.1	-		
5	56.9	0.89 m	57.2	0.76 m		
6	19.7	1.48 m, 1.57 m	19.6	1.44 m, 1.55 m		
7	35.6	1.42 m, 1.46 m	36.9	1.46 m, 1.56 m		
8	42.2	-	42.9	-		
9	52.0	1.42 m	53.6	1.37 m		
10	39.9	-	38.8	-		
11	22.4	1.30 m, 1.40 m	22.4	1.26 m, 1.51 m		
12	26.9	1.07 m, 1.72 m	26.9	0.95 m, 1.77 m		
13	39.7	2.34 bt (12.5)	40.6	2.52 td (12.5;2.5)		
14	43.8	-	47.0	-		
15	31.0	1.17 m, 1.55 m	25.4	1.45 m, 1.85 m		
16	33.6	1.40 m, 2.24 d (12.5)	34.0	1.29 m, 2.27 bd (13.0)		
17	57.7	-	57.4	-		
18	50.6	1.62 m	50.9	1.78 m		
19	48.6 ^b	3.02 m	48.5 ^b	3.06 m		
20	152.2	-	152.0	-		
21	31.9	1.36 m, 1.95 m	31.8	1.41 m, 1.96 m		
22	38.4	1.45 m, 1.90 m	38.1	1.44 m, 1.94 m		
23	29.2	1.04 s	28.7	0.93 s		
24	17.3	0.86 s	16.3	0.75 s		
25	17.9	1.01 s	17.3	0.90 s		
26	16.8	0.98 s	17.3	1.03 s		
27	15.2	1.02 s	64.5	4.52 d (13.0), 4.68 d (13.0)		
28	180.5	-	180.2	-		
29	110.3	4.57 bs, 4.70 bs	110.5	4.62 bs, 4.74 bs		
30	19.7	1.70 s	19.8	1.73 s		
1 c ^c	128.0	-	127.8	-		
2c	115.3	7.04 d (2.0)	115.3	7.04 d (2.0)		
3c	147.0	-	147.0	-		
4c	149.6	-	149.9	-		
5c	116.6	6.78 d (8.0)	116.7	6.79 d (8.5)		
6c	123.0	6.94 dd (8.0;2.0)	122.8	6.95 dd (8.5;2.0)		
7c	146.7	7.55 d (16.0)	147.2	7.54 d (16.0)		
8c	116.0	6.28 d (16.0)	115.4	6.26 d (16.0)		
9c	169.5	-	169.6	-		

^{*a*}J values are given in parenthesis. ^{*b*} Signal overlapped with the signal of solvent; value obtained from the HSQC spectrum. ^{*c*} "c" – caffeoyl

I upuisui	nerase i menvity					
compound	MolDock Score	RerankScore	PoseEnergy	LE1	LE3	HBond
1	-203.052	-101.365	-203,052	-350.009	-174.767	-166.501
2	-180.151	-426.024	-180,151	-310.606	-173.452	-117.429
3	-162.799	-125.187	-162,799	-346.382	-266.356	-142.554
4	-171.217	-123.581	-171,217	-372.212	-268.655	-166.678
6	-181.419	-976.498	-181,419	-394.389	-212.282	-99.534
7	-166.217	-121.19	-166,217	-361.342	-263.456	-71.593
BA^{a}	-125.511	-901.372	-125,511	-380.336	-253.143	-53.574
a D A 1 ++-1	::					

Table S2. Score Values (kcal/mol) for All Studied Compounds 1–4, 6, 7 for Topoisomerase I Activity

^{*a*} BA- betulinic acid

Table S3. Identified Hydrogen Bonds Between Studied Ligands and Amino Acids from Topoisomerase I Active Site

compound	identified hydrogen bonds between ligand and amino acids from the active site				
1	Gly421(3.10 Å), Lys374(2.85 Å), Ser423(2.91 Å), Lys425(3.10 Å), Asp533(2.68 Å),				
1	Ala489(3.04 Å), Asn491(3.10 Å)				
2	Asn491(2.48 Å and 2.62 Å), Val502(2.93 Å), His367(2.93 Å), Arg364(2.60 Å and 3.10 Å)				
3	Gln421 (2.74 Å), Tyr268 (2.75 Å), Gly363(2.86 Å), Lys374(2.56 Å and 2.84 Å)				
4	Ser423(3.10 Å and 3.14 Å), Ser535(2.63 Å and 2.81 Å), His367(3.03 Å)				
6	Ser719(3.22 Å), Ser595(2.60 Å), Arg488(3.10 Å), Lys587(2.60 Å)				
7	Asn491(2.56 Å), Thr781(3.10 Å)				
BA^{a}	Arg364(2.99 Å), His367(2.88 Å)				

^{*a*} BA- betulinic acid

Table S4. Score Values (kcal/mol) for All Studied Compounds 1–4, 6 and 7 for the Topoisomerase Πα Activity

compound	MolDock Score	RerankScore	PoseEnergy	LE1	LE3	HBond
1	-217.744	-384.338	-206.78	-375.421	-662.651	-145.673
2	-210.952	-592.479	-204.404	-363.714	-102.152	-156.712
3	-174.257	-118.666	-181.424	-370.759	-252.482	-180.17
4	-182.662	-137.408	-187.287	-397.091	-298.712	-114.963
6	-174.029	-664.934	-178.74	-378.324	-144.551	-168.656
7	-180.373	-139.764	-185.266	-392.115	-303.834	-126.776
BA^a	-129.316	-608.735	-126.593	-391.868	-184.465	-5

^{*a*} BA- betulinic acid

Table S5. Identified Hydrogen Bonds	Between	Studied	Ligands	and	Amino	Acids	from
the Topoisomerase IIa Active Site							

compound	identified hydrogen bonds between ligand and amino acids from active site
1	Arg705(3.10 Å), Glu815(2.80 Å), Thr754(2.55 Å and 3.10 Å), Tyr735(2.78 Å)
2	Ala778(2.63 Å), Lys776(3.28 Å), Arg782(3.20 Å)
3	Asn757(2.86 Å), Arg907(3.09 Å), Gln751(3.10 Å), Thr(2.94 Å)
4	Ala723(3.00 Å), Glu739(2.61 Å and 3.10 Å)
(Tyr511(3.05 Å and 3.10 Å), Lys776(2.79 Å and 3.10 Å), Ala778(3.23 Å), Gln740(2.81 Å),
0	Ala781(2.75 Å)
7	Asn757(2.61 Å), Gln704(2.59 Å), Ser692(3.06 Å)
BA^a	Glu739(2.83 Å)
a	

^{*a*}BA- betulinic acid

Table S6. Gradient Elution Program Used for the Silica Gel CC Separation of A. viridis

ssp. *viridis* Extract

V (mL)	CH ₂ Cl ₂	CH ₃ OH	fr. no.
200	100	0	-
800	90	10	-
400	85	15	0-13
400	80	20	14-34
600	75	25	35-63
700	70	30	64-100
600	65	35	101-132
400	60	40	133-155
600	50	50	156-189
400	40	60	190-211
800	0	100	212-240